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ABSTRACT 
 

Efficiency of numerical methods is an important problem in dynamic 
nonlinear analyses. It is possible to use of numerical methods such as beta-
Newmark in order to investigate the structural response behavior of the 
dynamic systems under random sea wave loads but because of necessity to 
analysis the offshore systems for extensive time to fatigue study it is important 
to use of simple stable methods for numerical integration. The modified Euler 
method (MEM) is a simple numerical procedure which can be effectively used 
for the analysis of the dynamic response of structures in time domain. It is also 
very effective for response dependent systems in the field of offshore 
engineering. An important point is investigating the convergence and stability 
of the method for strongly nonlinear dynamic systems when high initial values 
for differential equation or large time steps are considered for numerical 
integrating especially when some frequencies of the system is very high. In 
this paper the stability of the method for solving differential equation of 
motion of a nonlinear offshore system (tension leg platform, TLP) under 
random wave excitation is presented. In this paper the stability criterion and 
the convergence of the numerical solution for critical time steps are presented.  
 
 

1. Introduction  
Many studies have been carried out to understand 

the structural behavior of TLP and determine the 
effect of several parameters on dynamic response and 
average life time of the structure [1–6]. The tether 
system is a critical and basic component of the TLP. 
The most important point in the design of TLP is the 
pretension of the legs. The pretension causes that the 
platform behaves like a stiff structure with respect to 
the vertical degrees of freedom (heave, pitch and roll), 
whereas with respect to the horizontal degrees of 
freedom (surge, sway and yaw) it behaves as a 
floating. structure. Therefore the periods of the 
vertical degrees of freedom are lower than the others. 
Another important problem is investigating the effects 
of radiation and scattering on the hull and tendon 
responses. An analytical solution for surge motion of 
TLP was proposed and demonstrated [7], in which the 
surge motion of a platform with pre-tensioned tethers 
was calculated. In that study, however, the elasticity 
of tethers was only implied and the motion of tethers 
was also simplified as on-line rigid-body motion 
proportional to the top platform. Thus, both the 

material property and the mechanical behavior for the 
tether incorporated in the TLP system were ignored. 
When this simplification was applied, no matter what 
the material used was or what the dimension of tethers 
was, the dynamic response of the platform would 
remain the same in terms of the vibration mode, 
periods and the vibration amplitude. An important 
point in that study was linearization of the surge 
motion. But it is obvious that the structural behavior 
in the surge motion is highly nonlinear because of 
large deformation of TLP in the surge motion degree 
of freedom (geometric nonlinearity) and nonlinear 
drag forces of Morison equation. Therefore the 
obtained solution is not true for the actual engineering 
application. For heave degree of freedom the 
structural behavior is linear, because there is no 
geometric nonlinearity in the heave motion degree of 
freedom and drag forces on legs have no vertical 
component. Similarly, an analytical heave vibration of 
TLP with radiation and scattering effects for damped 
systems 
has been presented [8]. a similar method is presented 
for hydrodynamic pitch response of the structure [9]. 
The modified Euler method [10] presented herein is a 
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simple numerical procedure which can be effectively 
used for the analysis of the dynamic response of 
structures in the time domain. It has been shown that 
the modified Euler method is conditionally stable 
[11]. The application of the modified Euler method 
made herein shows that it is efficient and easy to use, 
and that it can be employed to obtain accurate 
solutions to a wide variety of structural dynamics 
problems. Simplicity is one of the distinguishing 
features of the method. Because the modified Euler 
method is conditionally stable, it may be inefficient 
for the analysis by direct integration of the response of 
a multidegree-of-freedom system with a very short 
highest natural period of vibration. However, the 
method is explicit, and it is particularly sited for the 
analysis of non-linear systems. The modified Euler 
method has been successfully used in the analysis for 
the dynamic response of wave-excited offshore 
structures [12]. 
A Comprehensive study on the results of tension leg 
platform responses in random sea considering all 
structural and excitation nonlinearities is presented by 
Tabeshpour et al. [13]. This kind of interpretation of 
the results is necessary for optimum design of TLP. 
The effect of added mass fluctuation on the pitch 
response of tension leg platform has been investigated 
by using perturbation method both for discrete and 
continues models [14]. Liu et al. described an analysis 
of the non-linear effects and identification of non-
linear pitch motion on tension leg platforms. The 
purpose of their paper was to accurately identify pitch 
motion on the tension leg platform and to interpret the 
non-linear effects using statistical methods, the 
NARMAX methodology, and the higher order 
frequency response functions [15]. 
Chandrasekaran et al. investigated the response of 
triangular tension leg platform (TLP) for different 
wave approach angles varying from 0° through 90° 
and its influence on the coupled dynamic response of 
triangular TLPs [16]. Barranco-Cicilia et al. presented 
a methodology to perform a Load and Resistance 
Factor Design (LRFD) criterion for the design of 
tension leg platforms (TLP) tendons in their intact 
condition [17]. A robust stochastic design framework 
were discussed for design of mass dampers by 
Taflanidis et al. The focus was on applications for the 
mitigation of the coupled heave and pitch response of 
Tension Leg Platforms under stochastic sea excitation 
[18]. 
Tabeshpour et al. investigated design and effect of 
tuned mass damper on response of tension leg 
platform under wind and wave forces [19]. Efficiency 
of numerical methods is an important problem in 
dynamic nonlinear analyses. It is possible to use of 
numerical methods such as beta-Newmark in order to 
investigate the structural response behavior of the 
dynamic systems under random sea wave loads but 
because of necessity to analysis the offshore systems 

