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The Minimum Cost Flow (MCF) problem is a well-known problem in the area 

of network optimization. To tackle this problem, Network Simplex Algorithm 

(NSA) is the fastest solution method. NSA has three extensions, namely 

Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex 

Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). 

The objectives of the research reported in this paper are to simulate and 

investigate the advantages and disadvantages of NSA compared with those of 

the three extensions in practical situations. To perform the evaluation, an 

application of these algorithms to scheduling problem of automated guided 

vehicles in container terminal is used. In the experiments, the number of 

iterations, CPU-time required to solve problems, overheads and complexity are 

considered. 
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1. Introduction 
One of the most well-known problem in the area of 

network optimization is the Minimum Cost Flow 

(MCF) problem. The problem is to send flow from a set 

of supply nodes, through the arcs of a network, to a set 

of demand nodes, at minimum total cost, and without 

violating the lower and upper bounds on flows through 

the arcs (see [1, 2, 3]). The MCF problem has numerous 

applications in scheduling, transportation, logistics, 

and telecommunication.  

One of the fastest algorithms to solve the MCF problem 

is Network Simplex Algorithm (NSA). This algorithm 

is an adaptation of the bounded variable of traditional 

primal simplex algorithm in Linear Programming [2], 

specifically for the MCF problem. In NSA, the basis is 

represented as a rooted spanning tree of the network 

graph, in which the arcs represent variables. The 

algorithm iterates towards an optimal solution by 

exchanging basic and non-basic arcs in the graph. NSA 

has three extensions, namely network simplex plus 

algorithm (see [4]), dynamic network simplex 

algorithm and dynamic network simplex plus algorithm 

(see [5]). 

To compare the advantages and disadvantages of those 

algorithms, we choose one of the challenging problems 

in transportation area. The problem is to schedule a 

number of Automated Guided Vehicles (AGVs) to 

transport container jobs inside the terminal statically 

and dynamically. In the static problem, where there is 

no change in the situation whereas in dynamic ones, the 

problem changes over time. The components that are 

relevant to the problem include quay cranes, container 

storage areas, and a road network [6]. The 

transportation requirement in a port is described by a 

set of jobs, where each job is characterized by the 

source location of a container, the target location and 

the time of its picking up or dropping-off on the quay-

side by the quay crane. Given a number of AGVs and 

their availability, the task is to schedule the AGVs to 

meet the transportation requirements.  

In order to determine to what extent NSA and its 

extensions can be applied in practice, this paper 

followed the research done in [5]. The structure of the 

remaining parts is as follows: Next section is a brief 

description of the related works over algorithms and 

problems. Section 3 is a description of the MCF 

problem in container terminals. Section 4 presents the 

experimental results in this research. The final section 

is considered for the summary and conclusion. 
 

2. Related Works 
The network simplex algorithm maintains a feasible 

spanning tree structure at each iteration and 

successfully transforms it into an improved spanning 

tree structure until it becomes optimal. Figure 1 shows 

the pseudo code of Network Simplex Algorithm and its 

extensions. At the beginning of the algorithm when the 

software made a MCF model, an initial feasible 

solution is generated by the procedure Generate-Initial 

BFS in the Step 01’. The operation of this procedure 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

5-
07

-0
2 

] 

                             1 / 12

http://ijmt.ir/browse.php?a_code=A-10-961-1&sid=1&slc_lang=en
http://ijmt.ir/article-1-647-en.html


Hassan Rashidi / Simulation and Evaluation of Network Simplex Algorithm and its Extensions for Vehicle Scheduling Problems in Ports 

 

2 

was described in [2]. In fact, in this step an initial 

feasible spanning tree solution (T0, L0, U0) is created. 

In dynamic problems, the Reconstruct New BFS,’ Step 

02’, is executed. When S (as the dynamic stage) is zero, 

the procedure Generate Initial BFS is called. 

Otherwise, the Reconstruct New BFS procedure repairs 

the current solution and spanning tree at time t; (Tt, Lt, 

Ut) is reconstructed (See [5] for more detail). The main 

body of the algorithms, NSA and DNSA, are the same. 

Sis Stage for the dynamic problem and is increased by 

the dynamic algorithms for each problem. SODN is a 

set of nodes that have to be removed from the model. 

SOIN is a set of nodes that have to be put into the new 

model. The ‘Step 1’ in the algorithm selects an entering 

arc, which is appended to the spanning tree. The ‘Step 

2’ determines the leaving arc, which must be removed 

from the spanning tree. The ‘Step 3’ makes pivoting 

and exchanges the entering and leaving arc. The 

operation of the main body was described in [4] and 

[2]. 
 

Figure 1. The pseudo code of the Network Simplex Algorithm 

and its extensions 

 

2.1. The Algorithms NSA and NSA+ 

The ‘Step 1’of the algorithms (see Figure 1) is certainly 

an important step in the Network Simplex Algorithm 

(NSA) since the total computational effort to solve a 

problem heavily depends on its choice. This step is 

called pricing scheme which does two things. It checks 

whether the optimality conditions for the non-basic 

arcs are satisfied, and if not it selects a violated arc to 

enter the spanning tree structure. The selected arc has a 

potential of improving the current solution. According 

to the theory [7], NSA terminates in a finite number of 

iterations regardless of which profitable candidate is 

chosen if degeneracy is treated properly. The most 

well-known schemes in NSA are the steepest edge 

scheme [8], the Mulvey’s list [9], the block pricing 

scheme [1], the BBG Queue pricing scheme [10], the 

clustering technique [11], the multiple pricing schemes 

[12], the general pricing scheme [13]. In this paper we 

present a new pricing scheme, which significantly 

reduces the CPU-time required to tackle MCF model.  

