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In the present study, the author’s previous experimental investigations on the 
vortex induced vibration of uniform and tapered circular cylinders are 
numerically simulated. The circular cylinders have medium mass ratios (5.93, 
6.1), low mass-damping parameters (0.0275, 0.0279) a mean diameter of 
0.028m and an aspect ratio of about 14. A fully coupled two-way fluid-
structure interaction (FSI) analysis is used to simulate the phenomena of 
vortex induced vibration in vicinity of the lock-in range. The 3D 
computational fluid dynamic (CFD) model is employed to solve the 
incompressible transient Navier-Stokes equations. LES-Smagorinsky 
turbulent model is considered within all simulations. Structural displacements 
are calculated through transient structural analysis in mechanical application 
(Computational Structural Dynamics-CSD). The transverse vibrations of 
uniform and tapered cylinders are compared against the experimental results.
The comparison reveals that the model is capable to reasonably well predict 
the initial and upper branches of the responses. It, however, falls short to 
properly predict the lower branch. The simulation results of the fixed and 
elastically mounted tapered cylinders indicate that the flow field, in the case 
of the elastically mounted tapered cylinder, is completely different from that 
for the equivalent fixed tapered cylinder. For the case of the elastically 
mounted tapered cylinder no vortex cell fond to be forming in the lock-in 
region and a single frequency response dominated the entire length of the 
cylinder. 
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1. Introduction 
Significant developments in the offshore oil industry 
have enabled us to move further offshore in search for 
oil or gas reservoirs. Offshore platforms progressed 
from the fixed structures installed in shallow waters to 
the gigantic floating platforms like semi-submersibles 
and FPSOs for production or tension-leg and spar 
platforms for drilling operations in the so called ultra-
deep waters. Tapered circular cylinders or truncated 
cones are employed as the structural elements in these 
platforms and in a variety of other offshore 
engineering applications. Common examples are legs 
of the gravity based oil/gas platforms, main shafts of 
the offshore wind energy turbines, industrial 
chimneys, light houses and broadcasting towers. 
While being geometrically simple, this configuration 
creates a complex flow pattern in the near wake of the 
structure [1]. 

The challenge is the operation of a massive dynamic 
system under severe conditions of wind, sea currents 
and waves. One of the major problems during 
offshore operations is the vibration induced on the 
risers and platforms by sea currents. As water flows 
around the body it excites the structure into several 
modes of vibration that vary with the structural 
properties of the system. This is called Vortex induced 
Vibration or VIV. In the long term the structural 
integrity of the risers can also be compromised due to 
structural fatigue. 
Vortex induced vibration (VIV) is a complex multi-
physics problem which concerns with both structural 
and fluids fields. There are three main different 
approaches toward the VIV problems. i) experimental 
studies ii) semi empirical modelling iii) numerical 
simulations. Experimental investigation of VIV, when 
particularly looking for vortex patterns behind the 
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cylinders, is costly and time consuming. This is 
especially the case when using methods to provide 
both qualitative and quantitative data like Digital 
Particle Image Velocimetry or DPIV. Instead, if 
correctly simulated, the numerical methods will make 
vortex pattern studies at the wake of the cylinders 
much easier. 
Numerical simulation of flow field at the wake of 
fixed or forced vibrating cylinders are relatively 
straightforward compared to resonance vortex induced 
vibration simulation of an elastically mounted 
cylinder from rest. The difficulty lies in accurate 
simulation of the fluid field and correct coupling of 
two structural and fluid fields to let the vortices 
become synchronizes with the cylinder oscillation 
across the lock-on range. This is why most previous 
numerical researches were concentrated on vortex 
shedding studies and force measurements on fixed or 
forced vibrating cylinders [2]. 
The self excited transverse vibration amplitudes of 
two dimensional (2D) numerical simulations in the 
Blackburn and Karniadakis [3] and Newman and 
Karniadakis [4] works with low mass-damping or even 
zero damping parameters, at low Reynolds numbers of 
Re=100 to 200, were smaller than the expected values. 
They both used a spectral method in which the 
computational mesh was fixed to the cylinder. Zhang 
and Dalton [5] conducted a 2D LES (Large Eddy 
Simulation) investigation of one degree of freedom 
(transverse) cylinders at Re=13,000. The maximum 
reduced amplitude of about 0.26 was reported for their 
system with a damping ratio of 0.02. Saltara et al. [6] 
numerically simulated VIV (self excited) of a flexible 
cylinder at Re=1,000. They used a combined discrete-
vortex/LES method to describe the flow field. The 
maximum transverse amplitude was equal to A/D=0.7. 
Evangelinos et al. [7] conducted a three dimensional 
(3D) direct numerical simulation (DNS) study on 
flexible cylinders with one degree of freedom at 
Re=1,000. Tutar and Holdo [8] conducted a 3D finite-
element LES on the forced oscillation of cylinders at 
Re=24,000. They reported that the 3D representation 
of vibrating cylinder was necessary to get more 
accurate results. They also found that the 3D 
simulation of the forced oscillation of a cylinder 
would provide better agreement with experimental 
data compared to 2D calculations. 
Guilmineau and Queutey [9] simulated VIV (self 
excited) of an elastically mounted rigid cylinder with 
low mass-damping. The mass ratio was 2.4, the mass-
damping was 0.013 and Re ranged from 900 to15,000. 
They solved the incompressible 2D K-ω Reynolds-
Averaged Navier–Stokes (RANS) equations to 
simulate the flow field. Al-Jamal and Dalton [10] 
presented the results of a 2D LES simulation of VIV 
of a circular cylinder in uniform flow (Re=8,000). 
Their investigation was focused on two different mass 
ratios (1.68, 7.85) and different damping ratios (0-

