
INTERNATIONAL JOURNAL OF

 MARITIME TECHNOLOGY IJMT Vol.11/ Winter 2019 (1-12)

1

Available online at: http://ijmt.ir/browse.php?a_code=A-10-961-1&sid=1&slc_lang=en

Simulation and Evaluation of Network Simplex Algorithm and its

Extensions for Vehicle Scheduling Problems in Ports

Hassan Rashidi

Associate Professor, Faculty of Mathematical Sciences & Computer, Allameh Tabataba’i University;

hrashi@gmail.com

ARTICLE INFO ABSTRACT

Article History:

Received: 10 Oct. 2018

Accepted: 24 Feb. 2019

The Minimum Cost Flow (MCF) problem is a well-known problem in the area

of network optimization. To tackle this problem, Network Simplex Algorithm

(NSA) is the fastest solution method. NSA has three extensions, namely

Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex

Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+).

The objectives of the research reported in this paper are to simulate and

investigate the advantages and disadvantages of NSA compared with those of

the three extensions in practical situations. To perform the evaluation, an

application of these algorithms to scheduling problem of automated guided

vehicles in container terminal is used. In the experiments, the number of

iterations, CPU-time required to solve problems, overheads and complexity are

considered.

Keywords:

Network Simplex Algorithm

Dynamic Network Simplex

Algorithm

Optimization Methods

Dynamic Scheduling

Container Terminals

1. Introduction
One of the most well-known problem in the area of

network optimization is the Minimum Cost Flow

(MCF) problem. The problem is to send flow from a set

of supply nodes, through the arcs of a network, to a set

of demand nodes, at minimum total cost, and without

violating the lower and upper bounds on flows through

the arcs (see [1, 2, 3]). The MCF problem has numerous

applications in scheduling, transportation, logistics,

and telecommunication.

One of the fastest algorithms to solve the MCF problem

is Network Simplex Algorithm (NSA). This algorithm

is an adaptation of the bounded variable of traditional

primal simplex algorithm in Linear Programming [2],

specifically for the MCF problem. In NSA, the basis is

represented as a rooted spanning tree of the network

graph, in which the arcs represent variables. The

algorithm iterates towards an optimal solution by

exchanging basic and non-basic arcs in the graph. NSA

has three extensions, namely network simplex plus

algorithm (see [4]), dynamic network simplex

algorithm and dynamic network simplex plus algorithm

(see [5]).

To compare the advantages and disadvantages of those

algorithms, we choose one of the challenging problems

in transportation area. The problem is to schedule a

number of Automated Guided Vehicles (AGVs) to

transport container jobs inside the terminal statically

and dynamically. In the static problem, where there is

no change in the situation whereas in dynamic ones, the

problem changes over time. The components that are

relevant to the problem include quay cranes, container

storage areas, and a road network [6]. The

transportation requirement in a port is described by a

set of jobs, where each job is characterized by the

source location of a container, the target location and

the time of its picking up or dropping-off on the quay-

side by the quay crane. Given a number of AGVs and

their availability, the task is to schedule the AGVs to

meet the transportation requirements.

In order to determine to what extent NSA and its

extensions can be applied in practice, this paper

followed the research done in [5]. The structure of the

remaining parts is as follows: Next section is a brief

description of the related works over algorithms and

problems. Section 3 is a description of the MCF

problem in container terminals. Section 4 presents the

experimental results in this research. The final section

is considered for the summary and conclusion.

2. Related Works
The network simplex algorithm maintains a feasible

spanning tree structure at each iteration and

successfully transforms it into an improved spanning

tree structure until it becomes optimal. Figure 1 shows

the pseudo code of Network Simplex Algorithm and its

extensions. At the beginning of the algorithm when the

software made a MCF model, an initial feasible

solution is generated by the procedure Generate-Initial

BFS in the Step 01’. The operation of this procedure

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 1 / 12

http://ijmt.ir/browse.php?a_code=A-10-961-1&sid=1&slc_lang=en
http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / Simulation and Evaluation of Network Simplex Algorithm and its Extensions for Vehicle Scheduling Problems in Ports

2

was described in [2]. In fact, in this step an initial

feasible spanning tree solution (T0, L0, U0) is created.

In dynamic problems, the Reconstruct New BFS,’ Step

02’, is executed. When S (as the dynamic stage) is zero,

the procedure Generate Initial BFS is called.

Otherwise, the Reconstruct New BFS procedure repairs

the current solution and spanning tree at time t; (Tt, Lt,

Ut) is reconstructed (See [5] for more detail). The main

body of the algorithms, NSA and DNSA, are the same.

Sis Stage for the dynamic problem and is increased by

the dynamic algorithms for each problem. SODN is a

set of nodes that have to be removed from the model.

SOIN is a set of nodes that have to be put into the new

model. The ‘Step 1’ in the algorithm selects an entering

arc, which is appended to the spanning tree. The ‘Step

2’ determines the leaving arc, which must be removed

from the spanning tree. The ‘Step 3’ makes pivoting

and exchanges the entering and leaving arc. The

operation of the main body was described in [4] and

[2].

Figure 1. The pseudo code of the Network Simplex Algorithm

and its extensions

2.1. The Algorithms NSA and NSA+

The ‘Step 1’of the algorithms (see Figure 1) is certainly

an important step in the Network Simplex Algorithm

(NSA) since the total computational effort to solve a

problem heavily depends on its choice. This step is

called pricing scheme which does two things. It checks

whether the optimality conditions for the non-basic

arcs are satisfied, and if not it selects a violated arc to

enter the spanning tree structure. The selected arc has a

potential of improving the current solution. According

to the theory [7], NSA terminates in a finite number of

iterations regardless of which profitable candidate is

chosen if degeneracy is treated properly. The most

well-known schemes in NSA are the steepest edge

scheme [8], the Mulvey’s list [9], the block pricing

scheme [1], the BBG Queue pricing scheme [10], the

clustering technique [11], the multiple pricing schemes

[12], the general pricing scheme [13]. In this paper we

present a new pricing scheme, which significantly

reduces the CPU-time required to tackle MCF model.

Rashidi and Tsang (2012) develop an extension for

network simplex algorithm, namely NSA+ [4].