Rashidi and Tsang (2012) develop an extension for 

network simplex algorithm, namely NSA+ [4]. 

Compared with the standard version of NSA by 

Grigoriadis’s blocking scheme [1] and maintaining the 

strongly feasible spanning tree [14], NSA+ has three 

new features. These features are concerned with the 

starting point/block for scanning violated arcs, the 

memory technique and the scanning method. The 

pricing scheme of NSA+ is designed based on these 

features. There are two options to choose the first block 

to be scanned; Randomly and Heuristically. Hence, 

NSA+ has two extensions: (a) NSA+R: The entering arc 

function chooses the first block by Random selection; 

(b) NSA+H: The entering arc function chooses the first 

block by a Heuristic method and the location of the 

largest cost in the graph model. 
 

2.2. The Algorithms DNSA and DNSA+ 

In many applications of graph algorithms, including 

communication networks, graphics, assembly 

planning, and scheduling, graphs are subject to discrete 

changes, such as additions or deletions of edges or 

vertices. In the last decade, there has been a growing 

interest in such dynamically changing graphs, and a 

whole body of algorithms and data structures for 

dynamic graphs have been discovered. In a typical 

dynamic graph problem one would like to response to 

the changes in the graph that are under-going a 

sequence of updates, for instance, insertions and 

deletions of edges and vertices. Given their powerful 

versatility, it is not surprising that dynamic algorithms 

and dynamic data structures are often more difficult to 

design and analyze than their static counterparts. The 

goal of DNSA is to update efficiently the solution of a 

problem after dynamic changes, rather than having to 

resolve it from scratch-line each time. The Dynamic 

Network Simplex Algorithm is based on the Network 

Simplex Algorithm. DNSA and DNSA+ are the 

dynamic version of NSA and NSA+, respectively.  

The dynamic flows networks over time and their 

variations are very challenging problems. These types 

of problems are arising in various real applications such 

as communication networks, air/road traffic control, 

and production systems. Some major examples and 

further applications of the problems are found in the 

references (see [15,16,17,18,19]). Below we survey the 

results most closely related to the dynamic network 

flows and problems. 

Rauch (1992) classified dynamic graph problems 

according to the types of updates allowed [20]. A graph 

is said to be fully dynamic if the update operations 

include unrestricted insertions as well as deletions of 

arcs and nodes. A graph is called partially dynamic if 

only one type of update, either insertions or deletions, 

is allowed. If only insertions are allowed, the graph is 

called incremental; if only deletions are allowed it is 

called detrimental. DNSA and DNSA+ are fully 

dynamic. 

Afshari and Taghizadeh (2013) present a dynamic 

version of the maximum flow network in the simplest 
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kinds of interdiction problem [21]. In the problem, they 

assume that a positive number is assigned to each arc 

in the graph model, which indicates the traversal time 

of the flow through the arcs. Moreover, they assume 

that an intruder uses a single resource with limited 

supply to interrupt the flow of a single commodity 

through the arcs in the network graph within a given 

limited time period. So the arcs in the graph model is 

either vital or non-vital. To formulate the problem, a 

mixed integer mathematical programming model is 

presented, based on the concept of Temporally 

Repeated Flow (TRF). The model is then tackled by a 

couple of algorithms [22]: (a) an algorithm based on the 

Benders’ decomposition and (b) another based on the 

algorithm of Ratliff et al. (1975) for the most vital arcs 

[22]. Although they consider a dynamic problem of the 

network flow model, the algorithms are not dynamic; 

i.e. without having any exploitation the current solution 

to respond to the dynamic changes. 

Geranis et al. (2012) develop a new Dual Network 

Exterior-Point Simplex Algorithm (DNEPSA) for the 

Minimum Cost Network Flow Problem (MCNFP) [23]. 

The algorithm starts from an initial dual feasible tree-

solution and, after a number of iterations, it reaches an 

optimal solution by producing a sequence of tree 

solutions that can be both dual and primal infeasible. In 

following the work, Geranis and Sifaleras (2013) 

utilize the dynamic trees data structure in the DNEPSA 

algorithm, in order to achieve an improvement of the 

amortized complexity per pivot [24]. In extensive 

computational studies, DNEPSA performed better than 

the classical dual network simplex algorithm. Although 

the authors consider a dynamic tree data structure, the 

problem does not change over time and the algorithm 

is not dynamic. 

Shen et al. (2007) [24] and Zheng and Chiu (2011) [25] 

worked on a dynamic problem and made simplified 

System Optimal Dynamic Traffic Assignment (SO-

DTA) model. The model is based on the concept of 

Cell-Transmission Model (CTM), which requires the 

links in the graph model to be decomposed into cells in 

space and time. Both works gave definitions on traffic 

holding in CTM-based on single commodity and single 

destination problem. Shen et al. (2007) utilized a 

network flow structure and solved a simplified SO-

DTA, thus losing the ability to capture wave 

propagation and queue spillback effects. They 

suggested a post-processing algorithm to remove traffic 

holding from a solution generated by the Linear 

Programming, but this algorithm depends on the fact 

that the traffic holding does not improve the objective 

function value. Zheng and Chiu observed that the 

definition on diverge node may lead to a suboptimal 

solution [25] and for the diverge links, it may be better 

to hold instead of discharge all flow early. So they only 

applied the definition of holding-free solution to merge 

and ordinary links. Then, they proved that an 

augmenting path algorithm produces holding-free 

solutions at non-diverge links. Therefore, the 

definitions of holding-free in [24] and [25] are too strict 

for diverge nodes, the algorithms may lead to 

suboptimal and are not appropriate for most dynamic 

problems. 

