
INTERNATIONAL JOURNAL OF 

   MARITIME TECHNOLOG           IJMT Vol.5/ Winter 2016 (63-76) 

 

63 

Available online at: http://ijmt.ir/browse.php?a_code=A-10-632-1&sid=1&slc_lang=en  
 

 

Weakly-compressible SPH and Experimental modeling of periodic wave 

breaking on a plane slope 
 

Amin Mahmoudi
1*

, Habib Hakimzade
2
, Mohammad Javad Ketabdari

3
, Amir Etemad-

Shahidi
4
, Nick Cartwright

5
, Hassan Abyn

6
  

 
1
 Assistant Professor, Faculty of Civil Engineering, Persian Gulf University, Bushehr, a_mahmoudi@pgu.ac.ir 

2
 Professor, Faculty of Civil Engineering, Sahand University of Technology, Tabriz; Hakimzadeh@sut.ac.ir 

3 
Associate Professor, Faculty of Marine Technology, Amirkabir University of Technology, Tehran, 

Ketabdar@aut.ac.ir   
4
 Griffith School of Engineering, Griffith University, Queensland,4222, Australia, a.etemadshahidi@griffith.edu.au 

5
 Griffith School of Engineering, Griffith University, Queensland, 4222, Australia, n.cartwright@griffith.edu.au 

6
 Assistant Professor of Naval Architecture, Persian Gulf University, Bushehr, abynhassan@gmail.com 

 

ARTICLE INFO  ABSTRACT 

Article History: 

Received: 8 Feb. 2016 

Accepted: 15 Mar. 2016 

 

Breaking waves have ability to transport large quantities of sediment and 

significant impact on coastal structures morphology. Hence, modeling of 

wave breaking is an important subject in coastal and marine engineering. In 

this research, the periodic wave breaking process on a plane slope is studied 

experimentally and numerically. Laboratory experiments were conducted to 

record water surface elevation and the wave breaking process. For the current 

study, a space-averaged Navier–Stokes approach together with laboratory 

experiments has been deployed to investigate time-dependent wave breaking 

processes. The developed model is based on the Smoothed Particle 

Hydrodynamic (SPH) method; a pure Lagrangian approach; capable of 

handling large deformations at free surface with high accuracy. So, a Weakly 

Compressible version of the Smoothed Particle Hydrodynamics (WCSPH) 

method together with a large eddy simulation (LES) approach was used to 

simulate the wave breaking on a plane slope. The results of numerical 

simulations were compared both qualitative and quantitative with those of 

laboratory experiments. Overall, good agreement was found between them. 

Finally, it is shown that the WCSPH method provides a useful tool to 

investigate surf zone dynamics. 
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1. Introduction 
The process of wave breaking on beach slopes has 

attracted much attention among engineers because of 

its significant impact on costal structures morphology. 

The potential of breaking waves to displace the 

sediments and reshape the coastal bathymetry is of 

great importance in coastal evolution. The breaking 

waves are categorized as spilling, plunging, and 

surging, with a gradual transition between each 

regime [1]. The spilling and plunging breakers are the 

commonly observed breakers in most natural beaches 

and the plunging break displays an especially 

spectacular phenomenon. In order to make solutions 

for many coastal problems it is needed to clarify the 

wave breaking process. For many reasons, the study 

of breaking waves is a very difficult task. For 

instance, the velocity field during breaking is 

extremely chaotic and changes rapidly in time. In 

addition, there is lack of experimental studies on wave 

breaking because measuring of velocity due to 

existence of air bubble entrained by the plunging jet is 

too difficult. Field studies are encountered with 

limited site access and environmental variability [2], 

in addition to the previously mentioned limitations. 

During wave breaking, the shape of the wave deforms 

rapidly and energy dissipation is high. Since the 

numerical studies of breaking wave can provide the 

flow details without scaling and observational 

constraints, they are becoming more popular in the 

recent years. Hence, several numerical models have 

been developed to simulate wave breaking in the surf 

zone. 