0.1). The cylinder response at mass-damping of 0.157 
was reported to follow the typical VIV response of 
low mass ratio cylinders. Much recently Saltara et al. 
[11] conducted 3D CFD simulation of VIV of a free 
transverse oscillating cylinder. They used detached 
eddy simulation (DES) turbulence model for Reynolds 
number of around 10,000. They reported good 
agreement between the numerical results and 
experimental data for their small mass damping 
(0.00858) system. 
As it may be noticed, studies reported above were 
dealing with the vortex shedding past or VIV of 
uniform cylinders. Literature on experimental and 
numerical modeling of the flow and vortex shedding 
past tapered, as compared to straight uniform circular 
cylinders, is very scarce. This is probably because of 
complexity and three dimensionality of the wake 
behind a tapered cylinder, which are difficult to be 
properly quantified and captured in experiments and 
simulations. With a tapered cylinder the local 
Reynolds and Strouhal numbers, even under a uniform 
flow, vary in the span-wise direction. A range of flow-
regimes such as steady, laminar unsteady and 
turbulent wakes may coexist in the same geometry. At 
higher Reynolds numbers the physics in the near wake 
become even more complex. 
Vortex shedding around tapered cylinders in laminar 
flows was numerically simulated by Jespersen and 
Levit [12]. Valles et al. [13] numerically simulated 
vortex shedding in tapered circular cylinder with 
laminar flow at low Reynolds numbers of 130 to 180 
(based on larger diameter of the cylinder). The 
simulation results showed very good agreement with 
experimental data. Parnaudeau et al. [14] also carried 
out IBM (immersed boundary method) direct 
numerical simulations of vortex shedding in tapered 
cylinders. Narsimhamurthy et al. [15] simulated a 
tapered cylinder using the IBM. They addressed some 
vortex characteristics behind tapered cylinders such as 
vortex dislocation. Their predictions for the Strouhal 
number versus the local Reynolds number, however, 
did not accurately follow the experimental results.  
Tamimi et al. [16] conducted a 3D simulation of 
vortex shedding past fixed tapered circular cylinders 
at subcritical Reynolds numbers. The computational 
mesh of the numerical model was calibrated with 
others DNS and experimental results. Certain 
proportions between the length and diameter of the 
cylinder and the optimum number of span-wise and 
planar mesh divisions were introduced. Reasonable 
quantitative agreements were obtained between the 
model predictions and the experimental results from 
other researchers. 
Most previous experimental studies and almost all 
previous numerical simulations on tapered circular 
cylinders were concentrated on the flow field in the 
wake of the fixed cylinder and vortex shedding 
patterns [1].The results provide useful information on 
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main flow characteristics for tapered cylinders such as 
vortex dislocations and splitting, cellular vortex 
shedding and oblique vortex shedding [13], [17]. 
Two most distinct experimental studies on tapered 
cylinders are the works carried out by Hover et al. 
[18] and Techet et al. [19]. Hover et al. [18] measured 
forces at both ends of rigid cylinders experiencing 
cross-flow oscillations in water stream at Reynolds 
number of 3,800. Forced harmonic motions and free 
vibrations of uniform and tapered cylinders were 
recorded. Free vibration experiments on a tapered 
cylinder (with mass ratio of 4 and taper ratio of 40) 
showed that the regime of low correlation was 
elongating to higher reduced velocities. Techet et al. 
[19] experimentally studied the flow in the wake of 
forced vibrating tapered circular cylinders in the MIT 
towing tank. The Reynolds numbers ranged from 400 
to 1500. They reported that no vortex cell was 
forming in the lock-in region and that a single 
frequency response dominated the entire spanwise 
length. They also found that within certain parametric 
ranges there was a combination of 2S mode vortices 
around the larger diameter and 2P mode vortices 
around the smaller diameter ends. 
In the present study, self excited transverse response 
of elastically mounted uniform and tapered circular 
cylinders are numerically simulated. The cylinders 
have a medium mass ratio (5.93, 6.1) and low mass-
damping parameters (0.0275, 0.0279). The Reynolds 
number, based on mean diameter of the cylinders, 
ranges from 4,200 to 11,200.The model replicates an 
in-water towing tank experimental study conducted by 
the authors to investigate the VIV response of tapered 
cylinders. Numerical results for the transverse 
vibrations of uniform and tapered cylinders are 
compared against the experimental data. The main 
focus of the present study is on the transverse 
responses magnitude, flow field characteristics and 
the vortex patterns at the wake of elastically mounted 
tapered circular cylinders. 
 
