Predicting $\varepsilon_{50}$ for Lateral Behavior of Piles in Marine Clay Using an Evolutionary Based Approach

Babak Ebrahimian$^{1, 2}$*, Aida Nazari$^3$

$^1$ School of Civil Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran; $^2$ The Highest Prestigious Scientific and Professional National Foundation, Iran’s National Elites Foundation (INEF), Tehran, Iran; bebrahimian@ut.ac.ir, ebrahimian.babak@gmail.com $^3$ School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

ARTICLE INFO

Article History:
Received: 12 Jan. 2014
Accepted: 1 Jul. 2014
Available online: 22 Sep. 2014

Keywords:
P-Y curve
Laterally loaded pile
Cone penetration test (CPTu)
Marine clay
South Pars field

ABSTRACT

Analyzing piles subjected to lateral loads significantly depends on soil resistance at any point along the pile as a function of pile deflection, known as p-y curve. On the other hand, the deformation characteristics of soil defined as “the soil strain at 50% of maximum deviatoric stress ($\varepsilon_{50}$)” has considerable effect on the generated p-y curve. In this research, several models are proposed to predict $\varepsilon_{50}$ specifically for designing very long pile foundations of offshore oil and gas platforms in South Pars field; Persian Gulf; Iran. Herein, $\varepsilon_{50}$ is evaluated from extensive soil data of marine clays including in-situ and laboratory test results using evolutionary polynomial regression (EPR). It is demonstrated that the normalized cone tip resistance, which is an indication of soil undrained shear strength, leads to more realistic $\varepsilon_{50}$ values compared with the laboratory-derived undrained shear strength parameter. Furthermore, the results of full scale lateral pile load tests in different sites are used in order to validate the performance of the proposed models in predicting lateral pile behavior. The results of a numerical study on lateral pile-soil system also show the efficiency of the proposed model in predicting lateral pile response.

1. Introduction

Pile foundations are often required to be designed against significant lateral in addition to vertical loads. These lateral loads can be imposed by wind, earth pressure, wave, tide, current and ship impact, mooring rope, earthquake, vehicle traction and etc. The performance of pile foundations is usually governed by either deflection or bearing capacity. Exceeding the maximum allowable lateral load may cause the failure of soil around the pile, or structural failure of the pile itself. In order to design a pile foundation safely and economically, accurate assessment of its behavior should be made using pile load tests data and/or the well-known analytical or numerical methods. As the full-scale load tests are very expensive and time consuming, analytical and numerical approaches are usually used to evaluate the lateral behavior of pile-soil systems.

The lateral pile-soil interaction behavior is commonly characterized by a series of uncoupled, nonlinear springs applied along the pile, known as p-y curves. Various formulations have been proposed to predict p-y curves in different site conditions (e.g., [1-7]). The American Petroleum Institute (API) method [7] is the widely used method based on Matlock’s field research [1]. Pile geometry and soil properties are the key parameters in developing p-y curves. These curves mostly depend on the ultimate horizontal soil reaction ($P_u$) and the critical lateral displacement ($y_c$) corresponding to 50% mobilized $P_u$. $y_c$ is defined as:

$$y_c = 2.5 \varepsilon_{50} D$$  \hspace{1cm} (1)

where, $D$ is the pile diameter, and $\varepsilon_{50}$ is the strain at one-half the maximum deviatoric stress in laboratory undrained compression tests on undisturbed cohesive soil samples. Typical p-y curves for cohesive soils is shown in Figure 1, illustrate the role of the above mentioned parameters on developing such curves.
Figure 1. Typical p-y curves for pile in cohesive soil under static loading

Curves A and B in this figure, are schematic p-y curves for a soil with different $\varepsilon_{50}$ values. As $\varepsilon_{50B} > \varepsilon_{50A}$, with the same pile geometry we have $y_{cB} > y_{cA}$. As shown in this figure, $\varepsilon_{50}$ is an effective factor in generating p-y curves for clays. It is seen that higher $\varepsilon_{50}$ values lead to softer soil behavior and higher pile lateral displacements for constant lateral load ratios ($P'/P_0$). Furthermore, the ultimate lateral load is obtained at higher levels of pile lateral displacements as $\varepsilon_{50}$ increases. Hence, lateral stiffness and resistance of pile-soil system are affected by $\varepsilon_{50}$. Sullivan et al. [8] recommended $\varepsilon_{50}$ values for different clayey soils based on the undrained shear strength. However, such proposed $\varepsilon_{50}$ values are not consistent with those obtained from experimental measurements conducted in different sites and do not result in accurate p-y curves in most soil conditions [9-10].

Hamilton et al. [10] performed some triaxial compression tests under isotropically consolidated undrained (CIU) and unconsolidated undrained (UU) conditions on Tilbrook Grange clays and measured the $\varepsilon_{50}$ values. They realized that $\varepsilon_{50}$ values obtained from CIU tests show less scatter than those of UU tests and found a trend line for $\varepsilon_{50}$. It was demonstrated that $\varepsilon_{50}$ values, obtained from laboratory tests, were nearly five times greater than the values recommended by Sullivan for sites having similar undrained shear strengths. Afterwards, they compared different p-y curves derived based on laboratory $\varepsilon_{50}$ values and those recommended by Sullivan. It was demonstrated that the uncertainty of predicted p-y curves decreases from 65% to 35% if laboratory $\varepsilon_{50}$ values are used instead of those recommended by Sullivan. Additionally, they noted that the use of p-y curves based on Matlock method with $\varepsilon_{50}$ values from CIU tests leads to a more reliable prediction of the lateral load-displacement response.