The deployment of the fundamental hydrodynamic 

equations such as the Navier–Stokes (N–S) equations 

or Reynolds averaged N–S (RANS) equations is the 

most appropriate way to investigate the breaking 
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waves [3]. The RANS models have been widely 

employed and validated in the costal hydrodynamics 

using the finite difference, finite volume or finite 

element schemes that are combined with the free 

surface tracking techniques such as VOF methods. 

Lemos [4] simulated a breaking solitary waves and 

periodic wave breaking on the sloping bed by solving 

the N–S equations based on SOLC-VOF code coupled 

with the standard k turbulence model. Takikawa 

et al. [5] investigated a plunging breaker over a sloped 

bed using both the experimental and numerical 

analyses. Lin and Liu [6] presented spilling and 

plunging breakers by using an advanced RANS 

modeling. They found good agreement between the 

numerical and experimental results. Liu et al. [7] 

developed a Reynolds-averaged Navier–Stokes 

(RANS) model to simulate the breaking waves 

overtopping of a porous structure. For this model, an 

improved k model and VOF surface tracking 

scheme were coupled with their solver. Also, the wave 

overtopping of a sea wall by solving the N–S 

equations along with VOF surface tracking scheme 

and LES turbulence model was modeled by Li et al. 

[8]. 

The Lagrangian grid-based methods may not be 

suitable for analyzing the flows with highly deformed 

free surface due to grid distribution. On the other 

hand, the Eulerian grid based methods need a proper 

interface capturing method that can simulate large and 

abrupt deformations with fragmentation [9]. 
Particle methods which are among the mesh-free or 

gridless methods have been widely deployed in many 

engineering applications as well as the simulation of 

flow hydrodynamics. Such techniques represent the 

state of a system as a set of discrete particles, without 

a fixed connectivity, followed in a Lagrangian 

manner. Therefore, particle methods are intrinsically 

appropriate for the analysis of moving interfaces and 

free surfaces. Furthermore, fully Lagrangian treatment 

of particles, resolves the problem associated with grid-

based calculations by computing the convection terms 

without the numerical diffusion. 

One of the earliest particle methods, the Smoothed 

Particle Hydrodynamics (SPH) method was first 

utilized for astrophysical applications [10,11]. 

However, it has been extended to model a wide range 

of engineering applications including elasticity, 

multiphase-flows and blood simulation for virtual 

surgery ever since. The method has also been 

extended and utilized to simulate the incompressible 

flows by considering the flow as slightly or weakly 

compressible with a proper equation of state. Run-up 

and run down of waves on beaches, wave breaking 

and overtopping on arbitrary structures and interaction 

between waves and coastal structures are among the 

applications, but to name a few.  

Extensive researches have been conducted, based on 

the SPH method, to display the feasibility of the 

approach when dealing with the wave and coastal 

structures. Shao and Gotoh [12] used ISPH model to 

the simulation of the solitary wave breaking on a 

beach. Shao [2], used two-equation k turbulence 

model coupled with the incompressible SPH method 

to examine the spilling and plunging cnoidal wave 

breaking over a slope. Shao [13] simulated the wave 

breaking and overtopping over sea wall by ISPH 

together with k model. Shao and Changming [3] 

devised a 2D SPH–LES model applicable to a cnoidal 

wave breaking and plunging over a mild slope.  

Khayyer et al. [9] proposed Corrected ISPH (CISPH) 

method and its application to the breaking and post-

breaking of solitary waves on a plane slope. 

The turbulence modeling has been of major concern in 

the study of wave breaking. This paper is intended to 

apply the 2-D SPS turbulence model of Gotoh et al. 

[14] to analyze the wave breaking process on a plane 

slope. For the current study, a weakly compressible 

version of the smoothed particle hydrodynamics 

(WCSPH) method along with a LES approach was 

used to simulate the wave breaking on a plane slope 

and the computations were compared with both 

qualitative and quantitative experimental data. 