2. Model Basis 
In this section the basic elements of the 3D numerical 
model characteristics are described. There are two 
main strategies for the analysis of fluid-structure 
interaction phenomena with in-stationary flows 
described by the Navier-Stokes equations: i) 
partitioned solution ii) simultaneous solution strategy. 
In the partitioned solution different solvers for fluid 
and structure are called sequentially. Loosely coupled 
(explicit) solutions are followed if the solvers are 
called once per time step [20, 21]. In strongly coupled 
(implicit) solutions an additional FSI-iteration loop is 
introduced in which the solution of fluid and structure 
is repeated until the convergence of interaction forces 
and displacements [22, 23]. In contrast, simultaneous 
solution procedures [24-26], which are also called as 
matrix coupled or monolithic formulations, consider 

the coupled system as a whole and solve it in a single 
software environment. The entire set of governing 
equations is formulated and solved in a single matrix 
equation system applying a single equation solver and 
iteration loop.  
Hubner and Seidel [27] declared that loosely coupled 
partitioned solution procedures are very efficient if the 
coupling is weak or if time scales of fluid and 
structure differ strongly. In contrast, for large 
structural displacements or if a considerable fluid 
mass is moving with the structure, at least strongly 
coupled partitioned solution procedures (with FSI 
iteration loop) have to be applied [27]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Sequence of synchronization points [28] 
 
Hubner and Seidel [27] stated that simultaneous 
solution procedures are preferable in order to ensure 
efficiency, stability and convergence of the coupled 
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solution. But in the present time, a commercial 
analysis software based on a monolithic approach to 
FSI which allows for simultaneous solutions of non-
linear structures and complex three-dimensional 
flows, is not available. Therefore, in this paper a fully 
coupled two-way FSI analysis is used to simulate the 
VIV phenomena in the vicinity of the lock-in range. 
The Fluid-Structure Interaction (FSI) is solved with 
ANSYS-CFX12. The computational fluid dynamics 
(CFD) model is used to solve the 3D incompressible 
transient Navier-Stokes equations of the fluid domain 
[28]. Structural displacements are calculated through 
transient structural analysis for mechanical 
applications (computational structural dynamics- 
CSD). The transient structural analysis solver is the 
Mechanical application module of ANSYS. 
Interactions between CSD and CFD analyses are 
considered at the fluid-structure interfaces. Forces at 
the fluid-structure interface, computed from CFD 
solution, are passed to the structural model as loads. 
Structural displacements from CSD solution are 
transferred to the fluid boundary part of the fluid-
structure interface to change the fluid domain mesh. 
In two-way FSI, communicating data between CFX 
and the Mechanical application modules is automated 
by the MFX branch of the ANSYS Multi-field solver. 
In this branch of the ANSYS Multi-field solver, data 
is communicated between the CFX and the 
Mechanical application field solvers through standard 
internet sockets using a custom client-server 
communication protocol. This custom solution 
maximizes execution efficiency and robustness, and 
greatly facilitates future extensibility. Coupled 
simulations begin with the execution of the 
Mechanical application and CFX field solvers. The 
Mechanical application solver acts as a coupling 
master process to which the CFX-Solver connects. 
Once that connection is established, the solvers 
advance through a sequence of six pre-defined 
synchronization points (SPs), as illustrated in Figure 
1. At each of these SPs, each field solver gathers the 
data it requires from the other solver in order to 
advance to the next point. The first three SPs are used 
to prepare the solvers for the calculation of intensive 
solution process, which takes place during the final 
three SPs. These final SPs define a sequence of 
coupling steps, each of which consists of one or more 
stagger/coupling iterations. During every stagger 
iteration, each field solver gathers the data it requires 
from the other solver, and solves its field equations for 
the current coupling step [28]. At each time step the 
stager iteration is continued until the coupling step is 
converged. During each stager iteration, each of fields' 
solvers (CFD or CSD) gathers the data they need from 
other solver and solve their equation for the current 

coupling step. Stagger iterations are repeated until the 
data transferred between solvers and all field 
equations converge or a maximum number of stagger 
iterations is reached (that is about 100 iterations).This 
will make the VIV simulation a very time consuming 
task (as compared to vortex shedding simulations). So 
it is reasonable to incorporate any desirable changes in 
the flow field (like changes to the inlet velocity) in the 
CFD solver and then introduce the changed flow field 
to the FSI simulation as an initial condition. 
The computational mesh consists of two blocks. The 
first block encircles the cylinder and consists of fine 
regulated hexahedron elements. The unstructured 
second block surrounds the first block and consists of 
mostly hexahedrons and a few prism elements. A grid 
sensitivity study has first been performed. In order to 
avoid repetition the reference is made to the authors' 
previous study [16, 29]. Tamimi et al. [16] considered 
different computational mesh resolutions, varying in 
both planar and the spanwise directions of the domain. 
It was shown that the number of spanwise divisions 
has a remarkable effect on the models' predictions. In 
the selection of the most optimum grid refinement the 
computational cost was also considered. The results of 
the analysis show that the computational grid 
described in Table 1 provides reasonable agreement 
with the experimental results of some other 
researchers (Tamimi et al. [16]). The discretization 
characteristics of the computational domain, including 
the thickness of the first inflation layer and number of 
span-wise divisions are summarized in Table 1. The 
table also gives the total number of nodes, the total 
number of elements and the wall clock time for 
computing 600 time steps on an Intel (R) Core™ i7 
CPU 950 @ 3.07GHz personal computer (with 6 GB 
of RAM). As it might be noticed in Table 1, 
considerable amount of time was necessary to perform 
a single analysis. 
It is noted that the 600 time steps specified in Table 1 
is just a measure value. The exact values of time steps 
used to compute the averaged flow in each of the flow 
velocities are around 2000. Table 1 also indicates that 
the efficiency of the parallel run relative to a serial 
run, assuming that the problem is stationary, is around 
35%, which does not seem very high. This is partly 
because the performance determination is not 
sometimes straightforward due to the fact that only 
part of the solver run is actually performed in parallel. 
The reading and distributing of the solver input file 
data, and the collecting and writing of results file data 
are highly I/O dependent and not parallelized. These 
stages, therefore, depend on high disk speeds and fast 
network communication for fast operation. Time 
stepping and convergence also play a role in the 
computation performance [30]. 
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Table 1. Details of the computational mesh resolutions. 
Wall clock time for 600 time 