Hamilton et al. [10] discussed different methods to develop p-y curves for piles in stiff, overconsolidated clays. They compared measured values of $\varepsilon_{50}$ derived from UU tests with those typically assumed from Sullivan recommendations and indicated that a slightly better prediction of load–displacement curves is achieved using measured $\varepsilon_{50}$ values instead of those recommended by Sullivan.

Dunnivant [11] performed experimental and analytical investigations to predict the influences of pile and soil characteristics as well as loading conditions on lateral pile-soil interaction in saturated overconsolidated clays. It was shown that the overconsolidation ratio (OCR) of soil can affect the reference critical displacement ($y_c$) in p-y curves. In other words, for overconsolidated clays, the value of $y_c$ would be smaller than those available in the literature. Degradation of p-y curves in overconsolidated clays begins at much smaller deflections than in soft clays. Also, it was recognized that pile stiffness and pile diameter could affect $y_c$. Davies [12] and Robertson et al. [6] presented a preliminary semi-empirical method to evaluate p-y curves based on flat dilatometer test (DMT) data. They employed the DMT-based p-y curves to model the behavior of three full-scale lateral pile load tests. They showed that $\varepsilon_{50}$ has an increasing trend versus depth in both clays and sands in the considered sites. It was found that the predicted deflections using DMT results agree well with those obtained from pile load tests. In all studied cases, the calculated bending moments from DMT-derived p-y curves were larger than those calculated from the measured pile deflection profiles.

The soil properties such as $\varepsilon_{50}$ are very sensitive to soil disturbance due to coring procedure, and using $\varepsilon_{50}$ values based on the tests on core samples may finally lead to considerable deviation in predicting the real pile behavior. On the other hand, in-situ testing methods such as flat dilatometer (DMT), pressuremeter (PMT) and cone penetration test (CPT) offer excellent means by which representative soil properties may be obtained [6,12-13]. Therefore, such in-situ tests, with minimum soil disturbance, can be used for evaluating $\varepsilon_{50}$ and developing p-y curves.

Cone penetration test (CPT) is a reliable in-situ test for its continuous sounding capability and good repeatability. It provides valuable geotechnical information in soil. Furthermore, the similarity between CPT penetration process and pile installation has led to its popularity in deep foundation analysis and design. Total cone tip resistance obtained from CPT has strong correlation with soil shear strength [14]; on the other hand, due to direct dependence of $\varepsilon_{50}$ on shear strength, total tip resistance of CPT can be employed in evaluating $\varepsilon_{50}$.

Despite significant influence of $\varepsilon_{50}$ on determining p-y curves, the prediction methods to evaluate this parameter are very rare in the literature. Therefore, this study investigates the use of CPT data to predict $\varepsilon_{50}$ in clayey soils and examines the capability of...
predicted $\varepsilon_{50}$ values in generating realistic p-y curves for laterally loaded piles in different sites. The present calculations of $\varepsilon_{50}$ are based on a comprehensive databank from laboratory and field tests, performed in South Pars field, Persian Gulf, south west of Iran. The field is an extremely strategic offshore area which contains world’s largest gas resources. Many gas extraction facilities supported on long pile foundations have been constructed in this important region and a large number of such facilities is still under development. Hence, this research mainly focuses on accurate evaluation of $\varepsilon_{50}$ as an influential parameter in analysis and design of piles against lateral loads in this region. In this regard, several statistical models, based on evolutionary polynomial regression (EPR) method, are proposed to evaluate $\varepsilon_{50}$ values for clayey soils. The effects of cone tip resistance, undrained shear strength, overburden pressure as well as different index properties of soils such as overconsolidation ratio and plasticity index on $\varepsilon_{50}$ are evaluated and discussed. In particular, the effect of undrained shear strength of cohesive soils obtained from field tests on $\varepsilon_{50}$ is investigated and compared with the recommended values available in the literature. Finally, the validation of the proposed models is performed for full scale piles tested in two different sites with different soil conditions.

2. Site Description
The survey area, approximately 50×45 km$^2$, is located in Persian Gulf, Iran, between 27° 27' to 27° 28' Northing and 52° 27' to 52° 44' Easting (Figure 2). Soil investigation activities comprised of sixteen boreholes; eight boreholes with 110 m depth and the rest with 80 m depth below the seabed. In-situ and laboratory tests were carried out to determine the geotechnical properties of sub-seabed soils. The in-situ tests included cone penetration and torvane. Laboratory tests such as unconsolidated undrained (UU) triaxial compression were performed which resulted in undrained shear strength of soil. The strain at 50% of maximum deviatoric stress ($\varepsilon_{50}$) and strain at failure were also obtained from stress-strain curves in UU tests. Atterberg limits and sieve tests were performed as well. Typical profiles of soil properties are illustrated in Figure 3 for a 110 m borehole within the considered survey area. The sub-seabed soils are generally clay, including very soft clay at top up to approximately 20 m which become stiffer with depth. Also lenses of sandy silt and gypsum are found in several depths.