for extensive time to fatigue study it is important to 
use of simple stable methods for numerical 
integration. The key point of suitability of MEM for 
solving the TLP system is that the maximum 
frequency of the system is about 0.5 Hz. In this paper 
the convergence and stability of the method for 
solving differential equation of motion of a nonlinear 
offshore system known as tension leg platform under 
random wave excitation is presented. 
 
2. The Modified Euler Method (Mem) 

Consider the numerical evaluation of the free-
vibrational response of a linear, undamped, simple 
mass-spring system governed by the following 
differential equation: 
 

2 0x x                  (1) 
 
in which x is the displacement of the system;  is the 
circular natural frequency of vibration of the system; 
and a dot superscript denotes differentiation with 
respect to time, t. Let nx  and nx be the known 
displacement and velocity, respectively, of the system 
at time nt . This time is expressed in terms of a non-
negative integer number, n, and a time step, t , as 

nt n t  . By application of the MEM, the 
displacement and velocity of the system, 1nx   and 

1nx  , at time 1 ( 1)nt n t    , are evaluated as 
follows. By using eq. (1), compute 
 

2
n nx x                  (2) 

 
Then, compute 
 

1n n nx x x t                      (3)  
 

Now there is two approaches in order to calculate 
1nx  . First approach is using only the velocity in time 

step n+1: 
 

1 1n n nx x x t                    (4) 
 

The second one is averaging of velocities of two 
steps: 
 

1
1 2

n n
n n

x xx x t



  

 
                    (5) 

 
If one uses the following equation  
 

1n n nx x x t                       (6) 
 
then the method is called Euler method. With the 
values of 1nx   and 1nx   available, the procedure 
defined by eqs. (2)-(4 or 5) may be repeated to 
compute the response of the system for subsequent 
discrete times larger than 1nt  . These computations 
can be carried out accurately by a proper 
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implementation of the MEM. It is important to note 
that, in the MEM, the solution for 1nx   is based on 
using the equilibrium equation at time nt . Therefore, 
the MEM is an explicit method. It is also important to 
note in eq. (4) that the displacement 

1nx   is computed 
by using the velocity 1nx  . If 1nx  is replaced in eq. 
(4) with nx , then the procedure defined by eqs. (2)-
(4) reduces to the well known standard Euler method, 
which is an unstable approach that should never be 
used for structural dynamics applications. 
 