Compared with the standard version of NSA by

Grigoriadis’s blocking scheme [1] and maintaining the

strongly feasible spanning tree [14], NSA+ has three

new features. These features are concerned with the

starting point/block for scanning violated arcs, the

memory technique and the scanning method. The

pricing scheme of NSA+ is designed based on these

features. There are two options to choose the first block

to be scanned; Randomly and Heuristically. Hence,

NSA+ has two extensions: (a) NSA+R: The entering arc

function chooses the first block by Random selection;

(b) NSA+H: The entering arc function chooses the first

block by a Heuristic method and the location of the

largest cost in the graph model.

2.2. The Algorithms DNSA and DNSA+

In many applications of graph algorithms, including

communication networks, graphics, assembly

planning, and scheduling, graphs are subject to discrete

changes, such as additions or deletions of edges or

vertices. In the last decade, there has been a growing

interest in such dynamically changing graphs, and a

whole body of algorithms and data structures for

dynamic graphs have been discovered. In a typical

dynamic graph problem one would like to response to

the changes in the graph that are under-going a

sequence of updates, for instance, insertions and

deletions of edges and vertices. Given their powerful

versatility, it is not surprising that dynamic algorithms

and dynamic data structures are often more difficult to

design and analyze than their static counterparts. The

goal of DNSA is to update efficiently the solution of a

problem after dynamic changes, rather than having to

resolve it from scratch-line each time. The Dynamic

Network Simplex Algorithm is based on the Network

Simplex Algorithm. DNSA and DNSA+ are the

dynamic version of NSA and NSA+, respectively.

The dynamic flows networks over time and their

variations are very challenging problems. These types

of problems are arising in various real applications such

as communication networks, air/road traffic control,

and production systems. Some major examples and

further applications of the problems are found in the

references (see [15,16,17,18,19]). Below we survey the

results most closely related to the dynamic network

flows and problems.

Rauch (1992) classified dynamic graph problems

according to the types of updates allowed [20]. A graph

is said to be fully dynamic if the update operations

include unrestricted insertions as well as deletions of

arcs and nodes. A graph is called partially dynamic if

only one type of update, either insertions or deletions,

is allowed. If only insertions are allowed, the graph is

called incremental; if only deletions are allowed it is

called detrimental. DNSA and DNSA+ are fully

dynamic.

Afshari and Taghizadeh (2013) present a dynamic

version of the maximum flow network in the simplest

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 2 / 12

http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / IJMT 2019, Vol. 11; 1:12

3

kinds of interdiction problem [21]. In the problem, they

assume that a positive number is assigned to each arc

in the graph model, which indicates the traversal time

of the flow through the arcs. Moreover, they assume

that an intruder uses a single resource with limited

supply to interrupt the flow of a single commodity

through the arcs in the network graph within a given

limited time period. So the arcs in the graph model is

either vital or non-vital. To formulate the problem, a

mixed integer mathematical programming model is

presented, based on the concept of Temporally

Repeated Flow (TRF). The model is then tackled by a

couple of algorithms [22]: (a) an algorithm based on the

Benders’ decomposition and (b) another based on the

algorithm of Ratliff et al. (1975) for the most vital arcs

[22]. Although they consider a dynamic problem of the

network flow model, the algorithms are not dynamic;

i.e. without having any exploitation the current solution

to respond to the dynamic changes.

Geranis et al. (2012) develop a new Dual Network

Exterior-Point Simplex Algorithm (DNEPSA) for the

Minimum Cost Network Flow Problem (MCNFP) [23].

The algorithm starts from an initial dual feasible tree-

solution and, after a number of iterations, it reaches an

optimal solution by producing a sequence of tree

solutions that can be both dual and primal infeasible. In

following the work, Geranis and Sifaleras (2013)

utilize the dynamic trees data structure in the DNEPSA

algorithm, in order to achieve an improvement of the

amortized complexity per pivot [24]. In extensive

computational studies, DNEPSA performed better than

the classical dual network simplex algorithm. Although

the authors consider a dynamic tree data structure, the

problem does not change over time and the algorithm

is not dynamic.

Shen et al. (2007) [24] and Zheng and Chiu (2011) [25]

worked on a dynamic problem and made simplified

System Optimal Dynamic Traffic Assignment (SO-

DTA) model. The model is based on the concept of

Cell-Transmission Model (CTM), which requires the

links in the graph model to be decomposed into cells in

space and time. Both works gave definitions on traffic

holding in CTM-based on single commodity and single

destination problem. Shen et al. (2007) utilized a

network flow structure and solved a simplified SO-

DTA, thus losing the ability to capture wave

propagation and queue spillback effects. They

suggested a post-processing algorithm to remove traffic

holding from a solution generated by the Linear

Programming, but this algorithm depends on the fact

that the traffic holding does not improve the objective

function value. Zheng and Chiu observed that the

definition on diverge node may lead to a suboptimal

solution [25] and for the diverge links, it may be better

to hold instead of discharge all flow early. So they only

applied the definition of holding-free solution to merge

and ordinary links. Then, they proved that an

augmenting path algorithm produces holding-free

solutions at non-diverge links. Therefore, the

definitions of holding-free in [24] and [25] are too strict

for diverge nodes, the algorithms may lead to

suboptimal and are not appropriate for most dynamic

problems.

Parpalea (2011) presents an approach for solving bi-

criteria minimum cost dynamic flow problem with

continuous flow variables [26]. The approach is to

transform a bi-criteria problem into a parametric one by

making a single parametric linear cost out of the two

initial cost functions. The approach iteratively finds

efficient extreme points in the decision space by

solving a series of minimum parametric cost flow

problems with different objective functions. On each of

the iterations, the flow is augmented along a minimum

path from the supply node to the demand node in the

time-space network avoiding the explicit time

expansion of the network.

Based on the previous research, Parpalea and Ciurea

(2011) represent a generalization of the maximum flow

of minimum cost problem for the case of minimizing

the travelling cost (minimum cost flow) and travelling

time (quickest flow) [27]. On this generalization, the

research states a multi-criteria maximum flow problem

in discrete dynamic networks with two objective

functions. Then a solution method is based on

generating efficient extreme points in the search space

by iteratively solving a series of maximum flow

problems with different single objective functions.