3. Evolutionary Polynomial Regression
Evolutionary polynomial regression (EPR) is a useful toolbox developed on modeling methodology based on hybrid regression method by [15] and [16]. It is a symbolic data driven method which is used to create polynomial models to evolutionary compute based on input data [17]. The constitutive modeling of soil [18] and assessment of earthquake-induced soil liquefaction and lateral displacement [19] are some successful examples of using EPR in the field of geotechnical engineering.

EPR method includes two general stages; searching the model structures based on an integer Genetic Algorithm (GA) and evaluating each model parameters, such as numeric constant coefficients considering linear optimization [16]. The general symbolic expression derived from EPR is as follows:

$$\hat{Y} = \sum_{j=1}^{m} F(X, f(X), a_j) + a_0$$  \hspace{1cm} (2)

where, $\hat{Y}$ is the estimated outputs of the system derived from EPR; $F$ is the function constructed by the program; $X$ is the input variables matrix; $f$ is a user defined function; $a_j$ is an adjustable parameter determined by the program; and $m$ is the number of terms of the expression defined by user excluding bias $a_0$ if any.
It is noteworthy to mention that data-driven techniques like Genetic Programming (GP) and Artificial Neural Network (ANN) tend to reconstruct function $F$ from input–output data. GP generates a population of expressions for $F$, coded in tree structures of variable size, and performs a global search of the best fit expression for $F$. ANN goal, on the other hand, is to map $F$ rather than to find a feasible structure for it. However, both techniques have their own drawbacks. GP tends to search for mathematical expressions of $F$ using an evolutionary approach, but the parameter values are generated as non-adjustable constants, referred to as ephemeral random constants. Therefore, the constants do not necessarily represent optimal values as in numerical regression methods and good structures of $F$ can be missed in the process. Furthermore, the number of terms in GP-based expressions can greatly exceed, and the evolutionary search within GP can be quite slow.

Neural networks (NNs) suffer from some shortcomings as well. One of the drawbacks of a neural network is that the optimum structure of ANN (e.g., number of hidden layers, number of neurons, and transfer functions) should be identified a priori which is usually obtained using a time consuming trial and error procedure [16]. The other major shortcoming is related to the black box nature of an ANN model and the fact that the relationship between input and output parameters of the system is described in terms of a weight matrix and biases that are not easily accessible to users understanding. In fact, the black box nature and lack of interpretability have prevented ANNs from achieving their full potential in engineering applications. In other words, NN models give no information on the way the inputs affect the output and therefore are considered as a black box class of models. The lack of interpretability of NN models has stopped them from achieving their full potential in real world problems [18,20].

EPR is a new data mining technique that overcomes the shortcomings of ANNs and GPs. In the context of modeling classification, EPR is classified as a symbolic grey box technique, whose aim is identification and construction of clearly structured model expressions from observed data [18,21]. The approach integrates numerical and symbolic regression to perform evolutionary polynomial regression. The strategy uses polynomial structures to take advantage of their favorable mathematical properties. Indeed, the main idea behind the EPR is to use evolutionary search for exponents of polynomial expressions by means of a genetic algorithm (GA) engine while the parameters of the function are determined using the least square method. This allows (i) easy computational implementation of the algorithm, (ii) efficient search for an explicit expression (formula) and (iii) improved control of the complexity of the expression generated [22]. To avoid the problem of mathematical expressions growing rapidly in length with time associated with GP, in EPR the evolutionary procedure is conducted in the way that it searches for the exponents of a polynomial function with a fixed maximum number of terms, rather than performing a general evolutionary search as used in normal GP. Furthermore, during one execution it returns a number of expressions with increasing numbers of terms up to a limit set by the user, to allow the optimum number of terms to be selected. In addition, EPR overcomes the shortcomings of ANNs by providing a structured and transparent model representing the behavior of the system. EPR takes advantage of automatic model construction procedure that avoids the need to pre-select the functional form and the number of parameters in the model [23].

The general process in EPR can be rewritten based on vector form as:
EPR performs evolutionary search of a model space using an analogy with stepwise regression [24] rather than by means of the traditional symbolic regression search based on parse tree structures. In this way, EPR performs a global search of input exponents and combination of input variables according to the user-defined cost function [16]. The adjustable parameters, $a_i$, can now be evaluated by means of the linear least squares (LS) method based on minimization of the sum of squared errors (SSE) as the cost function. The SSE function which is used to guide the search process toward the best-fit model is as follows:

$$SSE = \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^2}{N}$$

where, $y_{i}$ are the target values in the training dataset and $\hat{y}_{i}$ are the model predictions.

The program search is based on pseudo-polynomial and true structures using a single and multi-objective genetic algorithm, with different general expression forms. The expression form considered in this research is defined as bellow:

$$Y = a_0 + \sum_{j=1}^{m} \left( a_j (X_i)^{ES(j,1)} \ldots (X_j)^{ES(j,n)} \right)$$

In the above expression, $X_i$ is the $k$ candidate inputs vectors; $a_j$ are constant values; $ES$ is the matrix of unknown exponents which can be edited by user within the defined range of values; and $m$ is the length of expressions defined by user, which represents the number of maximum terms in each set of results. Each monomial of polynomial models can contain user defined functions. For this purpose, $f()$ is the function that can be selected by user based on available functions in the program. These functions may be logarithmic, exponential, tangent hyperbolic and etc. The inclusion of exponential functions in the general expression of Equations (2) allows EPR to explore a large space of formulae where the analyst's understanding of the physical process warrants their inclusion. However, if such functions are not naturally describing the phenomenon being modeled EPR search would find exponent values for such inputs to be equal to zero.