To the authors’ knowledge, simulations of wave 

breaking on slope have been mostly carried out by 

ISPH model. Furthermore, capability of the WCSPH 

method along with a LES approach to simulate 

periodic breaking waves on slope is not reported yet. 

Capability of the WCSPH method to simulate wave 

breaking is only reported for solitary waves. For 

example, Rogers and Dalrymple [15] employed 

WCSPH-LES model for the solitary wave breaking on 

a beach. Ketabdari and Roozbahani [43] simulated the 

Plunging Breaking Solitary Wave by WCSPH with 

LES model. Also, Issa and Violeau [16] simulated the 

Plunging Breaking Solitary Wave by WCSPH with 

various turbulent models, such as constant eddy-

viscosity, mixing length and k- model.  

The Periodic breaking waves on a sloping beach have 

been studied in a series of experimental measurements 

[17-21]. To the knowledge of authors, it seems that 

the photographs taken during the laboratory 

experiments were solely reported for solitary waves 

[22, 23]. However, in our experimental modeling, the 

wave propagation and breaking process were recorded 

with a high speed camera positioned perpendicular to 

the glass walls of the wave tank. The main aim of 

present paper is using WCSPH-LES model to 

investigate numerically the periodic breaking waves 

and the post-breaking processes on slopes. Moreover, 

to improve the WCSPH results, the Moving Least 

Squares (MLS) density filter is implemented in the 

current study. The numerical model results are then 

compared with those of the experimental model tests 

of this research study.  

This paper is outlined as follows: The numerical 

model is given in section 2. Physical model is 
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described in section 3 followed by the results and 

discussion in section 4.  Finally, summary and 

conclusion is presented in section 5. 
 

2. The Numerical model 
2.1. Governing equations 

Employing the SPH particle approach, the governing 

mass and momentum equations for a turbulent flow 

are presented in the following Lagrangian form: 

0.
1

 u
dt

d 


 (1) 










.
11 2

0  ugP
Dt

uD

 

(2) 

 

where  is the density, t is the time, u


is the velocity, 

P is the pressure, g is the gravitational acceleration, 0

is the kinematic viscosity of laminar flow and τ is the 

Reynolds stress. 

 

2.2. The SPH method 

Monaghan [24, 25] and Liu [26] described the main 

features of the used SPH method in detail. This 

method is based on integral interpolants, and we will 

only refer here to the representation of the constitutive 

equations in the SPH notation. The main point is to 

approximately generate any function A(r) with: 

      rdhrrWrArA 


 ,


 
(3) 

where r is the vector position; W is the weighting 

function or kernel; h is called smoothing length. Using 

this particle approximation, the following function can 

be written in discrete notation due to this estimation: 

  ab

b

b

b b W
A

mrA


  (4) 

The mass and density are noted by bm and b , 

respectively and  ,ab a bW W r r h   is the weight 

function or kernel. SPH kernel approach offers an 

upside by calculating the derivative of a function 

analytically. In comparison with a method like finite 

difference, where the derivatives are calculated from 

neighboring points using the spacing between them, 

this method is more accurate [27]. For the irregularly 

spaced SPH particles, this would be extremely 

complicated. We can get the derivatives of this 

interpolation by ordinary differentiation.  

  ab

b

b

b b W
A

mrA  


 (5) 

In the SPH, by using an analytical kernel function, the 

motion of each particle is computed through 

interactions with the neighboring particles. All terms 

in the N–S equations during the fluid flow, are 

formulated by particle interaction models and the need 

for a grid is obviated [2]. SPH particles move in a 

Lagrangian coordinates and the advection in N–S 

equations is directly calculated by the particle motion 

without the numerical diffusion. Each particle can 

carry a mass m, velocity u and other properties would 

vary upon condition. The basic SPH formulations 

included in this study are summarized as follows [24]. 