Each time, the dynamic flow is augmented along a

minimum cost path from the supply nodes to the

demand nodes in the time-space network while

avoiding the explicit time expansion of the network.

Parpalea and Ciurea (2011) also study the

generalization of the maximum flow of minimum cost

problem for the case of maximum discrete dynamic

flow of minimum travelling cost and time [27]. Their

approach is very similar to the one used in [26].

Hosseini (2011) introduces a class of dynamic network

flows in which the flow commodity is dynamically

generated at supply nodes and dynamically consumed

at demand nodes [28]. As a basic assumption in this

research, the supply nodes produce the flow according

to time generative functions and the demand nodes

absorb the flow according to time consumption

functions. In the general form and some special cases,

the dynamic problems arise when the capacities and

costs are time varying. This research formulates the

problem as the minimum cost dynamic flow problem

for a pre-specified time horizon. To solve the problems,

some simple and efficient approaches based on the

minimum cost static flow models are developed.

Nasrabadi and Hashemi (2007) present a general

minimum cost dynamic flow problem in a discrete time

model with time-varying transit times, transit costs,

transit capacities, storage costs, and storage capacities

[29]. For this problem, the authors develop an

algorithm, which is a discrete-time version of the

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 3 / 12

http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / Simulation and Evaluation of Network Simplex Algorithm and its Extensions for Vehicle Scheduling Problems in Ports

4

successive shortest path. The time complexity of the

algorithm is O(V nT(n+T)) where V is an upper bound

on the total supply, n is the number of nodes, and T

denotes the given time horizon of the dynamic flow

problem.

Ciurea and Parpalea (2010) present a dynamic solution

method for dynamic minimum flow networks [30]. The

solution method solves the problem for a special

parametric bipartite network [30]. Instead directly

work on the original network, the method uses the

parametric residual network and finds a particular state

of the residual network from which the minimum flow

and the maximum cut for any of the parameter values

are obtained. The research implements a round-robin

algorithm looping over a list of nodes until an entire

pass ends without any change of the flow.

Fonoberova (2010) presents other class of dynamic

flow networks with the cases of nonlinear cost

functions on arcs, multi-commodity flows, and time-

and flow-dependent transactions on arcs of the network

[31]. All parameters of the networks are assumed to be

dependent on time. To formulate the problems, the

classical optimal flow problems on networks are

extended and generalized. The algorithms for solving

such kind of problems are developed by using special

dynamic programming techniques based on the time-

expanded network method together with classical

optimization methods. To solve the problem, the author

proposes an approach based on the reduction of the

dynamic problem to a static problem. This approach is

employed for solving some power systems problems by

using optimal dynamic flow problems.

Sherbenym (2012) propose a new version of the

minimum cost flow problem on a time varying and time

windows [32]. For each vertex in the network, three

integer parameters are considered. These parameters

are waiting cost, vertex capacity and time windows. In

order to obtain dynamic networks, all these parameters

are functions of the time. The objective is to find an

optimal schedule to send a flow from the supply nodes

to its demand nodes so that satisfies a time window

constraint with minimum cost and minimum waiting

times at nodes, subject to the constraint that the flow

must arrive at the demand node before a deadline. In

this paper, the algorithm to be developed will search,

successively, shortest paths from the supply node, s, to

the demand node in a dynamic residual network and

then transmit as much as possible flow along the paths

so that satisfies the time window constraint.

Fathabadi (2011) proposes a minimum flow problem

on network flows in which the lower arc capacities in

the graph model vary with time [33]. For a set of time

points, this problem is solved by at most n minimum

flow computations. The solution method is based on

combining of pre-flow-pull algorithm and re-

optimization techniques. The complexity of the

presented algorithm is O(n2m) where m is the number

of arcs in the graph model.

3. Description of the MCF Problem in

Container Terminals
The problem, here, is the same as the problem defined

in [34]. The most important reason for choosing this

problem is that the efficiency of a container terminal is

directly related to the use of the AGVs with full

efficiency (see [7, 35, 36, 37, 38, 39, 40]). The

assumptions used are also the same as the assumptions

in [34]. The MCF associated with the problem is

presented as MCF-AGV model [41]. The MCF-AGV

model was established on a directed graph. Figure 2

demonstrates an example of the problem for two AGVs

and four container jobs. As in the paper mentioned, the

problem was formalized with four different types of

node: a supply node for each AGV (nodes 1 and 2 in

Figure 2), a couple of nodes for each container job

(nodes 3-10 in Figure 2) as transshipment nodes and a

demand node (the node 11 in Figure 2).

The following four types of arc, namely Inward Arcs,

Intermediate Arcs, Outward Arcs and Auxiliary Arcs

with their properties connect the nodes in the graph

model. The Inward Arcs are directed arcs from the each

AGV node to the each Job-Input node. The

Intermediate Arcs are directed arcs from the each Job-

Output node to the others Job-Input node. The Outward

Arcs are directed arcs from the each Job-Output node

and the each AGV node to the SINK. The Auxiliary

Arcs are directed arcs from every Job-Input node to its

Job-Output node. For more details on the nodes and

arcs refer to [41].

Figure 2. An example of the MCF-AGV model of two AGVs

and four container jobs

Suppose that for some values of the arc costs in the

model, the solution paths are 1→3→4→9→10→11

and 2→5→6→7→8→11. This states that AGV 1 is

assigned to serve container jobs 1 and 4, and AGV 2

is assigned to serve container jobs 2 and 3

respectively.

4. Simulation Results and Comparisons
We implemented the simulation software in Borland

C++Builder, running on Genuine Intel 3.081Ghz

Processor. Figure 3 shows the main screenshot of the

software. It shows a single vessel, four Quay Cranes

(QCs), one Rubber Tyred Gantry Crane (RTGC) in

each block of the Storage Area and several AGVs. The

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 4 / 12

http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / IJMT 2019, Vol. 11; 1:12

5

figure also shows the main menu as well as several

buttons including ‘Port’, ‘Route’, ‘Containers’,

‘Vehicles’ and ‘Process’. These buttons have been

shown under the main menu and designed as hotkeys

to facilitate the software execution. Some important

features of the software are described briefly as follows

(for more detail see [42]):

 The user can define a few ports, a

number of blocks in the yard, a number of

working positions or cranes in the berth and a

number of Automated Guided Vehicles in each

port. The ‘port’ button activates this feature.