In order to determine all models corresponding to the optimal trade-off between the fitness and brevity of the model, EPR performs a multi-objective search exhibiting various mathematical models representing best fitness for possible models. For particular purpose, one can choose best models based on short gap reconstruction, gaining physical insight or forecasting the phenomenon. The fitness model defined in EPR is the Coefficient of Determination (CoD) which refers to how closely the regression expression fits the data points:

$$CoD = 1 - \frac{\sum_{s} (p-m)^2}{\sum_{s} (m-m)^2}$$

where, $p$ is the predicted values by model derived from EPR; $m$ is the measured values; $m$-bar is the average of measured values; and $n$ is the number of data points. More details about EPR architecture for model representation as well as the method employed for parameter estimation can be found in [16].

### 4. Results and Discussion

The field and laboratory test results including 274 data series are considered as the databank for the numerical regression. In the present study, five variables are identified as primary input data of cohesive soils for evaluating $\varepsilon_{50}$ as an output. The input data includes undrained shear strength ($s_u$), normalized cone tip resistance ($q_c$), total overburden pressure ($\sigma_0$), plasticity index (PI) and overconsolidation ratio (OCR). The input parameters values may affect $\varepsilon_{50}$ values have been selected based on a comprehensive literature survey as well as the principles of soil stress-strain behavior. The potentials and combinations of mentioned soil engineering parameters have been studied to generate EPR-based models with proper physical meanings.

In pattern recognition procedures, it is common practice to divide the available data into two subsets; training and testing. The model is firstly developed using the former and then tested using the latter one to ensure that the final obtained model has the ability to properly estimate $\varepsilon_{50}$ for unseen or untrained cases. Here, the entire databank is divided into several random combinations of training and testing sets until a robust representation of the whole population, in terms of statistical properties, is achieved for both training and testing sets. The statistical properties of the parameters considered in this study including the values of maximum, minimum, mean, and standard deviation are presented in Table 1 for training, testing and all datasets. Training dataset includes 80% of all data (219) and the rest (55) are used as testing dataset. The statistical values of training, testing and all dataset, shown in Table 1, are close to each other.
Multiple runs are performed and the analyses are repeated with various combinations of different number of generations, different functions, different multi-objective optimization strategies and different number of terms in order to obtain the most suitable form for the model. The solutions are analyzed on the basis of the simplest generated model for each case. After analysis of different alternative models four relationships are developed for evaluating \( \varepsilon_{50} \), which are presented in Table 2. It is noted that these models are not the only ones returned by EPR. Many other models can be obtained concerning their general expression forms, number of generations, terms and combinations of input parameters. Herein, the best models have been selected, based on the authors past experiences on the subject, to propose more sensible and practical equations with the sufficient physical meanings within the classical soil mechanics. To examine the robustness and assess the performance of EPR models, the following three statistical criteria have been used:

- Coefficient of determination \( (R^2) \), is a measure used to determine the relative correlation between two sets of variables, and defined as:

\[
R^2 = 1 - \frac{\sum_{i=1}^{n} (m_i - p_i)^2}{\sum_{i=1}^{n} (m_i - \bar{m})^2}
\]  

(7)

- Root mean square error \( (RMSE) \), is a measure of error, defined as:

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (m_i - p_i)^2}
\]  

(8)

The advantage of this criterion is that large errors receive greater attention than smaller ones.

- Mean absolute error \( (MAE) \), is another measure of error which eliminates the emphasis given to large errors, presented as:

\[
MAE = \frac{1}{n} \sum_{i=1}^{n} |m_i - p_i|
\]  

(9)

In the above relations, \( m_i \) and \( p_i \) are the \( i \)th measured and predicted values of output parameter \( \varepsilon_{50} \), respectively; \( n \) is the number of data points; and \( m \)-bar indicates the average of measured output. The suggested models to evaluate \( \varepsilon_{50} \) as well as the values of statistical criteria are presented in Table 2. It is seen that the performance of models improves from model 1 to 4 since \( R^2 \) value increases while \( RMSE \) and \( MAE \) values decrease. Based on the results summarized in Table 2, the EPR model 4 is chosen as the most appropriate one which is developed using four input parameters: \( q_c, \sigma_0, PI, OCR \).

The first relationship is developed between undrained shear strength of soil and \( \varepsilon_{50} \) and the second one uses the normalized cone tip resistance \( (q_c) \) to predict \( \varepsilon_{50} \), as shown in Table 2. By comparing the statistical characteristics of models 1 and 2, it can be found that the \( \varepsilon_{50} \) values predicted from field-based resistance property \( (q_c) \) are more accurate than those predicted from the laboratory-based resistance \( (s_u) \). By using \( q_c \) instead of \( s_u \), \( R^2 \) increases from 6.6 for model 1 to 20.8 for model 2. However, \( R^2 \) value is not yet acceptable enough, and it seems that other influential parameters should be included in the model development process. Therefore, after several try and error procedures, it was found that the index properties of soil, e.g., \( OCR \) and \( PI \) have strong effects on the predicted \( \varepsilon_{50} \) values. According to Table 1, it is realized that model 3, which includes the above mentioned factors, predict \( \varepsilon_{50} \) more accurately than model 2. Furthermore, model 4 shows that the overburden pressure has also a notable positive influence on prediction accuracy.