In a standard SPH formulation, the fluid is considered 

to be compressible, so the fluid pressure can be 

specified by using an equation of state instead of 

solving another differential equation. Changes in the 

fluid density are calculated as: 

abaabb b
a Wum

dt

d



 (6) 

 

instead of using a weighted summation of mass terms 

[24], since it is known to result in an artificial density 

decrease near fluid interfaces. 

As explained above, in the standard SPH formulation 

the fluid is considered as a weakly compressible fluid. 

Hence, by using an equation of state for specifying 

fluid pressure, the equation will be simplified and 

solved rapidly: in contrast to an equation such as the 

Poissons equation. The pressure and density 

formulation represented below is the Tait's equation of 

state [25]: 

























 1

0






BP  (7) 

 

where  is 7 ,  B is  /0
2
0c , 0 is 1000 kg/m

3
 the 

reference density, and 0c is  0c , the speed of sound 

at the reference density. The pressure gradient term in 

the symmetrical form is 

aba

b

b

a

a

b b W
PP

mP 













  22

1


 (8) 

 

The laminar stress term simplifies to [28, 29]: 

 
 

ab

abba

abaab

b b u
r

Wr
mu
























  2

02

0

4




  (9) 

 

where baab rrr


 , baab uuu


 ; being kr


and ku


 the 

position and the velocity corresponding to particle k (a 

or b) and 0 is the kinetic viscosity of laminar flow (

sm /101 26 ). 

SPS was used to represent the effects of turbulence in 

Sub-Particle Scales [30]. This model increases the 

accuracy of SPH, due to the fact that it preferably 

predicts the natural action better than the classical 

artificial viscosity given by Monaghan [24]. Ketabdari 

and Roozbahani [43] simulated the Plunging Breaking 

Wave by WCSPH with artificial viscosity and SPS 

models to consider the accuracy of WCSPH with 

artificial viscosity and SPS models. The results of 

overturning motion of a regular wave obtained by the 

standard WCSPH (with artificial viscosity) model 

with 01.0 , the WCSPH–SPS model, and the 
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boundary element method (BEM) of Vinje and Brevig 

[44] at different time instants were compared.  

Comparisons between the results of these models and 

those of the base model [44] confirm that the 

WCSPH-SPS model is a powerful tool for simulating 

complicated turbulent free surfaces. Then in present 

numerical model, we used WCSPH–SPS model.  

The eddy viscosity assumption is often deployed to 

model the SPS stress tensor as follow:  
 

2
2 ~

3

2~

3

2~
2 ijijIijkkijt

ij
SCSS 




  (10) 

 

in which, ij is the sub-particle stress tensor, 

  SlCst ..
2

  is the turbulence eddy viscosity, CS is 

the Smagorinsky constant, l  is the spacing between 

particles   5.0
2 ijij SSS  and ijS  the element of SPS 

strain tensor. Therefore, the momentum conservation 

equation can be written in SPH notation as [27]: 
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2222
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
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
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 (11) 

 

Kernel function has a significant role in SPH method, 

and for analytical particles, it demarcates the affected 

area. In this study, the Quintic function, which is 

generally employed and proposed by Wendland [31], 

is used: 

   12
2

1,

4









 R

R
hrW d

  

20  R  (12) 

Where d is 24/7 h  in 2D, 316/21 h in 3D and

hrR /  . 

In this research, the Predictor-Corrector algorithm 

described by Monaghan [32] was used in numerical 

simulations with a time step
5105 t s. This time 

step is small enough to satisfy the Courant condition 

and to control the stability of force and viscous terms 

[24]. 