Parpalea (2011) presents an approach for solving bi-

criteria minimum cost dynamic flow problem with 

continuous flow variables [26]. The approach is to 

transform a bi-criteria problem into a parametric one by 

making a single parametric linear cost out of the two 

initial cost functions. The approach iteratively finds 

efficient extreme points in the decision space by 

solving a series of minimum parametric cost flow 

problems with different objective functions. On each of 

the iterations, the flow is augmented along a minimum 

path from the supply node to the demand node in the 

time-space network avoiding the explicit time 

expansion of the network.  

Based on the previous research, Parpalea and Ciurea 

(2011) represent a generalization of the maximum flow 

of minimum cost problem for the case of minimizing 

the travelling cost (minimum cost flow) and travelling 

time (quickest flow) [27]. On this generalization, the 

research states a multi-criteria maximum flow problem 

in discrete dynamic networks with two objective 

functions. Then a solution method is based on 

generating efficient extreme points in the search space 

by iteratively solving a series of maximum flow 

problems with different single objective functions. 

Each time, the dynamic flow is augmented along a 

minimum cost path from the supply nodes to the 

demand nodes in the time-space network while 

avoiding the explicit time expansion of the network. 

Parpalea and Ciurea (2011) also study the 

generalization of the maximum flow of minimum cost 

problem for the case of maximum discrete dynamic 

flow of minimum travelling cost and time [27]. Their 

approach is very similar to the one used in [26]. 

Hosseini (2011) introduces a class of dynamic network 

flows in which the flow commodity is dynamically 

generated at supply nodes and dynamically consumed 

at demand nodes [28]. As a basic assumption in this 

research, the supply nodes produce the flow according 

to time generative functions and the demand nodes 

absorb the flow according to time consumption 

functions. In the general form and some special cases, 

the dynamic problems arise when the capacities and 

costs are time varying. This research formulates the 

problem as the minimum cost dynamic flow problem 

for a pre-specified time horizon. To solve the problems, 

some simple and efficient approaches based on the 

minimum cost static flow models are developed. 

Nasrabadi and Hashemi (2007) present a general 

minimum cost dynamic flow problem in a discrete time 

model with time-varying transit times, transit costs, 

transit capacities, storage costs, and storage capacities 

[29]. For this problem, the authors develop an 

algorithm, which is a discrete-time version of the 
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successive shortest path. The time complexity of the 

algorithm is O(V nT(n+T)) where V is an upper bound 

on the total supply, n is the number of nodes, and T 

denotes the given time horizon of the dynamic flow 

problem.  

Ciurea and Parpalea (2010) present a dynamic solution 

method for dynamic minimum flow networks [30]. The 

solution method solves the problem for a special 

parametric bipartite network [30]. Instead directly 

work on the original network, the method uses the 

parametric residual network and finds a particular state 

of the residual network from which the minimum flow 

and the maximum cut for any of the parameter values 

are obtained. The research implements a round-robin 

algorithm looping over a list of nodes until an entire 

pass ends without any change of the flow. 

Fonoberova (2010) presents other class of dynamic 

flow networks with the cases of nonlinear cost 

functions on arcs, multi-commodity flows, and time- 

and flow-dependent transactions on arcs of the network 

[31]. All parameters of the networks are assumed to be 

dependent on time. To formulate the problems, the 

classical optimal flow problems on networks are 

extended and generalized. The algorithms for solving 

such kind of problems are developed by using special 

dynamic programming techniques based on the time-

expanded network method together with classical 

optimization methods. To solve the problem, the author 

proposes an approach based on the reduction of the 

dynamic problem to a static problem. This approach is 

employed for solving some power systems problems by 

using optimal dynamic flow problems. 

Sherbenym (2012) propose a new version of the 

minimum cost flow problem on a time varying and time 

windows [32]. For each vertex in the network, three 

integer parameters are considered. These parameters 

are waiting cost, vertex capacity and time windows. In 

order to obtain dynamic networks, all these parameters 

are functions of the time. The objective is to find an 

optimal schedule to send a flow from the supply nodes 

to its demand nodes so that satisfies a time window 

constraint with minimum cost and minimum waiting 

times at nodes, subject to the constraint that the flow 

must arrive at the demand node before a deadline. In 

this paper, the algorithm to be developed will search, 

successively, shortest paths from the supply node, s, to 

the demand node in a dynamic residual network and 

then transmit as much as possible flow along the paths 

so that satisfies the time window constraint. 

Fathabadi (2011) proposes a minimum flow problem 

on network flows in which the lower arc capacities in 

the graph model vary with time [33]. For a set of time 

points, this problem is solved by at most n minimum 

flow computations. The solution method is based on 

combining of pre-flow-pull algorithm and re-

optimization techniques. The complexity of the 

presented algorithm is O(n2m) where m is the number 

of arcs in the graph model. 