<table>
<thead>
<tr>
<th>Table 1. Statistical characteristics of databank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsets</td>
</tr>
<tr>
<td>Testing data (55 data)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Training data (219 data)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>All data (274 data)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 2. Proposed models for estimating $\varepsilon_{50}$

<table>
<thead>
<tr>
<th>No.</th>
<th>Equation</th>
<th>Involved parameters</th>
<th>$R^2$ (%)</th>
<th>RMSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>$\varepsilon_{50} = -0.79 + 1.58s_u^{0.2}$</td>
<td>$s_u$</td>
<td>6.6</td>
<td>1.99</td>
<td>1.65</td>
</tr>
<tr>
<td>Model 2</td>
<td>$q_c$</td>
<td></td>
<td>20.8</td>
<td>1.84</td>
<td>1.52</td>
</tr>
<tr>
<td>Model 3</td>
<td>$\varepsilon_{50} = 4.84 - 8.76 \times 10^{-2}q_c^{0.1} PI^{0.5} OCR^{-0.1}$ $+ 5.43 \times 10^{-6}q_c^{1.4} PI^{0.7} OCR^{-0.1}$ $- 2.1 \times 10^{-7}q_c^{0.5} PI^{0.8} OCR^{0.7}$ $- 1.24 \times 10^{-12}q_c^{3.3} OCR^{-0.3}$</td>
<td>$q_c$, $PI$, $OCR$</td>
<td>36.7</td>
<td>1.64</td>
<td>1.34</td>
</tr>
<tr>
<td>Model 4</td>
<td>$\varepsilon_{50} = -2.7 \times 10^{-15}q_c^{1.5} \sigma^{2.6} PI^{-1.3} OCR^{-0.2}$ $- 1.8 \times 10^{-10}q_c^{0.6} \sigma^{1.3} PI^{1.6} OCR^2$ $+ 1.5 \times 10^{-6}q_c^{1.4} \sigma^{0.4} PI^{0.6} OCR^{0.2} + 1.55$</td>
<td>$q_c$, $\sigma$, $PI$, $OCR$</td>
<td>64.8</td>
<td>1.22</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Figure 4 illustrates the predicting capability of models by plotting the predicted $\varepsilon_{50}$ values against their corresponding measured values in training and testing datasets and their statistical characteristics are shown for quantitative comparison. Considering the data scatter in the graphs of Figure 4, the results of models for testing dataset are generally consistent with those for training dataset. The more the points are distributed uniformly around the ideal 45° line, and the less scattering around this line, the better the capability of the model in predicting $\varepsilon_{50}$. In this regard, it is clear that model 4 behaves better than the other ones. The upper and lower lines in Figure 4 show the boundaries for a zone that is characterized by the ratios of predicted to measured $\varepsilon_{50}$ between 0.5 and 2.0. The estimation quality of each model, defined as the number of the points that fall inside these two zones.
boundaries as percent of the total points is shown in the figure. As the performance of models improves, the data show more concentration in the mentioned zone. While all models show acceptable estimation qualities, the estimation quality for model 4 has the highest value of 91.6% among the proposed models.

It is seen in Fig 4 that the predicted ε50 values from model 1, which was developed merely from undrained shear strength (s_u), are not well-distributed along the diagonal line and are concentrated in a narrow horizontal band. However, implementing the normalized cone tip resistance (q_c), instead of s_u, in model 2 has smoothed the above mentioned shortcoming. The log normal distribution, used by [25], is an appropriate statistical criterion to further evaluate the performance of the proposed models. In this regard, the natural logarithm of the ratio of predicted to measured ε50 (ln(ε50p/ε50m)), is calculated for each data point and then the mean and standard deviation of these values are determined as follows:

\[ \mu_{ln(\varepsilon_{50p}/\varepsilon_{50m})} = \frac{1}{n} \sum_{i=1}^{n} \ln(\varepsilon_{50p}/\varepsilon_{50m})_i \]  

\[ \sigma_{ln(\varepsilon_{50p}/\varepsilon_{50m})} = \frac{1}{n-1} \sum_{i=1}^{n} \left[ \ln(\varepsilon_{50p}/\varepsilon_{50m})_i - \mu_{ln(\varepsilon_{50p}/\varepsilon_{50m})} \right]^2 \]  

where, the subscripts p and m denote “predicted” and “measured”, respectively; n is the number of data considered in the analysis; \( \mu_{ln} \) and \( \sigma_{ln} \) are indicators for accuracy and precision of the models, respectively, which are used to identify the log normal distribution of the density function as:

\[ f(\varepsilon_{50p}/\varepsilon_{50m}) = \frac{1}{\sqrt{2\pi\sigma_{ln}}} \exp\left[ -\frac{1}{2} \left( \frac{\ln(\varepsilon_{50p}/\varepsilon_{50m}) - \mu_{ln(\varepsilon_{50p}/\varepsilon_{50m})}}{\sigma_{ln(\varepsilon_{50p}/\varepsilon_{50m})}} \right)^2 \right] \]