3. Stability Analysis for the Mem 

Eq. (2) is substituted into eq. (3), and eq. (4) is 
rewritten to obtain 
 

2
1n n nx x t x                       (7)  

 

1 1n n nx x t x                        (8) 
  

and it is apparent from eqs. (14) and (15) that 
 

2
1 1n n nx x t x                        (9)  

  

1n n nx x t x                     (10) 
 

Subtracting eq. (10) from eq. (8) leads to 
 

1 1 1( )n n n n n nx x x x t x x                          (11) 
 

and the quantity 1( )n nx x   may be obtained from eq. 
(3) and substituted into eq. (18) to obtain 
 

2 2
1 1(2 ) 0n n nx t x x                      (12) 

 
Eq. (19) is a linear homogeneous difference equation 
of second order (Karman and Biot, 1940) and it can be 
rewritten as 
 

2 2
2 1(2 ) 0n n nx t x x                       (13) 

 
the solution of which may be expressed as 
 

n
nx                   (14)  

 
By substituting eq. (14) into eq. (13), the following 
characteristic equation is obtained: 
 

2 2 2(2 ) 1 0t                        (15)  
 
and the roots of eq. (15), 1 and 2, provide the values 
of  which are needed to find nx  in accordance with 
eq. (14). These roots are found to be 
 

2 2 2 2 1/2
1 (1 0.5 ) 0.5 ( 4)t t t             (16) 

2 2 2 2 1/2
2 (1 0.5 ) 0.5 ( 4)t t t                  (17) 

 
There are three important cases: in Case l, the roots 
are real-valued and distinct; in Case 2, the roots are 
real-valued and equal; and in Case 3, the roots are 

complex-valued quantities. Cases 1 and 2 lead to 
unstable solutions for nx ; and Case 3, which leads to 
stable solutions, is obtained if  
 

2 2 4t                    (18)  
 
This expression gives the condition for the stability of 
the MEM and may be reformulated as  
 

Tt


                   (19) 

 
in which 2 /T    is the natural period of vibration 
of the system. Therefore, the MEM is stable only 
when eq. (26) is satisfied. 
Similar calculation and considering eq. (12) instead of 
(11) results in 
 

2Tt


                   (20) 

 
Assuming that the condition for stability is satisfied, 
eqs. (16) and (17) may be rewritten as  
 

2 2 2 2 1/2
1 (1 0.5 ) 0.5 (4 ) it i t t e            (21) 

 

2 2 2 2 1/2
2 (1 0.5 ) 0.5 (4 ) it i t t e             (22) 

 
where 1i   , and  
 

2 2 1/2

2 2

0.5 (4 )arctan
1 0.5
t t

t
 




   
    

                 (23) 

 
and the solution for the displacements nx  is obtained 
from eqs. (14), (20) and (21) as  
  

1 2
in in

nx C e C e     
 
or, alternatively, as 
 

1 2cos( ) sin( )nx D n D n                    (25) 
  

in which 
1C  , 2C , 1D  and 2D  are constants to be 

determined from the specified initial conditions.  
 

4. TLP, Strongly Nonlinear System 
Because of large displacement of TLP and 

nonlinear terms in exciting force, the equation of 
motion of TLP is strongly nonlinear and the exciting 
wave force is response dependent as well 
(Chandrasekaran, S., Jain, A.K., 2001, 2002). A brief 
review on structural modeling of TLP is presented 
here in. 

 

5. Mass Matrix of TLP 
Structural mass is assumed to be lumped at each 

degree of freedom. Hence, it is diagonal in nature and 
is constant. The added mass, Ma, due to the water 
surrounding the structural members and arising from 
the modified Morrison equation is considered up to 
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the mean sea level (MSL) only. The fluctuating 
component of added mass due to the variable 
submergence of the structure in water is considered in 
the force vector depending upon whether the sea 
surface elevation is above (or) below the MSL. The 
mass matrix of TLP is 
 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

[ ]
0 0

0 0
0 0 0 0 0

SS

WW

HH

aRS aRW aRH RR

aPS aPW aPH PP

Y Y

Surge Sway Heave Roll Pitch Y aw

M
M

M
M

M M M M
M M M M

M

 
  
 