steps (hours)  
y+ 

Number of 
nodes 

Number of 
elements 

Number of span-
wise divisions 

Thickness of the first 
inflation layer (m) 

Mean diameter of 
the cylinder Serial 

Runs 
Parallel Runs (8 

partitions) 
274 176 1.5 1,498,548 1,465,940 140 0.001 Dmean Dmean 

 
The 3D computational domain used for VIV 
simulation of the tapered cylinder is depicted in 
Figure 2. The domain dimensions are also provided in 
the figure. To avoid the end effects, identical heights 
are considered for the cylinder and the computational 
domain (Figure 2). 
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Figure 2. Overall view the computational domain. 

 
A uniform velocity profile is imposed on the inlet 
boundary. A zero static pressure condition is used on 
the outlet boundary. In order to avoid flow 
disturbance at the boundaries, a free slip wall 
condition is prescribed for the upper and lower 
cylinder ends and on the longitudinal exterior wall 
boundaries. The time step used in these simulations is 
chosen between 1 and 3 percent of the vortex 
shedding period (in a fixed cylinder). All simulation 
results presented are based on the Large Eddy 
Simulation (LES) [31] turbulence model with 
Smagorinsky subgrid scale model [32]. Tamimi et al. 
[16] indicated that the LES-Smogorinsky model is 
able to provide predictions reasonably close to the 
experimental measurements. This appears in line with 
findings from other researchers. For example, 
Murakami [33] and Rodi [34] compared the capability 
of the LES model with other well known models like 
K-ε and Algebraic Stress models when simulating the 
flow around bluff bodies. They concluded that the 
LES model provides reliable and accurate simulations 
of the flow characteristics. With the Large-Eddy 
Simulation technique, a distinction is made between 
the large and small scale motions. The governing 
equations are then derived by filtering the time 
dependent Navier-Stocks equations in the physical 
domain. In this process, those eddies whose scales are 
smaller than the computational mesh dimensions are 
filtered out. Therefore, the final equations are 

dominated by the dynamics of the larger eddies. The 
filtered variable is defined by [28]:  
 

(1)       xdxxGxx
D

  ;  

 
Where D is the fluid domain, G is the filter function 
and   is the filtered variable. The unresolved part of a 
quantity  is defined by: 
 

(2)    
 
The discretization of physical domain into finite 
control volumes will provide the filtering operation: 

(3)     Vxxdx
V

x
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  ,1   

 
Where V is the control volume. The filter function in 
the Eq. (3) is then [28]: 
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Eqs. (2) to (4) highlight the importance of the 
computational mesh resolution used in LES 
simulations, since the mesh size implicitly acts as a 
filtering mechanism for the small scale eddies. 
By filtering the Navier-Stocks equations, the filtered 
incompressible momentum equation will be [28]: 
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Where U is the fluid velocity, P is the static pressure, 
 is the fluid density and ij is the subgrid-scale stress. 
The last parameter incorporates the small scales effect 
and is defined by [28]: 
 

(6) 
 

jijiij UUUU   

The large scale turbulent flow can be solved directly 
and the effects of the small scales are taken into 
account by choosing a suitable subgrid-scale model. 
In ANSYS CFX [28] an eddy viscosity approach is 
used which relates the subgrid-scale stresses ij to the 
large-scale strain rate tensor ijS in the following way: 
 

(7) 
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   

)(
2
1

ij
i

ij x
jU

x
US







  
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

5-
07

-1
2 

] 