The better distribution is achieved when \( \mu_{ln(\varepsilon_{50p}/\varepsilon_{50m})} \) and \( \sigma_{ln(\varepsilon_{50p}/\varepsilon_{50m})} \) approach unity and zero, respectively. The log normal distributions of ε50p/ε50m for the proposed models are presented in Figure 5. The probability of predicting ε50 with 0 to 90% accuracy (10-100% absolute error) is calculated from Figure 5 and shown in Figure 6. Total area below each curve in Figure 5 is equal to one. Therefore, at a specified absolute error level, the probability of predicting ε50 is derived by calculating the total area below the log normal distribution curve within the accuracy limits. At a constant absolute error, a higher probability indicates the better ability of model in predicting ε50. Based on this definition, the performance of the models improves from model 1 to 4 at all levels of absolute error. The ability of different models to predict ε50 can be evaluated using cumulative probability, as used by [26]. They used the concept of cumulative probability as a criterion to evaluate the bias of their model. The cumulative probability for each ε50p/ε50m can be obtained by the following definition:

\[ CP_i = \frac{i}{n+1} \]  

where, i is the data number, arranged in an ascending order. The cumulative probability versus the ratio ε50p/ε50m, for the proposed models is depicted in Figure 7. In order to assess the ability of each model in estimating ε50, the 50% and 90% cumulative probabilities (CP50% and CP90%) are calculated. The difference between CP90 and CP50 (CP90%-CP50%) represents the discrepancy from accurate estimation. Ideally, if all data are predicted with no bias, the distribution of estimated to measured ε50 against CP will be a straight line with value of unity, indicating an exact estimation. In reality, the better performance of the model is achieved when ε50p/ε50m is closer to unity at CP50%. Lower (CP90%-CP50%) for each model indicates the better prediction accuracy of the proposed model.

According to this criterion, it is observed in Figure 7 that model 4 leads to the optimum value of CP50% equal to unity and lower value of (CP90%-CP50%) compared with the other models. In statistical analysis, a model would behave better, if residual values, i.e. the difference between the measured and predicted values of ε50, are concentrated more uniformly around the mean value of residuals. The mean value of residuals is calculated by:

\[ MR = \frac{1}{n} \sum_{i=1}^{n} (\varepsilon_{50m} - \varepsilon_{50p})_i \]
Figure 6. Probability of $\varepsilon_{50}$ estimation with absolute error less than a given error, $x$ (%)  

Figure 7. Cumulative probability plot of $\varepsilon_{50}/\varepsilon_{380}$ for proposed models  

Figure 8 depicts the residuals of the training and testing sets for all presented models versus data number. In this figure, the residuals are scattered along a line indicating the mean ($MR$). In addition, the upper and lower bounds of residual scattering ($MR \pm \sigma$; $\sigma$ is standard deviation of residuals) are shown in the figure. The ideal performance of each model is achieved by $MR$ and $\sigma$ equal to zero. In general, the lower absolute values of these two parameters represent the better performance of the model. A comparison between the proposed models in Figure 8, with respect to the above parameters, shows the improvement of the models from 1 to 4 by decreasing absolute $MR$ and $\sigma$ values.

5. Validation of the Proposed Models  

In order to validate the proposed models, the test results in three different sites are considered. The first site is located at South Pars field, Persian Gulf, Iran, outside the survey area, shown as site 1 in Figure 2. The soil is very soft clay overlying a sandy silt or silty sand layer at shallow depths. Stiff to very stiff clay dominates at deeper parts. The profile of soil properties in 3 boreholes within this site are presented in Figure 9. Figure 10 shows $\varepsilon_{50}$ values predicted by different models as well as the measured values obtained from UU tests in borehole depths. In all figures, the recommended $\varepsilon_{50}$ values by Sullivan [8] are significantly lower than the measured ones. However, $\varepsilon_{50}$ values predicted by models 1 and 4 compare relatively well with the measured ones in the full range of values along borehole depths, as shown in Figure 10. Generally, $\varepsilon_{50}$ values show an increasing trend with depth from both laboratory measurements and the currently proposed models predictions. This result is in contradiction with the values of $\varepsilon_{50}$ recommended by Sullivan.  

Herein, it is attempted to validate the current models using the p-y curve results obtained from pile load tests conducted in two different sites (sites 2 and 3). General information about the considered sites are given in Table 3.  

Figures 11(a) and (b) show the p-y curves generated based on $\varepsilon_{50}$ values from different models as well as Sullivan recommendations for two different depths in sites 2 and 3, respectively. The figures also include p-y curves obtained from full-scale tests. It is noted that the procedure for generating p-y curves is based on [27]. The figures show that the calculated p-y curves from EPR-based models agree relatively well with the measured p-y curves. However, the p-y curves calculated from Sullivan recommendations show lower values of lateral displacement at all lateral load levels. This implies that using $\varepsilon_{50}$ parameter from Sullivan recommendations in generating p-y curve leads to a stiffer behavior of pile-soil system against lateral load in comparison with the real behavior. It is observed that the predicted lateral displacements at 50% of maximum lateral load from the proposed models are 1.5-3.5 and 2-4 times as large as those obtained from Sullivan recommendations for sites 2 and 3, respectively.  