3. Description of the MCF Problem in 

Container Terminals 
The problem, here, is the same as the problem defined 

in [34]. The most important reason for choosing this 

problem is that the efficiency of a container terminal is 

directly related to the use of the AGVs with full 

efficiency (see [7, 35, 36, 37, 38, 39, 40]). The 

assumptions used are also the same as the assumptions 

in [34]. The MCF associated with the problem is 

presented as MCF-AGV model [41]. The MCF-AGV 

model was established on a directed graph. Figure 2 

demonstrates an example of the problem for two AGVs 

and four container jobs. As in the paper mentioned, the 

problem was formalized with four different types of 

node: a supply node for each AGV (nodes 1 and 2 in 

Figure 2), a couple of nodes for each container job 

(nodes 3-10 in Figure 2) as transshipment nodes and a 

demand node (the node 11 in Figure 2). 

The following four types of arc, namely Inward Arcs, 

Intermediate Arcs, Outward Arcs and Auxiliary Arcs 

with their properties connect the nodes in the graph 

model. The Inward Arcs are directed arcs from the each 

AGV node to the each Job-Input node. The 

Intermediate Arcs are directed arcs from the each Job-

Output node to the others Job-Input node. The Outward 

Arcs are directed arcs from the each Job-Output node 

and the each AGV node to the SINK. The Auxiliary 

Arcs are directed arcs from every Job-Input node to its 

Job-Output node. For more details on the nodes and 

arcs refer to [41]. 

 

 

Figure 2. An example of the MCF-AGV model of two AGVs 

and four container jobs 

 

Suppose that for some values of the arc costs in the 

model, the solution paths are 1→3→4→9→10→11 

and 2→5→6→7→8→11. This states that AGV 1 is 

assigned to serve container jobs 1 and 4, and AGV 2 

is assigned to serve container jobs 2 and 3 

respectively. 

 

4. Simulation Results and Comparisons 
We implemented the simulation software in Borland 

C++Builder, running on Genuine Intel 3.081Ghz 

Processor. Figure 3 shows the main screenshot of the 

software. It shows a single vessel, four Quay Cranes 

(QCs), one Rubber Tyred Gantry Crane (RTGC) in 

each block of the Storage Area and several AGVs. The 
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figure also shows the main menu as well as several 

buttons including ‘Port’, ‘Route’, ‘Containers’, 

‘Vehicles’ and ‘Process’. These buttons have been 

shown under the main menu and designed as hotkeys 

to facilitate the software execution. Some important 

features of the software are described briefly as follows 

(for more detail see [42]): 

 The user can define a few ports, a 

number of blocks in the yard, a number of 

working positions or cranes in the berth and a 

number of Automated Guided Vehicles in each 

port. The ‘port’ button activates this feature. 

 A facility to generate a random 

distance between every two points in the yard 

or berth has been considered. The user can 

change the distance. The ‘route’ button 

activates this feature. 

 At the beginning of the process, the 

start location of each vehicle may be any point 

of the port. The user can define or change the 

ready time of the vehicles at the start location 

and the location as well.  

 A Job Generator was designed and 

implemented in the software. For static and 

dynamic fashion, a few container jobs are 

generated to transport from their source to their 

destination. Either the source or destination of 

each job is the quayside, which can be chosen 

randomly by the Job Generator. The initial 

time of the operation and the time window for 

the cranes and vehicles are defined by the user. 

The user can monitor some indices to measure 

the efficiency of the model and algorithm. The 

waiting or delay time for every job, the number 

of jobs and the total travelling and waiting 

times for every vehicle, are calculated in the 

static and dynamic problems. 

Figure 3. The main screenshot of the simulation software 

 

4.1 Memory Management of the Simulation 

Software 

Given N jobs and M AGVs in the problem, there are 

M+2×N+1 nodes and M+M×N+N×(N-1)+2×N arcs in 

the MCF-AGV model [41]. The challenge, here, is to 

control them correctly. The memory management 

routine allocates the memory based on the Maximum 

Number of Jobs. This parameter is determined by the 

user and here is represented as MNJ. Table-1 shows a 

memory map of the allocated space. As shown in the 

table, there were four different types of arc in the MCF-

AGV model: Inward Arcs, Outward Arcs, Auxiliary 

Arcs, and Intermediate Arcs (see Figure 2). 

Additionally, the Artificial Arcs are needed to generate 

an initial Basic Feasible Solution [2]. Two blocks of the 

memory are allocated for these arcs and two pointers 

are used to access them; the first one is for arcs in the 

MCF-AGV model and the second one is for the 

Artificial Arcs. In order to address a certain type of arc, 

it is necessary to have an offset. The offset is the 

difference in the address from the beginning of the 

block. 
 

Table 1. Memory allocation for the arcs of the MCF-AGV 

model and its algorithm 

 

In the software, a small memory management facility 

has been designed, implemented and embedded in the 

software. The objectives of this facility are to make 

independent software, to get a higher performance and 

prevent any missing job (when the Job Generator 

generates a job and the memory cannot be allocated). 
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In fact, there are two aspects of memory management 

in the software. The first one is relevant to the jobs 

whereas the second one refers to the graph model. 

There is a buffer for the jobs, which is allocated at the 

start of operation. Once a job is fulfilled, a hole will be 

created in the buffer and when the Job Generator 

generates a job, it puts the job into the first hole. For 

the arcs and nodes in the graph model, an Identification 

flag has been considered. The Identification flag 

associated with each arc identifies whether the arc is in 

the Tt set, Lt set, Ut set, or Dt set (see [5]) at time t. 