Despite dynamics results from SPH simulations are 

realistic in general, large fluctuations can be observed 

in the pressure field of the particles. To overcome this 

problem and reduce the fluctuations, several methods 

have been developed to correct the kernel [33-35] and 

develop an incompressible solver. Putting a filter to 

the density of the particles and modifying density of 

them, is one of the simplest methods [36]. In the 

present study, we used the Moving Least Squares 

(MLS) approach which is introduced first by Dilts 

[37].  More details of the SPH model can be found in 

[27].  
 

 

2.2.1. Boundaries 

Free surfaces can always be easily recognized by 

particles in the SPH model. The particle density on the 

free surface drops abruptly because there is no particle 

in the outer region of the free surface. This criterion 

for defining the free surface is very simple and stable 

even under the plunging and splashing conditions 

[38]. If the absolute value of the difference between 

the particle density and reference density exceeds  

001.0   , then a particle can be regarded as a surface 

particle. 

In this modeling, the boundary is described by a set of 

discrete boundary particles. Fixed solid boundaries 

such as the sea bottom and a plane slope are simulated 

by Repulsive boundary conditions. To assure that a 

water particle never passes a solid boundary, 

Monaghan [25] developed this boundary condition. 

Here, similar to inter-molecular forces, the particles in 

the boundary exert central forces to the fluid particles. 

Lennard-Jones potential expresses the force per unit 

of mass for a boundary particle and a fluid particle 

separated a distance of r. By applying an interpolation 

method, Monaghan and Kos [39] modified this 

method and minimized the inter-spacing effect of the 

boundary particles on the repulsion force of the wall. 

Later on, Rogers and Dalrymple [40] improved the 

normal force experienced by a water particle. In this 

study, we use their modified approach. Following this 

approach, the force f


 experienced by an FP (fluid 

particles) acting normal to the wall, was modified by 

Rogers and Dalrymple (2008): 
 

      uzPRnf ,


  

 (13) 

 

where n


 is the normal of the solid wall. The distance 

  is the perpendicular distance of the particle from 

the wall, while   is the projection of interpolation 

location on to the chord joining the two adjacent 

boundary particles and  BPFP vvu


 . n


 is the 

velocity of the FP projected onto the normal. The 

repulsion function,  R , is evaluated in terms of the 

normalized distance from the wall, hqn 2/ , as 

   n

n

q
q

AR  1
1



  

 (14) 

where the coefficient A is  
 

201.0
1

ac
h

A 

  

 (15) 

 

The function   P  is chosen so that an FP 

experiences a constant repulsive force as it travels 

parallel to the wall 

    






























b
Por

b
P





 1

2
cos1

2

1

  

 

(16) 
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where b is the distance between any two adjacent 

BPs (boundary particles). Finally, the function  uz,

was modified from Monaghan and Kos (1999) and 

adjusts the magnitude of the force according to the 

local water depth and velocity of the FP normal to the 

boundary 
 

       uzuz  ,

  

 (17) 

 

where 

 














1/1

002.0/

002.0

0

00





hz

hzhz

z

z

  

 (18) 

and 

 


















0

00

401

40/40

00

cu

cucu

u

u









  

 (19) 

z is the elevation above the local still-water level oh . 

 The system of normal requires each BP to know the 

coordinates of its adjacent BPs. In a two-dimensional 

situation (Figure 1), the BP a is surrounded by BPs 1n  

and 2n  so that the tangential vector is given by 

  1212 / nnnn rrrrt


 and the normal is calculated 

using 0. tn


.  

 

 
Figure  1. Location  of adjacent boundary particles for RBCs 

 

The upstream open boundary is the incident wave 

boundary. This boundary is modeled by a numerical 

wave maker composed of wall particles. During the 

computation, the wave maker moves periodically and 

its frequency and amplitude are adequately adjusted 

until the desired incident wave profile is obtained. 

Following Mahmoudi et al. [45], the wave maker is 

designed to be able to produce an incident wave and 

meanwhile, absorb reflected waves from the 

downstream. 
 