In addition, the ratios of predicted to measured lateral pile displacements at maximum lateral load levels for the generated p-y curves at both sites are summarized in Table 6. It is seen from Table 6 that the generated p-y curves based on $\varepsilon_{50}$ values from the proposed models yield lateral pile displacements very close to the measured ones with maximum error of 6%. However, using $\varepsilon_{50}$ values from Sullivan’s recommendation in generating p-y curves leads to very unconservative lateral pile displacements in both sites.
6. Numerical Simulation

In order to show the influence of $\varepsilon_{50}$ on the lateral response of pile-soil systems, a numerical study was performed. In this regard, the lateral response of a given pile-soil system with 100 m length, 152.4 cm diameter, was numerically modeled. For considering the nonlinear pile-soil interaction, PSI Module of commercial computer program SACS 5.1 is utilized [28,29]. The program uses a finite difference solution to solve the pile-soil model which is represented by a beam-column resting on a nonlinear elastic foundation. The nonlinear pile-soil interaction is represented in a linear equivalent system. PSI analysis is also used to generate the equivalent foundation stiffness matrix in SACS. PSI models the connections of the soil and the piles as springs. The soil response to lateral loading is nonlinear. To model this nonlinearity, pile deformation can be related to soil resistance through nonlinear transfer curves (p-y curves). The PSI module uses the soil parameters such as $\varepsilon_{50}$ to generate the lateral load-deflection (p-y) curves based on API method [7]. In this regard, $\varepsilon_{50}$ values, used in generating p-y curves, was firstly substituted by measured $\varepsilon_{50}$ values and then by those predicted from Model 4. For comparison purposes, further simulations were also carried out by $\varepsilon_{50}$ values.
obtained from recommendations of Sullivan et al. [8] and those from Robertson et al. [6]. The soil profile modeled in the numerical study is generally consists of clayey soil with undrained shear strength ranged from 70-650 kPa, effective unit weight of 5.8-12.6 kN/m³ and $\varepsilon_{50}$ ranged from 0.05-8.5.

### Table 3. General information about sites 2 and 3

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Location</th>
<th>Source of p-y curve data</th>
<th>Pile section</th>
<th>Pile section dimension (m)</th>
<th>Depth of measurement (m)</th>
<th>Pile length (m)</th>
<th>Relevant geotechnical properties</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Incheon Bridge, Korea</td>
<td>Full-scale field load tests on piles</td>
<td>Circular</td>
<td>Diameter = 1.016 Thickness = 0.016</td>
<td>4D from ground surface (D=equivalent diameter) 26.6</td>
<td>10.5</td>
<td>Table 4 [30-32]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bridge construction site near Oskaloosa, Iowa</td>
<td>Lateral load tests on steel and concrete piles</td>
<td>UHPC* H-shaped</td>
<td>0.254×0.254</td>
<td>5D from ground surface (D=equivalent diameter, 0.287)</td>
<td>10.7</td>
<td>Table 5 [33]</td>
<td></td>
</tr>
</tbody>
</table>

*UHPC*: Ultra High Performance concrete

### Table 4. Soil properties of site 2 [30,31]

<table>
<thead>
<tr>
<th>Type</th>
<th>Depth (m)</th>
<th>Unit weight (kN/m³)</th>
<th>Moisture content (%)</th>
<th>$s_u$ (kPa)</th>
<th>Friction angle ($\phi$) (°)</th>
<th>Recommended $\varepsilon_{50}$ in the literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper clay</td>
<td>0-6.3</td>
<td>17.5</td>
<td>21.2</td>
<td>15-30</td>
<td>-</td>
<td>0.02</td>
</tr>
<tr>
<td>Lower clay</td>
<td>6.3-16.5</td>
<td>17.5</td>
<td>7.6</td>
<td>30-50</td>
<td>-</td>
<td>0.01</td>
</tr>
<tr>
<td>Silty clay</td>
<td>16.5-22.0</td>
<td>17.8</td>
<td>12.7</td>
<td>70</td>
<td>-</td>
<td>0.005</td>
</tr>
<tr>
<td>Residual soil</td>
<td>22.0-24.0</td>
<td>18.0</td>
<td>4.33</td>
<td>-</td>
<td>34</td>
<td>-</td>
</tr>
</tbody>
</table>

### Table 5. Soil properties of site 3 [33]

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>classification</th>
<th>Unit weight (kN/m³)</th>
<th>Moisture content (%)</th>
<th>LL</th>
<th>PI</th>
<th>$s_u$ (kPa)</th>
<th>Friction angle ($\phi$) (°)</th>
<th>Recommended $\varepsilon_{50}$ in the literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1.5</td>
<td>ML</td>
<td>18.8</td>
<td>21.2</td>
<td>42.1</td>
<td>10.4</td>
<td>60</td>
<td>-</td>
<td>0.007</td>
</tr>
<tr>
<td>1.5-2.8</td>
<td>CL</td>
<td>18.5</td>
<td>7.6</td>
<td>44.4</td>
<td>17.9</td>
<td>60</td>
<td>-</td>
<td>0.007</td>
</tr>
<tr>
<td>2.8-4.9</td>
<td>CL</td>
<td>18.5</td>
<td>12.7</td>
<td>27.9</td>
<td>7.4</td>
<td>136</td>
<td>-</td>
<td>0.005</td>
</tr>
<tr>
<td>4.9-5.8</td>
<td>SC</td>
<td>20.5</td>
<td>4.33</td>
<td>32.5</td>
<td>17.7</td>
<td>-</td>
<td>41</td>
<td>-</td>
</tr>
<tr>
<td>5.8-7.7</td>
<td>CL</td>
<td>20.4</td>
<td>4.83</td>
<td>36.7</td>
<td>19.2</td>
<td>35</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.7-9.2</td>
<td>SW</td>
<td>20.6</td>
<td>20.6</td>
<td>-</td>
<td>-</td>
<td>42</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.2-10.5</td>
<td>CL</td>
<td>20.4</td>
<td>-</td>
<td>-</td>
<td>800</td>
<td>-</td>
<td>0.004</td>
<td>-</td>
</tr>
<tr>
<td>10.5-12.0</td>
<td>SW</td>
<td>20.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