There is the one-to-one mapping between every 

location in the Job Buffer and the nodes associated with 

the job in the graph model. When a job is fulfilled, the 

nodes associated with this job are marked for deletion. 

For each node belonging to the fulfilled jobs, the node 

and the relevant arcs are removed from the spanning 

tree of the graph. In order to make a new spanning tree, 

a Remove-Node procedure is used [5]. When a new job 

arrives, the relevant nodes (which have been deleted 

from the graph model) will be marked for insertion. 

The insertion nodes and the arcs associated with the 

new jobs are inserted into the spanning tree 

consistently. This task is performed by an Insert-Node 

procedure, which is presented in [5]. 
 

 4.2. Simulation and Evaluation in Static Problems 

To simulate and evaluate the performance of the 

algorithms, many jobs in static and dynamic fashion 

have been generated. In our experiment, it was assumed 

that there were fifty AGVs and seven cranes in the port. 

Other experimental parameters are the same as in [41]. 

Their sources, destinations and the distance between 

every two points in the port have been chosen 

randomly. 

Figure 4. Block diagram of the software executed for solving 

static problems [43] 

 

We generated 32 static random problems by which 

must be solved by the algorithms. Figure 5 shows the 

CPU-Time required to solve the problems by NSA, 

NSA+H and NSA+R, based on the number of container 

jobs in the static problem. 

Although NSA+ is faster than NSA [41], it has some 

overhead as a cost. In ‘Step 1’ of the algorithm (see 

Figure 1), NSA+R chooses an entering arc from the first 

block randomly. NSA+H chooses an entering arc from 

the first block by a Heuristic method. This heuristic is 

based on the location of the largest cost in the graph 

model into which must be searched. In fact, it chooses 

the arc with the largest cost. Hence it has some 

overheads due to the search needed. Figure 5 shows the 

overhead of the algorithms NSA+H and NSA+R 

compared with zero for NSA, based on the number of 

container jobs in the static problem. The overhead is 

determined in the number of high level instructions 

needed to solve the problem. 

 

 
 

Figure 5. The overhead of NSA+H and NSA+R compared  with 

that of NSA 

 

 

Figure 6. A comparison of CPU-Time required solving the 

same problems by NSA, NSA+H and NSA+R 

 

In order to calculate the average CPU-Time required to 

solve the problems and to compare performance of the 

algorithms in this experiment, we introduce the 

following terms: 

𝑪𝑷𝑼 − 𝑻𝒊
𝑵𝑺𝑨: The CPU-Time required to solve the 

problem i by NSA. 

𝑪𝑷𝑼 − 𝑻𝒊
𝑵𝑺𝑨+𝑯

:The CPU-Time required to solve the 

problem i by NSA+H. 

𝑪𝑷𝑼 − 𝑻𝒊
𝑵𝑺𝑨+𝑹

: The CPU-Time required to solve the 

problem i by NSA+R. 

PIHi: The Percentage of Improvement in CPU-time 

required to solve the problem i by NSA+H compared 

with that of NSA. 

PIRi: The Percentage of Improvement in CPU-time 

required to solve the problem i by NSA+R compared 

with that of NSA. 
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TPIH: The Total Percentage of Improvement in CPU-

Time required to solve the problems by NSA+H 

compared with that of NSA. 

TPIR: The Total Percentage of Improvement in CPU-

Time required to solve the problems by NSA+R 

compared with that of NSA. 

TPIHR: The Total Percentage of Improvement in 

CPU-Time required to solve the problems by NSA+H 

compared with that of NSA+R. 

Wi: The Weight of improvement for the problem i. In 

this experiment we consider the number of arcs in the 

MCF-AGV model for the weight. Given N jobs and M 

AGVs in the problem, the number of arcs is 

M+M×N+N×(N-1)+2×N. 

 

Now we calculate the percentage of improvements in 

the CPU-Time used for the problem i by the following 

equations: 
 

𝑇𝑃𝐼𝐻 = 

∑ 𝑊𝑖
32
𝑖=1 × (𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴+𝐻
− 𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴)

∑ 𝑊𝑖
32
𝑖=1

× 100

= 32.99     

(1) 

 

𝑇𝑃𝐼𝑅 =
∑ 𝑊𝑖

32
𝑖=1 × (𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴+𝑅
− 𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴)

∑ 𝑊𝑖
32
𝑖=1

× 100

= 21.94     

(2) 

𝑇𝑃𝐼𝐻𝑅 =
∑ 𝑊𝑖

32
𝑖=1 × (𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴+𝐻
− 𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴+𝑅
)

∑ 𝑊𝑖
32
𝑖=1

× 100 = 14.15      

(3) 

 

The percentages of overhead in the number of high 

level instructions used to solve the problems by NSA+H, 

NSA+R, and NSA are calculated by the similar 

expressions. In this comparision, the average overhead 

of the algorithms NSA+H and NSA+R are comapred with 

that of NSA. Table-2 shows the results of the 

comparison between the algorithms in their CPU-Time 

and overheads. 
 