Base on linear wave-making theory, a paddle 

wavemaker with simple harmonic motion with 

amplitude, pA and angular frequency ω, that the 

equilibrium position is origin, can generate a linear 

wave in a flume, and the wave surface η is 

   teCAtkxCA
n

kx

npp  sincos
1

0 




  (20) 

where 
 

  
  khkh

kh
C

22sinh

12cosh2
0




  (21) 

  
  hkhk

hk
C

nn

n

n
22sin

12cos2




  

(22) 

                                                                                                                                                    

where h  is water depth, x  is the distance from 

wavemaker. In this equation, the wave number k 

satisfies the following formula, 

  0tanh. 2 kdkg  (23) 

 

and nk  is the  nth root of the equation below, 

  0tan. 2 dkgk nn  (24) 

 

To absorb the secondary reflecting waves from the 

wave maker, an additional wave maker displacement  

aX  is added on the original displacement pX . Then, 

the displacement of the absorbing wavemaker is  
 

(25)      tAtAXXX apap sinsin  

 

The final expression of the velocity of the paddle can 

be obtained as  

(26)   tXD
Cdt

dX
tu mp .2)(

0

 


 
where   is phase difference, p is the wave surface 

generated by pX , m  is the wave surface that 

measured in front of the wave maker, and 





1n

nCD  

[47].  

 

To absorb the wave reflection from the wall at the end 

of the open channel, an exponential damping zone is 

placed over a distance of at least a wavelength. In the 

damping zone, the velocity of fluid particles will be 

damped as 
 

   ]exp1[ 000 xxxUU    (27) 

 

where U is fluid velocity,  is a coefficient, equal to 

2.0; 0x  is the damping zone length, 0x is the damping 

zone starting point, 00 xLx   and L is the channel 

length [46]. 
 

2.2.2. Initial conditions 

Fluid particles were initially placed on a Cartesian 

grid with dx=dz=0.005 m and zero initial velocity. 

The particles are assigned an initial density 0  that is 

needed to be adjusted to yield the correct hydrostatic 

pressure when the pressure is calculated from the 

equation of state (7). Considering the gravity acting in 

the negative z-direction, the density of a particle was 

given by 

  


1

0
0

B

zHg
1 







 


  

 (28) 
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Where H is the depth of the tank and z is the distance 

from the particle to the bottom [41]. The initial 

conditions were designed to fit the experimental 

conditions. The computational system consists of a 

wave maker at one end of the tank and a sloping plane 

at the other one. The computational tank was 8 m long 

and 0.5 m high (see Fig2). Using this initial 

configuration, the total number of particles in the 

numerical experiment was 27,163, with the particles 

spaces being set to be 0.005 in two directions. 
 

3. Physical modeling 
3.1. Experimental set-up 

Experiments were conducted in the Hydraulics 

Laboratory, School of Engineering, Griffith 

University Gold Coast Campus. The experimental set-

up is depicted in Figure 2. The wave tank is 8 m long, 

80 cm high and 50 cm wide. A 1:10 slope was placed 

at a side of the flume. The vertical direction is defined 

as z -axis. The x-axis is direction for wave 

propagation. The slope is located at X =2.5 m from 

the wave maker. Considering a relatively short flume 

in length employed in this research work, in order to 

overcome the effect of reflection from the sloping 

side, depending on the fluctuation in the flume, 

regular waves were generated on the plane slope for 

10–20 s. 

In the experiments, ten wave probes were used to 

measure the wave profile. The location of wave 

gauges is shown in Table 1. 

The wave propagation and breaking process were 

recorded with the high speed camera positioned 

perpendicular to the glass walls of the wave tank.  A 

sketch of the arrangement of the equipment is 

presented in Figure 2. The recording area were 

illuminated with two 500W lamps, were placed 

nearby the high-speed camera. A translucent panel  

was placed on the far side of the wave tank to provide 

a uniformly illuminated background. The regular 

wave was used as the incident wave in the experiment. 