  
 
 
 
  

            (26) 
 
where SS WW HHM M M M    and 

SS SS aSSM M M    and WW WW aWWM M M     and 

HH HH aHHM M M   . M is the total mass of the entire 
structure, RRM is the total mass moment of inertia 
about the x axis = 2

xMr , PPM  is the total mass 
moment of inertia about the y axis = 2

yMr , Y YM  is 
the total mass moment of inertia about the z axis = 

2
zMr , rx is the radius of gyration about the x axis, ry is 

the radius of gyration about the y axis, and rz is the 
radius of gyration about the z axis. The added mass 
terms are: 
 

20.25 ( 1)aSS aWW aHH mM M M D C dl          (27) 

aSS aSS
lenght

M dM              (28) 

 

aRSM  is the added mass moment of inertia in the roll 
degree of freedom due to hydrodynamic force in the 
surge direction. aRWM  is the added mass moment of 
inertia in the roll degree of freedom due to 
hydrodynamic force in the sway direction. aRHM  is 
the added mass in the roll degree of freedom due to 
hydrodynamic force in the heave direction. aPSM  is 
the added mass moment of inertia in the pitch degree 
of freedom due to hydrodynamic force in the surge 
direction. aPWM  is the added mass moment of inertia 
in the pitch degree of freedom due to hydrodynamic 
force in the sway direction. aPHM  is the added mass 
in the pitch degree of freedom due to hydrodynamic 
force in the heave direction. The presence of off 
diagonal terms in the mass matrix indicates a 
contribution in the added mass due to the 
hydrodynamic loading. The loading will be attracted 
only in the surge, heave and pitch degrees of freedom 
due to the unidirectional wave acting in the surge 

direction on a symmetric configuration of the platform 
about the x and z axes). 
 
6. Stiffness Matrix of the TLP 

The coefficients, KAB, of the stiffness matrix of the 
triangular TLP are derived as the reaction in the 
degree of freedom A due to unit displacement in the 
degree of freedom B, keeping all other degrees of 
freedom restrained. The coefficients of the stiffness 
matrix have nonlinear terms due to the cosine, sine, 
square root and squared terms of the displacements. 
Furthermore, the tendon tension changes due to the 
motion of the TLP in different degrees of freedom 
makes the stiffness matrix response-dependent. The 
stiffness matrix [K] of a TLP is: 
 

0 0 0 0 0
0 0 0 0 0

[ ]
0 0 0 0

0 0 0 0
0 0 0 0 0

SS

WW

HS HW HH HR HP HY

RW RR

PS PP

Y Y

Surge Sway Heave Roll Pitch Y aw

K
K

K K K K K K
K

K K
K K

K

 
 
 
 

  
 
 
 
  

(29) 

 
In the stiffness matrix the presence of off-diagonal 
terms, reflects the coupling effect between the various 
degrees of freedom and the coefficients depend on the 
change in the tension of the tendons, which is 
affecting the buoyancy of the system. Hence, the [K] 
is not constant for all time instants but the coefficients 
are replaced by a new value computed at each time 
instant depending upon the response value at that time 
instant. The stiffness matrix of the four-legged square 
TLP is taken as suggested by Morgan and Malaeb 
(1983).  
 
7. Damping Matrix, [C] 

Assuming [C] to be proportional to [K] and [M], 
the elements of [C] are determined by the equation 
given below, using the orthogonal properties of [M] 
and [K]:  
 

C M K               (30) 
 
  and   are constant. This matrix is calculated 
based on the initial values of [K] and [M] only. 
 