                             5 / 15

http://ijmt.ir/article-1-308-en.html


 Khosrow Bargi et al. / VIV of Tapered Cylinders: 3D LES Numerical Simulation 
 

22 

Unlike in RANS modelling, where the eddy viscosity
sgs  represents all turbulent scales, the subgrid-scale 

viscosity only represents the small scales.  
Three models are available to provide the subgrid-
scale (SGS) viscosity sgs .They include i) Wall-
Adapted Local Eddy-Viscosity model or WALE 
model (Nicoud and Ducros [35]), ii) Smagorinsky 
model (Smagorinsky [32]) and iii) Dynamic 
Smagorinsky-Lilly model (Germano et al. [36], Lilly 
[37]). The wall-adapted local eddy-viscosity model by 
Nicoud and Ducros [35] (LES WALE model) is an 
algebraic model like the Smagorinsky model. The 
WALE model produces almost no eddy-viscosity in 
wall-bounded laminar flows and is therefore capable 
to reproduce the laminar to turbulent transition. The 
Smagorinsky model is known for its high stability due 
to its damping effect. However, it does not take any 
feedback from the flow field for adjusting and tuning 
the model constants. The Dynamic Smagorinsky-Lilly 
model is based on the Germano-identity and uses 
information contained in the resolved turbulent 
velocity field to evaluate the model coefficient. 
However this method needs explicit (secondary) 
filtering and is therefore more time consuming than an 
algebraic model.  
Effects of these LES subgrid-scale models on the 
simulation results were investigated in author's 
previous study [29]. It was shown that Smagorinsky 
model provides better predictions as compared to the 
Direct Numerical Simulation (DNS) results by Dong 
and Karniadakis [38] and experimental data. 
The Smagorinsky model is an algebraic model for the 
SGS viscosity ( sgs ). Based on dimensional analysis, 
the SGS viscosity can be expressed as: 
 

(8) sgssgs ql  
 
Where l is the length scale of the unresolved motion 
(usually the grid size 3/1)(Vol ) and qsgs is the velocity 
of the unresolved motion. Based on an analogy to the 
Prandtl mixing length model, the velocity scale is 
related to the gradients of the filtered velocity:  
 

(9) 2/1)2( jiijsgs SSSWhereSq    
 
This yields the Smagorinsky model [32] for the 
subgrid-scale (SGS) viscosity: 
 

(10) SCssgs
2)(   

 
With CS the Smagorinsky constant. The value of the 
Smagorinsky constant for isotropic turbulence with 
inertial range spectrum of 3/53/2)(  kCkE k    is: 
 

(11) 18.0)
3

2(1 4/3 
k

k C
C


 

For practical calculations, the value of CS is changed 
depending on the type of flows and mesh resolution. 
Its value is found to vary between a value of 0.065 
(channel flows) and 0.25. Often a value of 0.1 is used 
and has been found to yield the best results for a wide 
range of flows [28]. This is also the value used in 
current simulations.  
Turbulent wall functions are required to treat the 
transition to laminar like flow close to solid walls. 
ANSYS CFX [28] offers three different wall 
treatment functions, based on different distance 
definitions, dimensionless wall distances, wall 
roughness and velocity scales. They include i) 
Standard wall function, ii) Scalable wall function and 
iii) Automatic wall function. The scalable wall 
function method adjusts the near wall treatment with 
mesh spacing in the near wall region. The automatic 
wall treatment method which lacks the drawbacks of 
the standard wall function can be run on arbitrary fine 
meshes and is appropriate for hydraulically smooth 
surfaces [28]. An automatic wall treatment function is 
used in all simulations reported in the current study. 
Structural part of the simulation consists of either a 
uniform or a tapered circular cylinder. The aluminum 
tapered and uniform circular cylinders characteristics 
are given in Table 2. They replicate dimensions of 
cylinders used in previous experimental study carried 
out by authors (Zeinoddini et al. [1]). The 
experimental setup is schematically shown in Figure 3 
(b). In the experiments, as it can be seen, an elastic 
support allows for a one degree of freedom oscillation 
of the cylinder in the cross flow direction. The elastic 
support consists of two parallel horizontal aluminium 
slabs (1 cm thick), which connect firmly to the 
carriage and cylinder, respectively. Two other parallel 
vertical spring steel blades are clamped at the ends to 
the horizontal slabs. This system enables the cylinder 
to vibrate just in one direction (Figure 3 (b)). 
 

 
Table 2. Overall dimensions of the uniform and tapered cylinders (in both of the experiments and simulations). 

 Cylinder properties 

Cylinders Mid-span diameter, 
Dmean (mm) Length, H (mm) Taper ratio Weight (gr) Aspect ratio  

(H/Dmean) Material 

Solid tapered cylinder 28 400 20 730 14.3 Aluminum 
Solid uniform cylinder 28 400 - 670 14.3 Aluminum 
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(a) (b) 
Figure 3. (a). Schematic view of the experimental setup consist of an elastically mounted cylinder mounted to carriage, (the whole 

system is towed on two parallel rails on the top of the water tank); (b). Elastically mounted tapered cylinder with end plate. 
 

Table 3. Oscillation characteristics of the tapered and uniform cylinders from the experiment. 

Cylinders ࡺࢌ ∗࢓  
(in water) 

  ࣈ
(in air) ࢓∗ ×  ࣈ

Uniform cylinder 5.93 1.2 0.00463 0.0275 
Tapered cylinder 6.1 1.14 0.00456 0.0279 

 
Table 4. The uniform and tapered models natural frequencies and damping ratios in water. 