The wave periods were from 1.14 to 3.42 sec, wave 

heights from 5.2 cm to 10.2 cm, and the water depth 

was 0.2 m. 
 

4. Results and Discussion 
As mentioned above, the breaking type is generally 

classified as the spilling, plunging and surging. 

Classification of wave breaking may be correlated to 

the surf similarity parameter [42]: 

2

1

0

0
0

L

H
tan













 

  

 (29) 

 

Figure 2. Schematic diagram of experimental set-up 

 

Table 1. Location of wave gages 

Wave gage No. 1 2 3 4 5 6 7 8 9 10 

X (m) -1.5 0 0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 

 
Figure 3. Sketch of the experimental arrangement for side view recording 

 

Table 2. Physical conditions of simulation cases 
Simulation case Wave height (m) Wave period (sec) surf similarity Breaking type 

Case I 0.0664 1.8 0.589 Plunging 

Case II 0.0758 2.7 0.7037 Plunging 

Case III 0.07 1.14 0.4342 Spilling 
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Where tan is the slope, 0H is the deep-water wave 

height and 0L  is the deep-water wave length 

Wave breaking type criterions are then introduced by: 

(a) surging ( 3.30  ); (b) plunging ( 3.35.0 0   ) 

and (c) spilling ( 5.00  ) [42]. 

In the present research, a total number of three cases 

of periodic wave breaking on the sloping bed were 

simulated. Among which were two cases of plunging 

breaking and one case of spilling breaking. The 

simulation conditions of the plunging breaking cases 

correspond to those of the present experimental study. 

The physical conditions of all the mentioned cases are 

summarized in Table 2. The initial water depth in all 

three cases was 0.2 m. the initial particle spacing was 

chosen as dx = 0 .005 m and approximately 27,160 

particles were employed in the simulations. 

Figure 4 shows the comparison of the numerical and 

experimental results of wave surface elevation ( ) 

under regular wave for the first case. When wave 

propagates on the slope, it is influenced by shoaling as 

the depth of water decreases. Hence, the wave profile 

becomes unsymmetrical, the transmitted wave height 

increase, the wave crest becomes steeper and 

eventually it breaks. However, some discrepancies are 

found in all cases considered here for the maximum 

and minimum water surface elevations. Then, the 

developed model predicts the minimum water surface 

elevation and maximum water surface elevation, 

slightly underestimated and slightly overestimates, 

respectively. In general, these wave surface elevations 

under regular wave are shown that the numerical 

results agree well with the experimental data both 

phase wise and amplitude wise, although there are 

several slight discrepancies between the experimental 

and numerical wave surface elevations.  

When wave propagates on the slope, influenced by 

shoaling as the depth of water decreases, wave front 

becomes continuously steeper until the wave breaks. 

The breaking point is defined as the point where the 

front face of the wave crest becomes nearly vertical. 

In other words, the breaking point is defined at the 

point where the maximum wave height is obtained. 
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Figure 4. Comparison of the computational and experimental results of the instantaneous water 

surface elevation versus the normalized time (t/T), case I. Blue dashed line is the experimental data and red solid line 

are the SPH results 

 

Figure 5 shows a comparison of the variation in wave 

height 0/ hH  for the first case, where 0h  is the 

offshore water-depth (0.2 m). The laboratory 

experiments showed a breaking wave height 

336.0/ 0 hHb  at 14.5/ 0 hXb  for case I. Ting and 

Kirby [18] studied a series of experimental 

measurements for cnoidal wave breaking on a plane 

slope. They recorded a breaking wave height 

406.0/ 0 hHb  for the spilling breaker and 

475.0/ 0 hHb for plunging breaker. Then, the results 

of present experimental model for breaking criteria 

are in reasonable agreement with the similar data. In 

comparison, the SPH modeling predicts a breaking 

wave height 371.0/ 0 hHb  at 27.5/ 0 hXb for case 

I. This shows that a larger wave height is obtained by 

the WCSPH approach, since it uses particles to track 

the free surfaces without numerical diffusion.  