Table 2. The results of the comparison between the algorithms 

in their CPU-Time and their overhead 

 

CPU-Time Overhead 

N
S

A
 

N
S

A
+

H
 

N
S

A
+

R
 

N
S

A
 

N
S

A
+

H
 

N
S

A
+

R
 

NSA 0 -32.99 -21.94 0 14 8 

NSA+H 32.99 0 -14.15 -14 0 6 

NSA+R 21.94 14.15 0 8 -6 0 

 

Observation-1: NSA+H and NSA+R are 33 and 22 

percents, respectively, faster than NSA. NSA+H is 14 

percent faster than NSA+R 
 

Observation-2: The overhead of NSA+H and NSA+R 

are around 14 and 8 percents, respectively, compared 

with that NSA. The overhead of NSA+H is 6 percent 

more than NSA+R 

The CPU-Time and time complexity of the algorithms 

can be examined in the experiments. We did a rgression 

on the CPU-Time required in running the algorithms. 

Given N as the the number of jobs in the graph model, 

we obtained the following equations to estimate the 

CPU-Time: 
 

CPU-TimeNSA(N)= 3E-09N3 + 3E-

06N2 - 0.001N 
 

R²=0.991 (4) 

CPU-TimeNSA
+H (N)= 6E-09N3 - 9E-

06N2 + 0.005N 
 

R²=0.962 (5) 

CPU-TimeNSA
+R (N)= 3E-09N3 - 4E-

07N2 + 0.001N 
R²=0.959 (6) 

 

The coefficient R2 in the regression reveals how closely 

the values of the estimated curve correspond to the 

actual data. Its value is more than 0.95 for the 

estimations. 
 

Observation-3: According to the equations (4), (5) and 

(6), the complexity of the algorithm , NSA, NSA+H and 

NSA+R, are in order 3 of the number of jobs. 

The overhead of the algorithms, NSA+H and NSA+Rare 

examined in the experiments. We did a rgression on the 

CPU-Time required in running the algorithms. Given 

N as the the number of jobs in the graph model, we 

obtained the following equations to estimate the CPU-

Time: 
 

OVNSA
+H(N)= 0.004N2+0.366N R²=0.999 (7) 

OVNSA
+R(N)= 0.002N2+0.264N R²=0.999 (8) 

 

Observation-4: According to the equations (7) and (8), 

the overhead of NSA+H and NSA+R are in order 2 of the 

number of jobs.  

Note that for any prediction the equation for the CPU-

Time in practice depends on other factors, such as the 

speed of processor, active programs when the problem 

is being solved in multi-task operating systems, and so 

on. Our program has been run on a Windows XP 

computer with a Genuine Intel 3.081Ghz Processor in 

the normal situation. 

The performnce of running the two algorithms has been 

analyzed statistically. We tested the nullhypothesis that 

the means produced by the two algorithms 

werestatistically indifferent (α = 5%). Table-3 provides 

the test’s resultalong with the values of T-distribution 

for a particular degree offreedom. Since we cared if the 

change (the difference between thetwo means) was 

positive or negative, ‘One-tail’ test was chosen. 
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Table 3. The statistical test over the results of the 

comparison in static aspect 

 

CPU-Time Overhead 

N
S

A
+

H
 v

s. N
S

A
 

N
S

A
+

R
 v

s. N
S

A
 

N
S

A
+

H
 v

s.N
S

A
 

N
S

A
+

R
 v

s. N
S

A
 

Observations 32 32 32 32 

T-Test (Paired 

Two Sample 

For Means) 

-4.11 -3.36 46.1 25.3 

Degree of 

Freedom 
31 31 31 31 

Critical T-

Value 
1.69 1.69 1.69 1.69 

 

Observation-5: Table-3 shows that although NSA+H 

and NSA+R statistically ate better than NSA, the 

overhead of these algorithms are significant comapred 

with that of NSA. 
 

4.3 Simulation and Evaluation in Dynamic 

Problems 

The problem defined in [34] is dynamic. In reality, the 

dynamic problem arises when several new jobs are 

arrived, the fulfilled jobs are removed and the links or 

junctions in the port layout are blocked. For the arriving 

jobs, the Job Generator has to generate a few new jobs, 

when it finds out any crane is in idle state. The 

fullfilling jobs must be removed from the graph model 

by the software. When  the links or junctions in the port 

layout are blocked, the software must make the changes 

in distances between points in the source and 

destination of the jobs.  

The architecture of the simulation software for running 

NSA and NSA+ is demonstrated in Figure 7. At the start 

of the process, the Job Generator generates a few jobs 

for each crane. These jobs will be appended to the 

remaining jobs, which are empty at the beginning. The 

remaining jobs are used to make up a MCF-AGV 

model. Then the model will be tackled by NSA+. The 

output of this algorithm is a few job sequences for the 

vehicles. Based on these sequences the software will 

prepare a job list for each vehicle. 

 
 

Figure 7. Block diagram of the simulation software and 

algorithm NSA and NSA+ for solving dynamic problems [43] 

 

At the beginning, based on the solution to the problem 

at the current stage, a job is assigned to each vehicle 

and crane. During the simulation, handling of the jobs 

by the cranes and vehicles are executed in parallel. 

Briefly, the software does two tasks. The first task is 

related to updating the status of the vehicles and cranes 

whereas the second one takes influence from any 

change in the problem or any idle crane. The second 

task refers to any change in the problem or status of the 

cranes. In the both cases, a new MCF-AGV model will 

be made by the remaining jobs (except the current job 

for every vehicle) and the new jobs (if there are any). 

The new model will be tackled by the algorithms from 

scratch. Then, the new solution will be used for 

updating the list of jobs for every vehicle.  