Cylinders ࡺࢌ (in water) ࣈ (in water) 
Experiment Numerical model Experiment Numerical model 

Uniform cylinder 1.2 1.44 3.3% 4.9% 
Tapered cylinder 1.14 1.38 3.4% 2.5% 

 
The overall structural characteristics of the vibrating 
system are given in Table 3. It should be noted that in 
calculation of the mass parameter, the mass of the 
plexiglas end plate (with diameter of 20 cm), vibrating 
horizontal solid slab on the top of the cylinder, bolts 
and vibrating portions of the spring blades are 
included. 
In the simulation of the one degree of freedom 
oscillating cylinder, for simplicity reasons, the 
bending spring blades (in the experiments) are 
modelled with classical springs. Similar to that in the 
experiment, the linear structural stiffness of the 
springs in the numerical model remains equal to 210 
N/m. Extra vibrating mass of end plates and 
oscillating parts of the elastic system, is included in 
the simulations as a lumped mass (1.94 kg). 
To obtain the in-water natural frequencies of the 
vibrations of the cylinders, two numerical decay tests 
in water are conducted. Time histories of the in-water 
transverse vibrations of the tapered cylinder from a 
numerical decay test and the corresponding 
experimental decay test are shown in Figure 4. In-
water natural frequencies and damping ratios of the 
uniform and tapered models are presented in Table 4. 
It is worth noting that in the case of experimental 
decay test, there is an end plate attached to the end of 
the cylinder. The end plate is not explicitly modelled 
in the numerical decay test. This might be a reason for 

the slight difference between the numerical and 
experimental natural frequencies and damping ratios. 

 
Figure 4. Comparison of the numerical and experimental 

decay test in-water for the tapered cylinder. 
 

3. Numerical Results  
In the following sections the results obtained from 
numerical simulation of the previously discussed VIV 
experiment will be presented. In section 3.1 the 
transverse vibrations of uniform and tapered cylinders 
are compared with available experimental data. The 
Reynolds number, based on mean diameter of the 
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cylinders, ranges from 4,200 to 11,200.Time histories 
of transverse vibrations of the elastically mounted 
uniform and tapered cylinders are also provided. Lift 
and drag force coefficients of the elastically mounted 
tapered cylinder is included in section 3.1. In sections 
3.2-3.5 the flow field at the wake of an elastically 
mounted and a fixed tapered cylinder in lock-in range 
are presented and compared. 
 
3.1. Simulating the experiment 
The numerical and experimental reduced amplitudes 
of transverse vibration of uniform and tapered 
cylinders are presented in Figure 5-a. Figure 5-b 
provides the same for the frequency ratios. The 
cylinders structural characteristics are given in Table 
2 and 3. Figure 5-a indicates that the numerical 
simulations of initial and upper branch of the 
transverse vibration seem to be acceptable as they are 
in a reasonable agreement with the experimental data. 
In general the numerical model underestimates the 
peak amplitude for the transverse vibration In the 
order of around 30%. This might be attributed to the 
fact that the vortex synchronization along the cylinder 

and the lock-in phenomena was fully developed in the 
experiment. The time duration of the numerical 
modelling due to economical reasons, is considerably 
shorter than that in the experiment so the previously 
mentioned phenomena might not have been fully 
developed and might have been resulted in under 
predicting the peak responses. As shown in Figure 5-
a, the predicted numerical lock-in range for the 
uniform cylinder is comparable with the experimental 
range (4<Vr<10). Figure 5-a shows that for both of the 
uniform and tapered circular cylinders the numerical 
simulations fall short to accurately predict the lower 
branch of the response. A similar shortcoming was 
also reported by other researchers who tried to 
numerically simulate the cylinder vibrations from the 
rest with constant flow velocity (Blackburn and 
Karniadakis [3], Newman and Karniadakis [4], Saltara 
et al. [6] and Guilmineau and Queutey [9]). Figure 5-b, 
however shows that, with both the uniform and 
tapered cylinders, the numerical predictions for the 
frequency ratios are in a good agreement with their 
corresponding experiments.  

 

  
(a) 

  
(b) 

 
Figure 5. Numerical and experimental results for (a) transverse reduced amplitude and (b) frequency ratio of uniform (right) and 

tapered (left) cylinders. 
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Typical time histories of transverse vibrations of the 
tapered cylinder from the simulations and from the 
experiments are shown in Figure 6. They belong to 
tests with different flow velocities of 0.15, 0.2, 0.25 
and 0.3m/s. Figure 7 provides the same for the 
uniform test cylinder. Typical frequency contents of 
experimental and numerical transverse vibrations of 
the tapered cylinder are shown in Figure 8. The Power 
Spectral Densities (PSDs) are produced by Fast 
Fourier Transform (FFT) of the responses and 
correspond to two sample reduced velocities of 5.17 
and 6.47. As it may be noticed, the dominant 

frequency of both the experimental and numerical 
transverse vibrations of the tapered cylinder is close to 
each other. As it can be seen the experimental 
response demonstrates some small peaks at higher 
frequencies. The frequency of the second peak is 
around 2 time of that for the first peak. This might 
indicate on the presence of some small degrees of in-
line vibrations in the experiments. The numerical 
model however lacks these types of fluctuations. The 
numerical results for the lift and drag force 
coefficients of the elastically mounted rigid tapered 
cylinder are also provided in Table 5. 