 
Figure 5. Comparison of variation in wave height during wave propagates on plane slope, case I 
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Figure 6. illustrates the WCSPH snapshot of plunging breaking for case I at the breaking point. It shows at  

27.5/ 0 hX  , where the front face of the wave crest becomes nearly vertical 

 

Figure 7 and Figure 9 illustrate the plunging breaking 

and the splash-up process of a periodic wave with 

conditions corresponding to the simulation case I and 

case II, respectively. In the right hand side, the 

photographs are those taken with the high speed 

camera during laboratory experiments in the present 

experimental study, while, the WCSPH results are 

shown on the left hand side. Qualitative comparison 

of laboratory photographs with WCSPH results are 

also shown in Fig 8 and Fig 10 for case I and case II, 

respectively.  

The WCSPH snapshots show qualitatively well 

agreement to the laboratory photographs. In general, 

the model was able to simulate the development and 

impact of the plunging jet with the resulting splash-up 

process successfully.  
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Figure7. Comparison of laboratory photographs (right) with WCSPH (left), case I 

 
Figure 8. Qualitative comparison of laboratory photographs with WCSPH, case I 
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Figure 9. Comparison of laboratory photographs (right) with WCSPH (left), case II 

 

 
Figure 10. Qualitative comparison of laboratory photographs with WCSPH, case II 

 

Some snapshots of water particles are also shown in 

Figure 11 for simulation case III. The spilling breaker 

is a milder wave breaking process, however, the 

plunging breaker is much more violent. In addition, in 

spilling breaker the wave keeps its quasi-symmetric 

form up to the final collapse and the wave height 

diminished slowly as shown in Figure 11.  

 

  
Figure 11. Typical WCSPH snapshots of spilling types of wave breaking, case III 
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In order to study the influence of particle spacing on 

the results, the present model was run using different 

particle spacing. The computed water surface 

elevations at the three measuring stations were 

compared with those of the experimental data for two 

particle spacing in Figure 12. It is shown that a finer 

model agrees better with the experimental results, the 

water surface is smoother and the fluctuations of 

water surface are less. In addition, the present model 

was also re-run using the finer particle spacing and the 

results showed that the changes in water surface 

profile were negligible. 

There are some negligible differences between the 

simulation and the experimental results, although the 

WCSPH-LES model was able to simulate the 

plunging breaking waves. In the emergence of 

numerical errors, the most possible factor behind both 

the existing differences happens due to completeness 

deficiency of SPH interpolants. The perfection in 

mesh free methods refers to the capability of the 

kernel interpolants to make over a physical field, 

based on the nodal values. It is similar to the 

consistency in the finite difference literature [9, 35]. 

Since, the perfection of the SPH interpolants is not 

exactly respond here, some numerical errors appear 

when it comes to the reproduction of highly non-linear 

velocity fields during the breaking and post-breaking 

processes.  

Simulating this type of flow with a two-phase 

simulation involving air should increase the quality of 

the presented results. Nevertheless, when the WCSPH 

is used to model the details of the highly nonlinear 

physical processes, implementation of such kind of 

improvements should be considered. 
 

5. Summary and Conclusion 

In this study a weakly compressible version of the 

smoothed particle hydrodynamics (WCSPH) method 

together with a large eddy simulation (LES) approach 

was used to simulate the periodic wave breaking on a 

plane slope. The simulations are in good agreement 

with both qualitative and quantitative experimental 

data. Qualitative comparisons between WCSPH 

results with the conducted laboratory photographs 

illustrate the capability of the WCSPH method in the 

simulation of plunging breaking waves on a plane 

slope. In addition, it is shown that the WCSPH 

method provides a useful tool to investigate the surf 

zone dynamics. 

 

 

 
Figure 12. Comparisons of computed water surface elevations using various particle spacing with experimental, case I. 
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