### Table 6. Ratio of predicted to measured lateral pile displacement

<table>
<thead>
<tr>
<th>Site No.</th>
<th>At maximum lateral load level</th>
<th>Average of proposed models</th>
<th>Sullivan et al. [8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4D</td>
<td>1.05</td>
<td>0.36</td>
</tr>
<tr>
<td>3</td>
<td>5D</td>
<td>1.06</td>
<td>0.31</td>
</tr>
</tbody>
</table>

The numerically modeled pile-soil was laterally loaded and its lateral response containing lateral displacement, moment and shear were compared through various methods of $\varepsilon_{50}$ estimation. The variations of lateral response of pile-soil along depth corresponding to various methods are depicted in Figure 12. The lateral responses of pile-soil system using measured $\varepsilon_{50}$ values are also shown in this figure. As can be seen, lateral response of pile-soil is considerable only in the upper 40 m soil below the mudline and after that the pile is thoroughly fixed into the soil. It is in accordance to previous results reported in the literature that the most of lateral capacities and deformations of the piles are dependent to the characteristics of the upper part of soil, depending on their diameters [34,35]. However, it is clearly observed that the lateral response of pile in upper portion of the soil is dependent to what value of $\varepsilon_{50}$ included in the numerical simulation. Compared to the three response curves obtained from measured $\varepsilon_{50}$, the curve corresponding to Model 4 of this study is of the best performance. Figure 12 shows that the use of Sullivan et al. [8] recommendations resulted nonconservative displacements while the use of Robertson et al. [6] model introduce conservative to the obtained results. The results of the numerical study also proved the preference of proposed model to other available recommendations in the literature about the prediction of $\varepsilon_{50}$. 
7. Summary and Conclusions

In this research, the results of field and laboratory tests data in South Pars field, Persian Gulf, Iran, are used to develop models for evaluating $\varepsilon_{50}$ using EPR. In this regard, cone tip resistance of CPT and several parameters of cohesive soils ($\sigma_0$, $\sigma_0$, OCR and PI) are considered in developing models. The conclusions are drawn as follows:

- According to the statistical analyses, the models developed using cone tip resistance ($q_c$) yield more accurate $\varepsilon_{50}$ values than those developed using undrained shear strength of soils ($s_u$) obtained from UU tests. In general, $\varepsilon_{50}$ is more realistically predicted using field-based, instead of laboratory-based, resistance of soil.
- The index properties of soil, e.g. OCR and PI, significantly improve the performance of the proposed models in predicting $\varepsilon_{50}$.
- According to statistical criteria, the models which are developed considering the effect of overburden pressure ($\sigma_0$) lead to better predicted $\varepsilon_{50}$ values.
- The models are validated with the field data of a site, located outside the survey area. The predicted $\varepsilon_{50}$ values from the proposed models increase with soil depth which agrees with the laboratory measurements.

![Figure 10. Profiles of predicted and measured $\varepsilon_{50}$ values in site 1 from (a) borehole 1, (b) borehole 2, and (c) borehole 3](image1)

![Figure 11. Measured and calculated p-y curves: (a) site 2 at depth = 4D; and (b) site 3 at depth = 5D, (D = pile diameter)](image2)

![Figure 12. Numerical analysis results of lateral response of typical pile-soil system](image3)
Further model validation, with full scale lateral pile load tests data in two different sites, demonstrates the models capability in providing $\varepsilon_{50}$ parameter to generate p-y curves consistent with the real behavior of pile-soil system measured in the field. Particularly, the results indicate that the p-y curves generated based on $\varepsilon_{50}$ values from the proposed models are in better agreement with field data rather than the p-y curves obtained from previously recommended $\varepsilon_{50}$ values in the literature.

The numerical results show the importance of $\varepsilon_{50}$ which is incorporated into the numerical model. Herein, it is demonstrated how different $\varepsilon_{50}$ values obtained from different ways affect the lateral response of pile-soil system. While the use of Sullivan recommendations result in unconservative response and the use of Robertson model leads to conservativeness to the obtained results, the proposed model can be used to obtain more accurate results.

8. Acknowledgement
The authors wish to thank Mrs. Omrani for her support regarding the numerical modeling.

9. References
7- American Petroleum Institute, (1993), Recommended practice for planning, designing and constructing fixed offshore platforms, API recommended practice RP-2A, Washington, D.C.
11- Dunnivant, T.W., (1986), Experimental and analytical investigation of the behavior of single piles in overconsolidated clay subjected to cyclic lateral loads, Ph.D. Dissertation, University of Houston, Houston, Texas.
21- Doglioni, A., (2004), A Novel Hybrid Evolutionary Technique for Environmental 14
Hydraulic Modelling, PhD Thesis, Technical University of Bari, Italy.