 

 
V=0.2 m/s (Vr=5.17) 

 
V=0.25 m/s (Vr=6.47) 

 
V=0.3 m/s (Vr=7.76) 

Figure 6. Comparison of experimental and numerical time series of the transverse vibration of the tapered cylinder. 
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V=0.15 m/s (Vr=3.72) 

 
V=0.2 m/s (Vr=4.96) 

 
V=0.25 m/s (Vr=6.20) 

Figure 7. Comparison of experimental and numerical time series of the transverse vibration of the uniform cylinder. 
 

  
V=0.2 m/s (Vr=5.17) V=0.25 m/s (Vr=6.47) 

Figure 8. Typical frequency contents of experimental and numerical transverse vibrations of the tapered cylinder. 
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Table 5. Lift and drag force coefficients on the elastically mounted tapered cylinder. 

Mean drag coefficient RMS lift coefficient Reduced velocities Circular cylinder 

0.99 0.28 3.88 

Tapered Cylinder 

1.18 0.24 5.18 
1.08 0.21 5.69 
1.07 0.23 6.47 
0.89 0.13 7.76 
0.88 0.16 10.35 

 
The results presented in Figures 5 to 8 show that the 
numerical model can provide some acceptable 
predictions as compared to the in-water towing tank 
for the VIV of elastically mounted tapered and 
uniform circular cylinders. The numerical model, 
therefore may be used to further disclose essential 
characteristics of the VIV response of tapered circular 
cylinders. 
 
3.2. Fixed against moving tapered cylinder  
With an elastically mounted cylinder vibrating in the 
cross-flow direction, the wake flow field will be 
different from that of a stationary cylinder. Around 
the lock-in range, however, the vortices synchronize 
with the cylinder oscillations and the flow field 
becomes more two dimensional. Of interest is to use 
the numerical model to compare the flow fields at the 
wake of an elastically mounted and a fixed tapered 
cylinder around the lock-in range. The flow field 
conditions at a reduced velocity of 6.47 (V=0.25 m/s 
at Reynolds number of 7,000) is selected for this 
purpose. It is noted that the taper ratio remains the 
same and equals to 20 in the present experimental and 
numerical modellings. 
Fourier analysis of the velocity fluctuations in the 
wake of the elastically mounted and fixed tapered 
cylinder at the reduced velocity of 6.47 are presented 
in Figure 9. The monitoring points have a coordinate 
of 3.14cm in stream-wise direction and 2.24cm in 
cross-stream direction from the cylinder axis. As it 
can be seen, for the case of the fixed tapered cylinder 
the dominant vortex shedding frequencies are 
constantly changing in different span-wise elevations. 
It changes from 1.7 to 2.6 Hz span-wise of the fixed 
cylinder. For the case of the elastically mounted 
tapered cylinder in the lock-in range the dominant 
vortex shedding frequencies, however, remain almost 

identical in the span-wise direction (around 1.5 Hz). 
Figure 9 also indicates that the flow field at the wake 
of the elastically mounted tapered cylinder becomes 
more two dimensional in the lock-in range. In other 
words the flow field in the wake of an elastically 
mounted cylinder (in the lock-in range) appears to 
much resemble that for a uniform cylinder while the 
flow field for the fixed cylinder considerably differs. 
The single frequency type of response was also 
observed for other test cases when the reduced 
transverse response grew above 0.3 (Figure 10). This 
seems to be in line with findings of other researchers 
in their experimental works. Techet et al. [19] studied 
the flow in the wake of forced vibrating tapered 
circular cylinders in towing tank experiments. The 
Reynolds numbers ranged from 400 to 1,500. They 
reported that within some parametric ranges no vortex 
cell was forming in the lock-in region and that a single 
frequency response dominated the entire span-wise 
length. They attributed this to the amplitude of 
vibration effects. 
Time histories of the drag and lift force coefficient in 
the elastically mounted and fixed tapered circular 
cylinder at the reduced velocity of 6.47 are compared 
in Figure 11. As it can be seen the lift and drag force 
coefficient amplitudes of the elastically mounted 
cylinder are higher and more regulated compared to 
those for the fixed tapered cylinder. This seems to be 
an outcome of the synchronization of vortices with the 
elastically mounted cylinder at the lock-in range 
which increases the flow field two dimensionality. As 
mentioned before the increase of flow field two 
dimensionality will increase the vortices strength and 
consequently will increase the lift and drag 
coefficients [2]. 
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Figure 9. Fourier analysis of the velocity fluctuations at the reduced velocity of 6.47 in the wake of the elastically mounted (left) and 

fixed (right) tapered cylinder 
 

  
Figure 10. Fourier analysis of the velocity fluctuations at the reduced velocities of 5.17 (left) and 5.69 (right) in the wake of the 

elastically mounted tapered cylinder 
 

  
Figure 11. Drag (Cd) and lift (Cl) force coefficients time histories for the elastically mounted (left) and fixed (right) tapered circular 