8. Wave Forces 

The problem of suitable representation of the wave 
environment or more precisely the wave loading is the 
problem of prime concern. Once the wave 
environment is evaluated, wave loading on the 
structure may be computed based on suitable theory. 
In this work the water particle position   is 
determined according to Airy’s linear wave theory: 
 

( , ) cos( )x t A kx t                   (31) 
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where A is the amplitude of the wave, k is the wave 
number,   is the wave frequency and x is the 
horizontal distance from the origin.  
In stochastic modeling, sea waves are commonly 
characterized by their PSDFs. Water particle 
kinematics, at different location on the structure, are 
considered to be derived processes and these need not 
be specified in addition to the sea surface elevation. 
On account of various physical processes involved in 
the generation of waves, a random wave is regarded as 
a superposition of an infinite number of independent 
waves of different wave heights and wave periods 
with arbitrary phase angles. In the present simulation 
procedure, waves are assumed to be stationary, 
homogeneous and ergodic in the statistical sense. By 
considering the random process as a linear 
superposition of a large number of independent 
waves, its distribution becomes Gaussian. Depending 
upon the fetch conditions, several analytical 
expressions exist for the approximation of the sea 
surface elevation spectrum (i.e. its PSDF). A well-
known spectrum model for ocean waves is Peirson-
Moskowitz (P-M) model. The modified P-M spectrum 
model is assumed to adequately represent the sea 
state. It is given by: 
 

5 42

2

1( ) exp -
8 2 2

s z z zH T T TS

 


   

            
     

         (32)  

 
where sH  is the significant wave height in m, zT is 
zero up crossing period in s and   is the angular 
frequency. Figure 1 shows the curve of the spectrum. 
The linearized small-amplitude wave theory allows 
the summation of velocity potential, wave elevation, 
and water particle kinematics of the individual regular 
wave to form a random wave made up of a number of 
components. The generated synthetic random wave is 
considered to be adequately represented by a 
summation of linear harmonic regular waves. The 
series representation of sea surface elevation is given 
by the equation 
 

1

( , ) lim cos( )
k

i i i i
i

x t A k x t  


               (33) 
 

2 ( )i i iA S                     (34) 
 
where Ai is the amplitude of the i-th component wave, 
ki is the wave number of the i-th component wave, i  
is the wave frequency of the i-th component wave,   
is the phase angle of the i-th component wave, varying 
between 0 and 2, x is the horizontal distance from the 
origin and S() is the one-sided sea surface 
elevation PSDF. Once the sea surface elevation time 
history (x,t) is known from Eq. (33), the time 

histories of the water particle velocity and 
acceleration are computed by wave superposition, 
according to Airy’s linear wave theory. The horizontal 
water particle velocity ( , )u x t and the vertical water 
particle velocity ( , )v x t are given as: 
 

1

cosh( )( , ) cos( )
sinh( ( ))

k
i

i i i i i
i i

k zu x t A k x t
k d

  


  


                 (35) 
 

1

sinh( )( , ) sin( )
sinh( ( ))

k
i

i i i i i
i i

k zv x t A k x t
k d

  


  


                 (36) 
 
where ki is the i-th component wave number, y is the 
vertical distance at which the wave kinematics is 
calculated, d is the water depth,  is the sea surface 
elevation, which is equal to (x,t) given by Eq. (31). 
The wave forces acting on the cylindrical member of 
the TLP structure are obtained by using modified 
Morison’s equation, which takes relative velocity and 
acceleration between the structure and water particles 
into account. While calculating the wave forces, water 
particle kinematics for each member are determined 
with respect to the average value across the diameter 
of the member. The integration of the elemental forces 
acting on the pontoons and columns is performed 
numerically by dividing the cylinder into small 
elements. The instantaneous total hydrodynamic force 
is determined at each time station with the assigned 
values of the structural displacements, velocities and 
accelerations.  
In order to probability work on the wave height the 
knowledge of the wave height distribution is of great 
importance since various valuable information can be 
derived from this distribution. It has been found that 
wave heights of an irregular sea follow a Rayleigh 
distribution.  
 