The main architecture of the simulation software for 

running the algorithms is demonstrated in Figure 8. At 

the start of the process, a few jobs are generated for 

each crane and the memory for the jobs and graph are 

allocated. Then, the MCF-AGV model is made and 

tackled by the algorithms. The output of this algorithm 

is a few job sequences for the vehicles. Based on these 

sequences, the software will prepare a job list for each 

vehicle. While the time is being progressed, the 

vehicles and cranes are carrying and handling the 

containers.  

As it is shown in the figure, every event is recorded in 

order to be processed later. The events include 

modification of the vehicle’s position, the fulfilled jobs 

and new jobs, and any change in the distance table. A 

hole will be created in the Job Buffer when a job is 

fulfilled [42]. After the Job Generator generates a job, 

it puts the job into a hole of the buffer. The software 

marks the nodes and arcs associated with the fulfilled 

and new jobs. The most important events that affect the 

spanning tree are the fulfilled and new jobs. The 

fulfilled jobs are removed from the list of vehicles and 

model whereas the new jobs are appended to remaining 

jobs and inserted into the model. Note that any change 

in the problem, without any fulfilled or new job, does 

not affect the spanning tree. In this case, only the body 

of the algorithm is executed and finds out the optimal 

solution. 
 

 
 

Figure 8. Block diagram of the simulation software for 

solving dynamic problems [43] 
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The software processes the recorded events and 

updates the MCF-AGV model. After removing the 

nodes and arcs (associated with the fulfilled jobs) from 

the model and omitting the jobs from the vehicle’s lists, 

a new spanning tree is made. Next, the nodes and arcs 

associated with the new jobs are put into the new model 

and then the spanning tree is repaired. These jobs are 

assigned to one or more vehicles, randomly. These two 

tasks are made by Reconstruct New BFS. After 

repairing the spanning tree, the main body of the 

algorithm is executed and it finds out the optimal 

solution. Note that these tasks are not pre-emptive, i.e. 

when a task starts execution on the processor it finishes 

to its completion. 

Figure 9 shows the number of jobs arrived, the number 

of jobs fulfilled and the number of jobs remained in 

each stage of the dynamic problems. The relation 

between these numbers of jobs is as according to the 

equation (9): 

 

    #𝐽𝑜𝑏𝑠𝑅𝑒𝑚𝑎𝑖𝑛𝑒𝑑 (𝑆) = 

#𝐽𝑜𝑏𝑠𝑅𝑎𝑚𝑖𝑛𝑒𝑑(𝑆 − 1)
+  #𝐽𝑜𝑏𝑠𝐴𝑟𝑟𝑖𝑣𝑒𝑑(𝑆)
−  #𝐽𝑜𝑏𝑠𝐹𝑢𝑙𝑙𝑓𝑖𝑙𝑙𝑒𝑑(𝑆) 

(9) 

 

 
 

Figure 9. The number of jobs arrived, fullfilled and remained 

in the dynamic problems 

 

Figure 10 shows the percentages of changes made in 

the graph model, due to the number of jobs arrived and 

the number of jobs fulfilled in each stage of the 

dynamic problems. The values in the figure are 

calculated based on the number of nodes and arcs in the 

graph model for insertion and deletion, according to the 

number of jobs arrived and fulfilled at each stage. The 

arcs and nodes for jobs arrived (fulfilled) must be 

inserted (deleted) into (from) the graph model. The 

number of nodes and arcs are calculated according to 

the simple equations like ones shown in Figure 2. 

Given #ChIns(S) as the value of changes due to 

insertion some nodes with their arcs, and #ChDel(S) as 

the value of changes due to deletion some nodes with 

their arcs at each stage, the percentage of changes in the 

graph is calculated according to equation (10): 
 

 

 

 

𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝐼𝑛𝐺𝑟𝑎𝑝ℎ𝑀𝑜𝑑𝑒𝑙 (𝑆) = 

|
#𝐶ℎ𝐼𝑛𝑠(𝑆) + #𝐶ℎ𝐷𝑒𝑙(𝑆) − (#𝐶ℎ𝐼𝑛𝑠(𝑆 − 1) + #𝐶ℎ𝐷𝑒𝑙(𝑆 − 1))

#𝐶ℎ𝐼𝑛𝑠(𝑆 − 1) + #𝐶ℎ𝐷𝑒𝑙(𝑆 − 1))

∗ 100 |         (10) 

 

 

Figure 10. The percentages of changes in the graph model of 

the dynamic problems 

 

It was very difficult to isolate the CPU-Times required 

to tackle the problems by the algorithms and the CPU-

Time required for memory management. Moreover, the 

CPU-Time required to solve the problem is too much 

small and is not convenient for the comparision. Hence, 

the number of iterations is considered as an indicator to 

compare the algorithms. The number of iterations 

required to solve the problems are drawn in Figure 11. 

Figure 11. The number of iterations of the algorithms for 

solving the dynamic problems 
From Figure 11, it is clear that the number of iterations 

are improved when we dynamic algorithm DNSA and 

DNSA+ compared with that of NSA and NSA+. Note 

that since NSA+H perform better than NSA+R (see 

Observation-2), we use only NSA+H in this 

experiments. The percentage of improvement, in 

reduction of the number of iterations, is calculated by 

the following terms and equation: 

NSAS: The number of iterations in NSA for the 

dynamic problem at stage S. 

𝑵𝑺𝑨𝑺
+ : The number of iterations in NSA+ for the 

dynamic problem at stage S. 

DNSAS: The number of iterations in DNSA for the 

dynamic problem at stage S. 