 A facility to generate a random

distance between every two points in the yard

or berth has been considered. The user can

change the distance. The ‘route’ button

activates this feature.

 At the beginning of the process, the

start location of each vehicle may be any point

of the port. The user can define or change the

ready time of the vehicles at the start location

and the location as well.

 A Job Generator was designed and

implemented in the software. For static and

dynamic fashion, a few container jobs are

generated to transport from their source to their

destination. Either the source or destination of

each job is the quayside, which can be chosen

randomly by the Job Generator. The initial

time of the operation and the time window for

the cranes and vehicles are defined by the user.

The user can monitor some indices to measure

the efficiency of the model and algorithm. The

waiting or delay time for every job, the number

of jobs and the total travelling and waiting

times for every vehicle, are calculated in the

static and dynamic problems.

Figure 3. The main screenshot of the simulation software

4.1 Memory Management of the Simulation

Software

Given N jobs and M AGVs in the problem, there are

M+2×N+1 nodes and M+M×N+N×(N-1)+2×N arcs in

the MCF-AGV model [41]. The challenge, here, is to

control them correctly. The memory management

routine allocates the memory based on the Maximum

Number of Jobs. This parameter is determined by the

user and here is represented as MNJ. Table-1 shows a

memory map of the allocated space. As shown in the

table, there were four different types of arc in the MCF-

AGV model: Inward Arcs, Outward Arcs, Auxiliary

Arcs, and Intermediate Arcs (see Figure 2).

Additionally, the Artificial Arcs are needed to generate

an initial Basic Feasible Solution [2]. Two blocks of the

memory are allocated for these arcs and two pointers

are used to access them; the first one is for arcs in the

MCF-AGV model and the second one is for the

Artificial Arcs. In order to address a certain type of arc,

it is necessary to have an offset. The offset is the

difference in the address from the beginning of the

block.

Table 1. Memory allocation for the arcs of the MCF-AGV

model and its algorithm

In the software, a small memory management facility

has been designed, implemented and embedded in the

software. The objectives of this facility are to make

independent software, to get a higher performance and

prevent any missing job (when the Job Generator

generates a job and the memory cannot be allocated).

T
y

p
e o

f A
rc

s

S
p

ec
ifica

tio
n

S
ize

(th
e n

u
m

b
er

o
f a

rc
s)

E
x

a
m

p
le fo

r

2
 A

G
V

s a
n

d

2
 J

o
b

s

A
R

C
in

w
a
rd

Arcs from every

vehicle node to

Job-Input nodes

M×MNJ (1,3);(1,5);(2,3);(2,5)

A
R

C
o
u

tw
a
rd

Arcs from every

vehicle node to the

Sink

M (1,7);(2,7)

Arcs from every

Job-Output node to

the Sink

MNJ (4,7);(6,7)

A
R

C
a
u

x
ilia

ry

Arcs from every

Job-Input node to

its Job-Output

node

MNJ (3,4);(5,6)

A
R

C
in

term
ed

ia
te

Arcs from every

Job-Output node to

other Job-Input

node

MNJ ×

(MNJ –

1)

(4,5);(6,3)

A
R

C
a
rtificia

l

Artificial Arcs to

generate initial

feasible solution

2×MNJ+

M + 1

(1,0);(2,0);

(0,3);(4,0);(0,5);

(6,0);(0,7)

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 5 / 12

http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / Simulation and Evaluation of Network Simplex Algorithm and its Extensions for Vehicle Scheduling Problems in Ports

6

In fact, there are two aspects of memory management

in the software. The first one is relevant to the jobs

whereas the second one refers to the graph model.

There is a buffer for the jobs, which is allocated at the

start of operation. Once a job is fulfilled, a hole will be

created in the buffer and when the Job Generator

generates a job, it puts the job into the first hole. For

the arcs and nodes in the graph model, an Identification

flag has been considered. The Identification flag

associated with each arc identifies whether the arc is in

the Tt set, Lt set, Ut set, or Dt set (see [5]) at time t.

There is the one-to-one mapping between every

location in the Job Buffer and the nodes associated with

the job in the graph model. When a job is fulfilled, the

nodes associated with this job are marked for deletion.

For each node belonging to the fulfilled jobs, the node

and the relevant arcs are removed from the spanning

tree of the graph. In order to make a new spanning tree,

a Remove-Node procedure is used [5]. When a new job

arrives, the relevant nodes (which have been deleted

from the graph model) will be marked for insertion.

The insertion nodes and the arcs associated with the

new jobs are inserted into the spanning tree

consistently. This task is performed by an Insert-Node

procedure, which is presented in [5].

 4.2. Simulation and Evaluation in Static Problems

To simulate and evaluate the performance of the

algorithms, many jobs in static and dynamic fashion

have been generated. In our experiment, it was assumed

that there were fifty AGVs and seven cranes in the port.

Other experimental parameters are the same as in [41].

Their sources, destinations and the distance between

every two points in the port have been chosen

randomly.

Figure 4. Block diagram of the software executed for solving

static problems [43]

We generated 32 static random problems by which

must be solved by the algorithms. Figure 5 shows the

CPU-Time required to solve the problems by NSA,

NSA+H and NSA+R, based on the number of container

jobs in the static problem.

Although NSA+ is faster than NSA [41], it has some

overhead as a cost. In ‘Step 1’ of the algorithm (see

Figure 1), NSA+R chooses an entering arc from the first

block randomly. NSA+H chooses an entering arc from

the first block by a Heuristic method. This heuristic is

based on the location of the largest cost in the graph

model into which must be searched. In fact, it chooses

the arc with the largest cost. Hence it has some

overheads due to the search needed. Figure 5 shows the

overhead of the algorithms NSA+H and NSA+R

compared with zero for NSA, based on the number of

container jobs in the static problem. The overhead is

determined in the number of high level instructions

needed to solve the problem.

Figure 5. The overhead of NSA+H and NSA+R compared with

that of NSA

Figure 6. A comparison of CPU-Time required solving the

same problems by NSA, NSA+H and NSA+R

In order to calculate the average CPU-Time required to

solve the problems and to compare performance of the

algorithms in this experiment, we introduce the

following terms:

𝑪𝑷𝑼 − 𝑻𝒊
𝑵𝑺𝑨: The CPU-Time required to solve the

problem i by NSA.