cylinder at a reduced velocity of 6.47. 
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3.3. Cellular vortex shedding 
Formation of span-wise cells within which shedding 
frequency is constant, or in other words cellular 
vortex shedding, is one of the key characteristics of 
the flow behind a stationary tapered cylinder [19]. In 
the current study and in order to specify the number of 
span-wise vortex cells, the Strouhal numbers along the 
cylinder axis are extracted from the numerical model 
and presented in Figure 12. The results are for a 
cylinder with a taper ratio of 20 in a Reynolds number 
of 7,000. The geometrical properties remain the same 
as those given in Table 2. A span-wise region with an 
unvarying Strouhal number represents a vortex cell. 
Each zone indicates a discrete shedding cell, with its 
own constant shedding frequency. From Figure 12, 
three to four distinctive shedding cells, along the fixed 
tapered cylinder axis, can be identified. This is while 
for the case of the elastically mounted tapered 
cylinder a single frequency almost dominates the 
whole span length of the cylinder. It means that with 
an elastically mounted tapered cylinder, in contrast to 
the stationary cylinder, around the lock-in range no 
cells are formed and that a unique frequency 
dominates the response of the cylinder over its entire 
span. 

 
Figure 12. The Strouhal number (St) variation along the 

tapered cylinder axis (z) at a reduced velocity of 6.47. 

 
3.4. Vortex splitting and oblique vortex shedding 
By making use of pseudo-flow visualization 
techniques, which were developed by Wat [39], the 
possibility of vortex dislocations can be identified. 
Figure 13 gives sample numerical time histories of the 
velocity at arbitrary monitoring points in the wake of 
the stationary and elastically mounted tapered 
cylinder. The monitoring points have a coordinate of 
3.14 cm in stream-wise direction and 2.24 cm in cross 
stream direction from the cylinder axis. 
The red colours represent the peaks (local maxima) 
and the blue colours denote the valleys (local 
minima). The velocity peaks demonstrate the 
passageways of the vortices [17]. Therefore, 
continuous red areas in this figure represent the span-
wise spreading of the vortex lines in the wake of the 
tapered cylinder. A kink in the vortex lines (see Figure 
13), indicates the onset of a vortex splitting (or vortex 
dislocation). As shown in Figure 13, for the case of 
the elastically mounted tapered cylinder there are no 
obvious vortex dislocations along the span of the 
cylinder. Vortices are, however, apparently dislocated 
at the distance of 0.05 to 0.25 of the fixed tapered 
cylinder span. 
 
3.5. Vorticity patterns 
Inspection of the span-wise vorticity for the case of 
the elastically mounted tapered cylinder at a reduced 
velocity of 6.47 indicates that only 2S vortical 
patterns (two vortices per cycle) dominate the entire 
span of the cylinder. Figure 14-a illustrates the 
instantaneous isosurfaces of the total pressure at the 
Re=7,000 and reduced transverse amplitude of about 
0.4. Straight distinct vortices along the span of the 
cylinder demonstrate formation of a uniform vortical 
pattern along the entire span of the cylinder without 

 

  
Figure 13. Pseudo-flow visualization. Contour lines of velocity (at a reduced velocity of 6.47) fluctuation at the wake of an elastically 

mounted (left) and fixed (right) tapered cylinder. 
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any vortex splitting. Strong obliquenesses in the 
vortex shedding behind the stationary tapered cylinder 
are clearly demonstrated in Figure 14-b. Figure 14-b 
also indicates the onset of vortex splitting in the wake 
of the fixed tapered cylinder. 

  
(a) (b) 

Figure 14. (a). A 2S and vertically uniform vortical patterns 
along the span of the elastically mounted cylinder with no 

apparent vortex splitting (at Vr=6.47, Re=7,000 and reduced 
transverse amplitude of about 0.4). (b). Oblique vortex 

shedding with about three main vortex cells at the wake of the 
fixed tapered cylinder (at Vr=6.47). 

 
4. Conclusions 
In the present study, self excited transverse response 
of uniform and tapered circular cylinders are 
numerically simulated. The cylinders have medium 
mass ratios (5.93, 6.1) and low mass-damping 
parameters (0.0275, 0.0279). The model replicates an 
in-water towing tank experimental study conducted by 
the authors to investigate the VIV response of 
elastically mounted tapered cylinders. A fully coupled 
two way fluid structure interaction (FSI) analysis is 
used to simulate the phenomena of vortex induced 
vibration in vicinity of lock-in range. The transverse 
vibrations of uniform and tapered cylinders are 
compared against the experimental data. The 
numerical results reveal that the model is capable to 
reasonably well predict the initial and upper branches 
of the responses. It, however, falls short to properly 
predict the lower branch. Time histories of the 
transverse vibrations and lift and drag force 
coefficients of the elastically mounted uniform and 
tapered cylinders are also provided. The simulation 
results of the fixed and elastically mounted tapered 
cylinders are compared and discussed. The results 
indicate that the flow field in the case of the elastically 
mounted tapered cylinder is completely different from 
that for the fixed tapered cylinder. With the elastically 
mounted tapered cylinder no vortex cell appears to 
form in the lock-in region and a single frequency 
response dominates the entire length of the cylinder. 
A vertically uniform 2S vortical pattern along the span 
of the elastically mounted cylinder is observed 
through vortex visualization. This is for a reduced 
velocity of 6.47 in the lock-in range. However, the 
results of vortex visualization for the fixed tapered 

cylinder reveal an oblique vortex shedding with about 
three main vortex cells along the cylinder span. 
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