𝑫𝑵𝑺𝑨𝑺
+: The number of iterations in DNSA+ for the 

dynamic problem at stage S. 
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𝐓𝐏𝐑𝑵𝑺𝑨+
𝑵𝑺𝑨 : The Total Percentages of Reduction in the 

number of iterations in the experiment. 

𝑻𝑷𝑹𝑫𝑵𝑺𝑨
𝑵𝑺𝑨 : The Total Percentages of Reduction in 

the number of iterations in the experiment. 

𝑻𝑷𝑹𝑫𝑵𝑺𝑨+
𝑵𝑺𝑨 : The Total Percentages of Reduction in 

the number of iterations in the experiment. 
 

TPR𝑁𝑆𝐴+
𝑁𝑆𝐴 =  

∑ (𝑁𝑆𝐴𝑆 − 𝑁𝑆𝐴𝑆
+32

𝑆=1 )

∑ 𝑁𝑆𝐴𝑆
32
𝑆=1

× 100 = −58.59% 

         (10) 

 

Similar equations are used to compare the performance 

algorithms in the number of iteration required to solve 

the problems. Table-4 shows this comparisions.  
 

Table 4. The percentages of the performace comparisons 

between the algorithms 

Algorithms NSA NSA+ DNSA DNSA+ 

NSA 0.00 -58.59 -63.02 -77.49 

NSA+ 58.59 0.00 -10.68 -45.63 

DNSA 63.02 10.68 0.00 -39.13 

DNSA+ 77.49 77.49 39.13 0.00 

 

From this table, we can obtaine the following 

observations: 
 

Observation-6: The performace of DNSA+, DNSA 

and NSA+ are around 77.5, 63 and 60 percents better 

than that of NSA, respectively.  

Observation-7: The performace of DNSA+ and DNSA 

are around 45.6 and 10.60 percent faster than that of 

NSA+, respectively.  
 

Observation-8: Since the major process of the 

algorithms is performed in the body and the operations 

of the body are identical [42], the CPU-time required to 

solve the problems is also decreased practically. 

The number of iterations of running the two algorithms, 

DNSA+ and NSA+, has been analysed statistically. We 

tested the null hypothesis that the means produced by 

the two algorithms were statistically indifferent 

(α=5%). Then, we got the following observation: 
 

Observation-9: The Paired T-test determines the two 

means are significantly different at a ninety-five 

percent degree of confidence since the test’s result is in 

the reject region. 

It is seemed that there is strong correlation between the 

percentgaes made on the graph model and thenumber 

of iterations required to solve the problem. So, we 

decided to calcualte the correlation between them. 

Table-5 shows the result of this experiment. 
 
 

 

 

 

 

Table 5. The correlation between the perentages of changes in 

the graph and the algorithms 

 

%
C

h
a

n
g

es-in
 th

e 

G
ra

p
h

 

#
 Itera

tio
n

s- N
S

A
 

#
 Itera

tio
n

s-N
S

A
+ 

#
 Itera

tio
n

s-

D
N

S
A

 

#
 Itera

tio
n

s-

D
N

S
A

+ 

%Changes in 

the Graph 
1.00 0.87 0.77 0.63 0.62 

# Iterations- 

NSA 
0.87 1.00 0.94 0.89 0.88 

# Iterations- 

NSA+ 
0.77 0.94 1.00 0.94 0.93 

# Iterations- 

DNSA 
0.63 0.89 0.94 1.00 1.00 

# Iterations- 

DNSA+ 
0.62 0.88 0.93 1.00 1.00 

 

Observation-10: From Table-5, it is clear that the 

order of the algorithms, NSA, NSA+, DNSA and 

DNSA+, to solve the dynamic problem have a 

proportion of 87, 63 and 62 percents, repectively, of 

changes made in the graph model. It shows the 

algorithms NSA and NSA+ use more attemps to solve 

the dynamic problems. The complexity of the 

algorithms are the same (see [41]). In theory, the total 

complexity of the algorithms for the problem is:O(N6) 
 

5. Summary and Conclusion 
This paper followed the research done in [5]. In fact, in 

order to determine to what extent these algorithms can 

be applied in practice, we did the experimental 

experiments and several comparisons in running NSA, 

NSA+, DNSA and DNSA+. To evaluate the 

performance of the algorithms, the dynamic scheduling 

problem of AGVs in the container terminal (the 

problem defined in [34] was considered. Many random 

problems have been generated and solved by both 

DNSA+ and NSA+. The results showed considerable 

improvements in DNSA+, in terms of reducing the 

number of iterations, compared with that of NSA+. 

To conclude Network Simplex Algorithm and its three 

extensions (NSA+, DNSA and DNSA+), in dynamic 

problems, NSA and NSA+ start from scratch and 

reconsider the pre-established schedules. Memory 

management in these two algorithms is an easy task 

since a block of memory is allocated for the whole of 

the graph. Also there is no partitioning in the graph and 

its spanning tree to solve the problem by those 

algorithms. The disadvantage of these algorithms lies 

in taking time to rebuild the graph and putting it into 

the memory. DNSA and DNSA+ repair the solution 

rather than starting from scratch. The main advantage 

of these dynamic algorithms over NSA and NSA+ is the 

performance. On the other hand, DNSA and DNSA+ 

deal with memory management, partitioning of the 

graph and its spanning tree. However, they are costs 

that have to be paid in return for the performance. 
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