𝑪𝑷𝑼 − 𝑻𝒊
𝑵𝑺𝑨+𝑯

:The CPU-Time required to solve the

problem i by NSA+H.

𝑪𝑷𝑼 − 𝑻𝒊
𝑵𝑺𝑨+𝑹

: The CPU-Time required to solve the

problem i by NSA+R.

PIHi: The Percentage of Improvement in CPU-time

required to solve the problem i by NSA+H compared

with that of NSA.

PIRi: The Percentage of Improvement in CPU-time

required to solve the problem i by NSA+R compared

with that of NSA.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 6 / 12

http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / IJMT 2019, Vol. 11; 1:12

7

TPIH: The Total Percentage of Improvement in CPU-

Time required to solve the problems by NSA+H

compared with that of NSA.

TPIR: The Total Percentage of Improvement in CPU-

Time required to solve the problems by NSA+R

compared with that of NSA.

TPIHR: The Total Percentage of Improvement in

CPU-Time required to solve the problems by NSA+H

compared with that of NSA+R.

Wi: The Weight of improvement for the problem i. In

this experiment we consider the number of arcs in the

MCF-AGV model for the weight. Given N jobs and M

AGVs in the problem, the number of arcs is

M+M×N+N×(N-1)+2×N.

Now we calculate the percentage of improvements in

the CPU-Time used for the problem i by the following

equations:

𝑇𝑃𝐼𝐻 =

∑ 𝑊𝑖
32
𝑖=1 × (𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴+𝐻
− 𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴)

∑ 𝑊𝑖
32
𝑖=1

× 100

= 32.99

(1)

𝑇𝑃𝐼𝑅 =
∑ 𝑊𝑖

32
𝑖=1 × (𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴+𝑅
− 𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴)

∑ 𝑊𝑖
32
𝑖=1

× 100

= 21.94

(2)

𝑇𝑃𝐼𝐻𝑅 =
∑ 𝑊𝑖

32
𝑖=1 × (𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴+𝐻
− 𝐶𝑃𝑈𝑇𝑖

𝑁𝑆𝐴+𝑅
)

∑ 𝑊𝑖
32
𝑖=1

× 100 = 14.15

(3)

The percentages of overhead in the number of high

level instructions used to solve the problems by NSA+H,

NSA+R, and NSA are calculated by the similar

expressions. In this comparision, the average overhead

of the algorithms NSA+H and NSA+R are comapred with

that of NSA. Table-2 shows the results of the

comparison between the algorithms in their CPU-Time

and overheads.

Table 2. The results of the comparison between the algorithms

in their CPU-Time and their overhead

CPU-Time Overhead

N
S

A

N
S

A
+

H

N
S

A
+

R

N
S

A

N
S

A
+

H

N
S

A
+

R

NSA 0 -32.99 -21.94 0 14 8

NSA+H 32.99 0 -14.15 -14 0 6

NSA+R 21.94 14.15 0 8 -6 0

Observation-1: NSA+H and NSA+R are 33 and 22

percents, respectively, faster than NSA. NSA+H is 14

percent faster than NSA+R

Observation-2: The overhead of NSA+H and NSA+R

are around 14 and 8 percents, respectively, compared

with that NSA. The overhead of NSA+H is 6 percent

more than NSA+R

The CPU-Time and time complexity of the algorithms

can be examined in the experiments. We did a rgression

on the CPU-Time required in running the algorithms.

Given N as the the number of jobs in the graph model,

we obtained the following equations to estimate the

CPU-Time:

CPU-TimeNSA(N)= 3E-09N3 + 3E-

06N2 - 0.001N

R²=0.991 (4)

CPU-TimeNSA
+H (N)= 6E-09N3 - 9E-

06N2 + 0.005N

R²=0.962 (5)

CPU-TimeNSA
+R (N)= 3E-09N3 - 4E-

07N2 + 0.001N
R²=0.959 (6)

The coefficient R2 in the regression reveals how closely

the values of the estimated curve correspond to the

actual data. Its value is more than 0.95 for the

estimations.

Observation-3: According to the equations (4), (5) and

(6), the complexity of the algorithm , NSA, NSA+H and

NSA+R, are in order 3 of the number of jobs.

The overhead of the algorithms, NSA+H and NSA+Rare

examined in the experiments. We did a rgression on the

CPU-Time required in running the algorithms. Given

N as the the number of jobs in the graph model, we

obtained the following equations to estimate the CPU-

Time:

OVNSA
+H(N)= 0.004N2+0.366N R²=0.999 (7)

OVNSA
+R(N)= 0.002N2+0.264N R²=0.999 (8)

Observation-4: According to the equations (7) and (8),

the overhead of NSA+H and NSA+R are in order 2 of the

number of jobs.

Note that for any prediction the equation for the CPU-

Time in practice depends on other factors, such as the

speed of processor, active programs when the problem

is being solved in multi-task operating systems, and so

on. Our program has been run on a Windows XP

computer with a Genuine Intel 3.081Ghz Processor in

the normal situation.

The performnce of running the two algorithms has been

analyzed statistically. We tested the nullhypothesis that

the means produced by the two algorithms

werestatistically indifferent (α = 5%). Table-3 provides

the test’s resultalong with the values of T-distribution

for a particular degree offreedom. Since we cared if the

change (the difference between thetwo means) was

positive or negative, ‘One-tail’ test was chosen.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 7 / 12

http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / Simulation and Evaluation of Network Simplex Algorithm and its Extensions for Vehicle Scheduling Problems in Ports

8

Table 3. The statistical test over the results of the

comparison in static aspect

CPU-Time Overhead

N
S

A
+

H
 v

s. N
S

A

N
S

A
+

R
 v

s. N
S

A

N
S

A
+

H
 v

s.N
S

A

N
S

A
+

R
 v

s. N
S

A

Observations 32 32 32 32

T-Test (Paired

Two Sample

For Means)

-4.11 -3.36 46.1 25.3

Degree of

Freedom
31 31 31 31

Critical T-

Value
1.69 1.69 1.69 1.69

Observation-5: Table-3 shows that although NSA+H

and NSA+R statistically ate better than NSA, the

overhead of these algorithms are significant comapred

with that of NSA.