9. Hydrodynamic Force 

Water particle kinematics are evaluated using 
Airy’s linear wave theory. This description assumes 
the wave form whose wave height, H, is small in 
comparison to its wave length, L, and water depth, d. 
Knowing the water particle kinematics, the 
hydrodynamic force vector is calculated in each 
degree of freedom. According to Morison’s equation, 
the intensity of wave force per unit length on the 
structure is given as: 
 

 2 2

( , , ) 0.5 ( )

0.25 0.25 [ 1]
w d c c

w m m w

f x y t C D u x u u x u

D C u D C x



   

    

  

     

 
      (37)  

 
where cu is the current velocity, u is the horizontal 
water particle velocity, x is the horizontal structural 
velocity, D is the diameter of the column, x  is the 
horizontal structural acceleration, and u  is the 

D
ow

nl
oa

de
d 

fr
om

 ij
m

t.i
r 

at
 2

2:
17

 +
04

30
 o

n 
T

hu
rs

da
y 

M
ay

 2
3r

d 
20

19

http://ijmt.ir/article-1-155-en.html


M. R. Tabeshpour, A. A. Golafshani, M. S. Seif / Stability of the Modified Euler Method for Nonlinear Dynamic Analysis of TLP 
 

28 

horizontal water particle acceleration. The last term in 
Eq. (37) is the added mass term and a positive sign is 
used when the water surface is below the MSL and a 
negative sign is used when water surface is above the 
MSL. The contribution of added mass up to the MSL 
will already be considered along with structural mass. 
It is seen that both structural stiffness and external 
load are nonlinear. 
 
10. Equation of Motion 

The equation of motion of the TLP under a regular 
wave is given as: 
 

[ ]{ } [ ]{ } [ ]{ } { ( )}M X C X K X F t                     (38)  
 
where [ ],[ ]M C and [ ]K  are the matrices of mass, 
damping and stiffness respectively, { }X , { }X  and 
{ }X  are the structural displacement, velocity and 
acceleration vector respectively and  ( )F t  is the 
excitation force vector.  
 
11. Suitability of Mem for TLP Analysis 

The most important reason of suitability of MEM 
for solving the differential equation of motion of TLP 
is that the natural periods of TLP are limited between 
1.5 sec to 120 sec and therefore the criterion of being 
small time step is easily satisfied. In order to satisfy 
the stability condition developed in eq. (19) for 
systems with multiple degrees of freedom the time 
step should satisfy the equation min /t T    in which 

minT  is the lowest period of the system. Minimum 
natural period of TLP is related to one of the stiff 
degrees of freedom: heave, roll or pitch. This value is 
abot 1.5 to 2.5 sec. Therefore considering 1.5 /t    
the solution will be stable. 
 
12. Numerical Study 

A TLP in 500 m deep water has been chosen for 
the numerical study. The characteristics of the TLP 
under study are: Diameter of Column 18cD m ; 
Diameter of Pontoon 12D m and hull length is 80m. 
Tether tensions are assumed to be equally distributed 
in all the four tethers. TLP structure is assumed to 
behave like a rigid body. The stiffness matrix 
developed takes into account large deformations and 
other nonlinearities like tether tension, etc. The angle 
of attack of long crested sea is 30  with x direction 
and 10 , 15 secs zH m T  . Figure (1) shows the 
spectrum of sea-state for 10 15 secs zH m and T  . 
Based on the mentioned formulation, random surface 
elevation has been derived. A typical generated wave 
is shown in Figure 2.  
Eigenvalue analysis results the following periods: 
Surge:  72.8 sec; Sway:  72.8 sec ; Heave: 2.44 sec; 
Roll: 2.16 sec; Pitch: 2.16 sec; and  Yaw: 87.8 sec. A 
computer program (SNATELP) has been developed 