4.3 Simulation and Evaluation in Dynamic

Problems

The problem defined in [34] is dynamic. In reality, the

dynamic problem arises when several new jobs are

arrived, the fulfilled jobs are removed and the links or

junctions in the port layout are blocked. For the arriving

jobs, the Job Generator has to generate a few new jobs,

when it finds out any crane is in idle state. The

fullfilling jobs must be removed from the graph model

by the software. When the links or junctions in the port

layout are blocked, the software must make the changes

in distances between points in the source and

destination of the jobs.

The architecture of the simulation software for running

NSA and NSA+ is demonstrated in Figure 7. At the start

of the process, the Job Generator generates a few jobs

for each crane. These jobs will be appended to the

remaining jobs, which are empty at the beginning. The

remaining jobs are used to make up a MCF-AGV

model. Then the model will be tackled by NSA+. The

output of this algorithm is a few job sequences for the

vehicles. Based on these sequences the software will

prepare a job list for each vehicle.

Figure 7. Block diagram of the simulation software and

algorithm NSA and NSA+ for solving dynamic problems [43]

At the beginning, based on the solution to the problem

at the current stage, a job is assigned to each vehicle

and crane. During the simulation, handling of the jobs

by the cranes and vehicles are executed in parallel.

Briefly, the software does two tasks. The first task is

related to updating the status of the vehicles and cranes

whereas the second one takes influence from any

change in the problem or any idle crane. The second

task refers to any change in the problem or status of the

cranes. In the both cases, a new MCF-AGV model will

be made by the remaining jobs (except the current job

for every vehicle) and the new jobs (if there are any).

The new model will be tackled by the algorithms from

scratch. Then, the new solution will be used for

updating the list of jobs for every vehicle.

The main architecture of the simulation software for

running the algorithms is demonstrated in Figure 8. At

the start of the process, a few jobs are generated for

each crane and the memory for the jobs and graph are

allocated. Then, the MCF-AGV model is made and

tackled by the algorithms. The output of this algorithm

is a few job sequences for the vehicles. Based on these

sequences, the software will prepare a job list for each

vehicle. While the time is being progressed, the

vehicles and cranes are carrying and handling the

containers.

As it is shown in the figure, every event is recorded in

order to be processed later. The events include

modification of the vehicle’s position, the fulfilled jobs

and new jobs, and any change in the distance table. A

hole will be created in the Job Buffer when a job is

fulfilled [42]. After the Job Generator generates a job,

it puts the job into a hole of the buffer. The software

marks the nodes and arcs associated with the fulfilled

and new jobs. The most important events that affect the

spanning tree are the fulfilled and new jobs. The

fulfilled jobs are removed from the list of vehicles and

model whereas the new jobs are appended to remaining

jobs and inserted into the model. Note that any change

in the problem, without any fulfilled or new job, does

not affect the spanning tree. In this case, only the body

of the algorithm is executed and finds out the optimal

solution.

Figure 8. Block diagram of the simulation software for

solving dynamic problems [43]

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 8 / 12

http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / IJMT 2019, Vol. 11; 1:12

9

The software processes the recorded events and

updates the MCF-AGV model. After removing the

nodes and arcs (associated with the fulfilled jobs) from

the model and omitting the jobs from the vehicle’s lists,

a new spanning tree is made. Next, the nodes and arcs

associated with the new jobs are put into the new model

and then the spanning tree is repaired. These jobs are

assigned to one or more vehicles, randomly. These two

tasks are made by Reconstruct New BFS. After

repairing the spanning tree, the main body of the

algorithm is executed and it finds out the optimal

solution. Note that these tasks are not pre-emptive, i.e.

when a task starts execution on the processor it finishes

to its completion.

Figure 9 shows the number of jobs arrived, the number

of jobs fulfilled and the number of jobs remained in

each stage of the dynamic problems. The relation

between these numbers of jobs is as according to the

equation (9):

 #𝐽𝑜𝑏𝑠𝑅𝑒𝑚𝑎𝑖𝑛𝑒𝑑 (𝑆) =

#𝐽𝑜𝑏𝑠𝑅𝑎𝑚𝑖𝑛𝑒𝑑(𝑆 − 1)
+ #𝐽𝑜𝑏𝑠𝐴𝑟𝑟𝑖𝑣𝑒𝑑(𝑆)
− #𝐽𝑜𝑏𝑠𝐹𝑢𝑙𝑙𝑓𝑖𝑙𝑙𝑒𝑑(𝑆)

(9)

Figure 9. The number of jobs arrived, fullfilled and remained

in the dynamic problems

Figure 10 shows the percentages of changes made in

the graph model, due to the number of jobs arrived and

the number of jobs fulfilled in each stage of the

dynamic problems. The values in the figure are

calculated based on the number of nodes and arcs in the

graph model for insertion and deletion, according to the

number of jobs arrived and fulfilled at each stage. The

arcs and nodes for jobs arrived (fulfilled) must be

inserted (deleted) into (from) the graph model. The

number of nodes and arcs are calculated according to

the simple equations like ones shown in Figure 2.

Given #ChIns(S) as the value of changes due to

insertion some nodes with their arcs, and #ChDel(S) as

the value of changes due to deletion some nodes with

their arcs at each stage, the percentage of changes in the

graph is calculated according to equation (10):

𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝐼𝑛𝐺𝑟𝑎𝑝ℎ𝑀𝑜𝑑𝑒𝑙 (𝑆) =

|
#𝐶ℎ𝐼𝑛𝑠(𝑆) + #𝐶ℎ𝐷𝑒𝑙(𝑆) − (#𝐶ℎ𝐼𝑛𝑠(𝑆 − 1) + #𝐶ℎ𝐷𝑒𝑙(𝑆 − 1))

#𝐶ℎ𝐼𝑛𝑠(𝑆 − 1) + #𝐶ℎ𝐷𝑒𝑙(𝑆 − 1))

∗ 100 | (10)

Figure 10. The percentages of changes in the graph model of

the dynamic problems

It was very difficult to isolate the CPU-Times required

to tackle the problems by the algorithms and the CPU-

Time required for memory management. Moreover, the

CPU-Time required to solve the problem is too much

small and is not convenient for the comparision. Hence,

the number of iterations is considered as an indicator to

compare the algorithms. The number of iterations

required to solve the problems are drawn in Figure 11.