using MATLAB, for nonlinear dynamic analysis of 
TLP system.  
The minimum period of the structure is related to roll 
and pitch motion. Cosidering eq. (19) in order to 
satisfy the stability condition, time step should 
be 2.16 / 0.68sect    . It means that if one 
considers 0.67sect   ( t   ) the solution will be 
stable and for 0.69sect   ( t   ) it is not stable. 
  is a small variation in time step. 
Time history of deformations is illustrated in figure 3 
for 0.67sect  . In order to have a better view on the 
responses they are plotted in time between 200 to 500 
sec and 400 to 500 sec in figures 4 and 5. It is seen 
that the solution is stable and has converged to the 
steady state response related to wave excitation and 
structural period. For stiff degrees of fredom (heave, 
roll, pitch) the stable converged response is seen 
clearly after about 100 seconds. But for flexible 
degrees of freedom (surge, sway, yaw) from the 
beginning of the motion, stable response is viewed. 
Phase planes are useful to interpret the stability of 
motion fand gives a conceptual view of structural 
response. Phase planes of all degrees of freedom are 
plotted in Figure 6. It is seen that all rsponses are 
limited to the higher bound of deformation and related 
velocity. Dense graphs of phase plane for stiff degrees 
of fredom shows that we are near the boundary of 
stability. 
Similar plots for 0.68sect   are illustrated in 
figures 7-10. It is clearly observed beating 
phenomenon in both roll and pitch motions because of 
small difference between roll period rounded to 0.68 
sec and considered time step. It means that 

0.68sect   is the boundary limit of time step to 
lead to stable solution or not. In figure 9 it is seen the 
resonance type motion of roll and pitch motions. 
Phase plane of these motions shown in figure 10 
represents the resonance type motion and no stability 
point. 
It is noted that beating type response of roll and pitch 
is related to the marginal instability condition. If only 
a small increasing occurs in t  them the clear 
instability will be seen. In order to have a view on the 
instability of solutions similar plots are illustrated for 

0.69sect   in figures 11-14. It is seen that roll and 
pitch responses have a large amplitude of vibration 
with a constant period of motion. 
There is no convergence and stability in roll and pitch 
motions. Figure 11 shows that pitch and roll motions 
have large amplitudes with no convergence. Also 
there is no stability point for pitch and roll in figure 
14. 
Now t  is increased to 0.7 sec. Similar plots for 

0.7sect   are illustrated in figures 15-18. 
Comparing the amplitude of roll and pitch sown in 
Figure 13 with Figure 17, one can find that increase in 
time step of integration leads to increase in amplitude 
of unstable response. Also there is relatively linear 
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relation between rotation and velocity both for roll 
and pitch motion.  
As mentioned above the period of heave motion is 
equal to 2.44 sec. However the response of heave 
motion is stable for all values of discussed t , but for 

2.44 / 0.78sect    the heave response is not 
converged to a finite value and the amplitude of 
vibration increases rapidly at the start of the motion as 
shown in figures 19 and 20. 
After t t   (at the end of first step) High amplitude 
motions of stiff degrees of freedom is observed. Note 
that after 4 sec the amplitude of heave motions is 
more than surge motion. The structural periods of 
surge, sway and yaw motions are very high. But for 
stiff degrees of freedom (roll, pitch and heave) that 
their period is about 1.5 to 2.5 sec it is important to 
have a view on stability condition. Also however the 
system is coupled, it can be separately investigated the 
condition of stability for each degree of freedom as 
mentioned in the text 
 
13. Conclusion  

The convergence and stability of the MEM for 
strongly nonlinear dynamic system (TLP) under 
random wave excitation was discussed. The key point 
of suitability of the MEM for solving the TLP system 
is that the maximum frequency of the system is less 
than 0.5Hz. However the MEM is conditionally 
stable, it is very efficient for solving response 
dependent offshore systems with bounded maximum 
natural frequency. The importance of using such 
simple methods with relatively large time step is on 
the fatigue study and necessity to develop time history 
of responses for long time. Based on the numerical 
example it can be said that it is possible using the 
MEM for TLP system with large time step for 
integration. This leads to consuming in time and 
ability of doing complicated nonlinear dynamic 
analyses in design process. 
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Figure 1. Wave spectrum  
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Figure 2. Random elevation of surface wave 
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Figure 3. Time history of deformations, 0.67sect   
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Figure 4. Time history of deformations in time between 200- 

500 sec, 0.67sect   
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Figure 5. Time history of deformations in time between 400- 

500 sec, 0.67sect   
 

D
ow

nl
oa

de
d 

fr
om

 ij
m

t.i
r 

at
 2

2:
17

 +
04

30
 o

n 
T

hu
rs

da
y 

M
ay

 2
3r

d 
20

19

http://ijmt.ir/article-1-155-en.html


M. R. Tabeshpour, A. A. Golafshani, M. S. Seif /IJMT 2013, 1(1); p. 23-34 
 

31 

-15 -10 -5 0 5 10 15
-2

-1

0

1

2

Surge (m)

Su
rg

e 
(m

/s
)

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

-0.5

0

0.5

1

Sway (m)

S
wa

y 
(m

/s
)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.5

0

0.5

Heave (m)

H
ea

ve
 (m

/s
)

-6 -4 -2 0 2 4 6

x 10-3

-0.02

-0.01

0

0.01

0.02

Roll (m)

R
ol

l (
m

/s
)

-6 -4 -2 0 2 4 6

x 10-3

-0.02

-0.01

0

0.01

0.02

Pitch (m)

P
itc

h 
(m

/s
)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 10-3

-2

-1

0

1

2
x 10-4

Yaw (rad)

Ya
w

 (m
/s

)

Pitch (rad)

Roll (rad)

Surge (m)

Sway (m)

Heave (m)

 
Figure 6. Phase plane of deformations, 0.67sect   
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Figure 7. Time history of deformations, 0.68sect   
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Figure 8. Time history of deformations in time between 200- 

500 sec, 0.68sect   
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Figure 9. Time history of deformations in time between 400- 

500 sec, 0.68sect   
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Figure 10. Phase plane of deformations, 0.68sect   
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Figure 11. Time history of deformations, 0.69sect   
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Figure 12. Time history of deformations in time between 200- 

500 sec, 0.69sect   
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Figure 13. Time history of deformations in time between 400- 

500 sec, 0.69sect   
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Figure 14. Phase plane of deformations, 0.69sect   

 

0 50 100 150 200 250 300 350 400 450 500
-20

-10

0

10

20

Time (sec)

S
ur

ge
 (m

)

0 50 100 150 200 250 300 350 400 450 500
-20

-10

0

10

20

Time (sec)

S
w

ay
 (m

)

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

Time (sec)

H
ea

ve
 (m

)

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

Time (sec)

R
ol

l (
ra

d)

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

Time (sec)

P
itc

h 
(ra

d)

0 50 100 150 200 250 300 350 400 450 500
-2

-1

0

1

2
x 10-3

Time (sec)

Y
aw

 (r
ad

)

 
Figure 15. Time history of deformations, 0.7sect   
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Figure 16. Time history of deformations in time between 200- 

500 sec, 0.7sect   
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Figure 17. Time history of deformations in time between 400- 

500 sec, 0.7sect   
 

D
ow

nl
oa

de
d 

fr
om

 ij
m

t.i
r 

at
 2

2:
17

 +
04

30
 o

n 
T

hu
rs

da
y 

M
ay

 2
3r

d 
20

19

http://ijmt.ir/article-1-155-en.html


M. R. Tabeshpour, A. A. Golafshani, M. S. Seif / Stability of the Modified Euler Method for Nonlinear Dynamic Analysis of TLP 
 

34 

-20 -15 -10 -5 0 5 10 15 20
-4

-2

0

2

4

Surge (m)

S
ur

ge
 (m

/s
)

-15 -10 -5 0 5 10 15
-2

-1

0

1

2

Sway (m)

S
w

ay
 (m

/s
)

-0.2 -0.1 0 0.1 0.2 0.3
-1

-0.5

0

0.5

1

Heave (m)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

2

Roll (m)

R
ol

l (
ra

d/
s)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

2

Pitch (m)

P
itc

h 
(ra

d/
s)

-1.5 -1 -0.5 0 0.5 1 1.5

x 10-3

-2

-1

0

1

2
x 10-4

Yaw (rad)

Y
aw

 (r
ad

/s
)

H
ea

ve
 (m

/s
)

Pitch (rad)

Roll (rad)

Surge (m)

Sway (m)

Heave (m)

 
Figure 18. Phase plane of deformations, Δt=0.7sec  
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Figure 19. Time history of deformations sec, 0.78sect   
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Figure 20. Phase plane of deformations, 0.78sect   
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