Figure 11. The number of iterations of the algorithms for

solving the dynamic problems
From Figure 11, it is clear that the number of iterations

are improved when we dynamic algorithm DNSA and

DNSA+ compared with that of NSA and NSA+. Note

that since NSA+H perform better than NSA+R (see

Observation-2), we use only NSA+H in this

experiments. The percentage of improvement, in

reduction of the number of iterations, is calculated by

the following terms and equation:

NSAS: The number of iterations in NSA for the

dynamic problem at stage S.

𝑵𝑺𝑨𝑺
+ : The number of iterations in NSA+ for the

dynamic problem at stage S.

DNSAS: The number of iterations in DNSA for the

dynamic problem at stage S.

𝑫𝑵𝑺𝑨𝑺
+: The number of iterations in DNSA+ for the

dynamic problem at stage S.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 9 / 12

http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / Simulation and Evaluation of Network Simplex Algorithm and its Extensions for Vehicle Scheduling Problems in Ports

10

𝐓𝐏𝐑𝑵𝑺𝑨+
𝑵𝑺𝑨 : The Total Percentages of Reduction in the

number of iterations in the experiment.

𝑻𝑷𝑹𝑫𝑵𝑺𝑨
𝑵𝑺𝑨 : The Total Percentages of Reduction in

the number of iterations in the experiment.

𝑻𝑷𝑹𝑫𝑵𝑺𝑨+
𝑵𝑺𝑨 : The Total Percentages of Reduction in

the number of iterations in the experiment.

TPR𝑁𝑆𝐴+
𝑁𝑆𝐴 =

∑ (𝑁𝑆𝐴𝑆 − 𝑁𝑆𝐴𝑆
+32

𝑆=1)

∑ 𝑁𝑆𝐴𝑆
32
𝑆=1

× 100 = −58.59%

 (10)

Similar equations are used to compare the performance

algorithms in the number of iteration required to solve

the problems. Table-4 shows this comparisions.

Table 4. The percentages of the performace comparisons

between the algorithms

Algorithms NSA NSA+ DNSA DNSA+

NSA 0.00 -58.59 -63.02 -77.49

NSA+ 58.59 0.00 -10.68 -45.63

DNSA 63.02 10.68 0.00 -39.13

DNSA+ 77.49 77.49 39.13 0.00

From this table, we can obtaine the following

observations:

Observation-6: The performace of DNSA+, DNSA

and NSA+ are around 77.5, 63 and 60 percents better

than that of NSA, respectively.

Observation-7: The performace of DNSA+ and DNSA

are around 45.6 and 10.60 percent faster than that of

NSA+, respectively.

Observation-8: Since the major process of the

algorithms is performed in the body and the operations

of the body are identical [42], the CPU-time required to

solve the problems is also decreased practically.

The number of iterations of running the two algorithms,

DNSA+ and NSA+, has been analysed statistically. We

tested the null hypothesis that the means produced by

the two algorithms were statistically indifferent

(α=5%). Then, we got the following observation:

Observation-9: The Paired T-test determines the two

means are significantly different at a ninety-five

percent degree of confidence since the test’s result is in

the reject region.

It is seemed that there is strong correlation between the

percentgaes made on the graph model and thenumber

of iterations required to solve the problem. So, we

decided to calcualte the correlation between them.

Table-5 shows the result of this experiment.

Table 5. The correlation between the perentages of changes in

the graph and the algorithms

%
C

h
a

n
g

es-in
 th

e

G
ra

p
h

#
 Itera

tio
n

s- N
S

A

#
 Itera

tio
n

s-N
S

A
+

#
 Itera

tio
n

s-

D
N

S
A

#
 Itera

tio
n

s-

D
N

S
A

+

%Changes in

the Graph
1.00 0.87 0.77 0.63 0.62

Iterations-

NSA
0.87 1.00 0.94 0.89 0.88

Iterations-

NSA+
0.77 0.94 1.00 0.94 0.93

Iterations-

DNSA
0.63 0.89 0.94 1.00 1.00

Iterations-

DNSA+
0.62 0.88 0.93 1.00 1.00

Observation-10: From Table-5, it is clear that the

order of the algorithms, NSA, NSA+, DNSA and

DNSA+, to solve the dynamic problem have a

proportion of 87, 63 and 62 percents, repectively, of

changes made in the graph model. It shows the

algorithms NSA and NSA+ use more attemps to solve

the dynamic problems. The complexity of the

algorithms are the same (see [41]). In theory, the total

complexity of the algorithms for the problem is:O(N6)

5. Summary and Conclusion
This paper followed the research done in [5]. In fact, in

order to determine to what extent these algorithms can

be applied in practice, we did the experimental

experiments and several comparisons in running NSA,

NSA+, DNSA and DNSA+. To evaluate the

performance of the algorithms, the dynamic scheduling

problem of AGVs in the container terminal (the

problem defined in [34] was considered. Many random

problems have been generated and solved by both

DNSA+ and NSA+. The results showed considerable

improvements in DNSA+, in terms of reducing the

number of iterations, compared with that of NSA+.

To conclude Network Simplex Algorithm and its three

extensions (NSA+, DNSA and DNSA+), in dynamic

problems, NSA and NSA+ start from scratch and

reconsider the pre-established schedules. Memory

management in these two algorithms is an easy task

since a block of memory is allocated for the whole of

the graph. Also there is no partitioning in the graph and

its spanning tree to solve the problem by those

algorithms. The disadvantage of these algorithms lies

in taking time to rebuild the graph and putting it into

the memory. DNSA and DNSA+ repair the solution

rather than starting from scratch. The main advantage

of these dynamic algorithms over NSA and NSA+ is the

performance. On the other hand, DNSA and DNSA+

deal with memory management, partitioning of the

graph and its spanning tree. However, they are costs

that have to be paid in return for the performance.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 10 / 12

http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / IJMT 2019, Vol. 11; 1:12

11

6. References
1- Grigoriadis, M. (1986). An Efficient Implementation

of the Network Simplex Method. Mathematical

Programming Study, 26, 83-111.

2- Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network

lows: Theory, Algorithms and Applications. Prentice

Hall.

3- Kelly, D., & ONeill, G. (1993). The Minimum Cost

Flow Problem and The Network Simplex Solution

Method (Master degree dissertation).University

College, Dublin.

4- Rashidi, H., & Tsang, E. (2011). A Complete and an

Incomplete Algorithm for Automated Guided Vehicle

Scheduling in Container Terminals. Journal of

Computers and Mathematics with Applications, 61,

630-641. doi:10.1016/j.camwa.2010.12.009.

5- Rashidi, H. (2014). A Dynamic Version for the

Network Simplex Algorithm. Journal of Applied Soft

Computing, 24, 414-422.

doi:10.1016/j.asoc.2014.07.017.

6- Parpalea, M., & Ciurea, E. (2011). Maximum Flow

of Minimum Bi-Criteria Cost in Dynamic Networks.

Recent researches in computer science, 118-123.

7- Wook, B., & Hwan, K. (2000). A pooled dispatching

strategy for automated guided vehicles in port

container terminals. International Journal of

Management Science, 6(2), 47-60.

8- Goldberg, A., & Kennedy, R. (1993). An efficient

cost scaling algorithm for the assignment

problem.Technical Report, Stanford University.

9- Mulvey, J. (1978). Pivot Strategies for Primal

Simplex Network Codes. Association for Computing

Machinery Journal, 25, 266-270.

doi:10.1145/322063.322070.

10- Bradley, G., Brown, G., & Graves, G. (1977).

Design and Implementation of Large Scale Primal

Transshipment Algorithms. Management Science, 24,

1-38. doi:10.1287/mnsc.24.1.1.

11- Eppstein, D. (1999). Clustering for faster network

simplex pivots. In Proceedings of the 5th ACM-SIAM

Symposium, Discrete Algorithms, 160-166.

12- Lobel, A. (2000). A Network Simplex

Implementation. Technical Report, Konrad-Zuse-

Zentrumfur Informations technik Berlin (ZIB).

13- Maros, I. (2003). A General Pricing Scheme for the

Simplex Method. Technical Report, London,

Department of Computing, Imperial College.

14- Cunningham, W. (1979). Theoretical properties of

the network simplex method. Mathematics of

Operations research, 4(2), 196-208.

doi:10.1287/moor.4.2.196.

15- Aronson, J. (1989). A Survey of Dynamic Network

Flows. Annal of Operation research, 20, 1-66.

doi:10.1007/BF02216922.

16- Skutella, M. (2009). An Introduction to Network

Flows Over Time. Research Trends in Combinatorial

Optimization, Berlin: Springer.

17- Powell, W., Jaillet, P., & Odoni, A. (1995).

Stochastic and Dynamic Networks and Routing.

Handbooks in Operations Research and Management

Science (pp. 141-295). Amsterdam: North-Holland.

18- Hoppe, B. (1995). Efficient Dynamic Network

Flow Algorithms (Doctoral dissertation). Cornell

University, New York.

19- Fonoberova, M., & Lozovanu, D. (2007). Optimal

Dynamic Flows in Networks and Applications. The

International Symposium the Issues of Calculation

Optimization, Communications.Crimea, Ukraine, pp.

292-293.

20- Rauch, M. (1992). Fully Dynamic Graph

Algorithms and Their Data Structures (Doctoral

dissertation).Princeton University, New Jersey.

21- Afshari Rad, M., & Taghizadeh Kakhki, H. (2013).

Maximum Dynamic Network Flow Interdiction

Problem: New Formulation and Solution Procedures

Original Research Article. Computers & Industrial

Engineering, 65(4), 531-536.

doi:10.1016/j.cie.2013.04.014.

22- Ratliff, H., Sicilia, G., & Lubore, S. (1975). Finding

the n most vital links in flow networks. Management

Science, 21, 531-539. doi:10.1287/mnsc.21.5.531.

23- Geranis, G., Paparrizos, K., & Sifaleras, A. (2012).

On a Dual Network Exterior Point Simplex Type

Algorithm and Its Computational Behavior. Operations

Research, 46, 211-234. doi:10.1051/ro/2012015.

24- Shen, W., Nie, Y., & Zhang, H. (2007). A Dynamic

Network Simplex Method for Designing Emergency

Evacuation Plans. Transportation Research Record,

20(22), 83-93.

25- Zheng, H., & Chiu, Y. (2011). A Network Flow

Algorithm for the Cell-Based Single-Destination

System Optimal Dynamic Traffic Assignment

Problem. Transportation Science, 45(1), 121-137.

doi:10.1287/trsc.1100.0343.

26- Parpalea, M. (2011). A Parametric Approach to the

Bi-criteria Minimum Cost Dynamic Flow Problem.

Open Journal of Discrete Mathematics, 1(3), 116-126.

doi:10.4236/ojdm.2011.13015.

27- Parpalea, M., & Ciurea, E. (2011). The Quickest

Maximum Dynamic Flow of Minimum Cost. Journal

of Applied Mathematics and Informatics, 5(3), 266-

274.

28- Hosseini, S. (2010). An Introduction to Dynamic

Generative Networks: Minimum Cost Flow. Applied

Mathematical Modelling, 35(10), 5017-5025.

doi:10.1016/j.apm.2011.04.009.

29- Nasrabadi, E., & Hashemi, S. (2010). Minimum

Cost Time-Varying Network Flow Problems.

Optimization Methods and Software, 25(3), 429-447.

doi:10.1080/10556780903239121.

30- Ciurea, E., & Parpalea, M. (2010). Minimum Flow

in Monotone Parametric Bipartite Networks. NAUN

International Journal of Computers, 4(4), 124-135.

31- Fonoberova, M. (2010). Algorithms for Finding

Optimal Flows in Dynamic Networks. S. Rebennack et

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

 11 / 12

http://ijmt.ir/article-1-647-en.html

Hassan Rashidi / Simulation and Evaluation of Network Simplex Algorithm and its Extensions for Vehicle Scheduling Problems in Ports

12

al. (eds.), Handbook of Power Systems II, Energy

Systems, Springer-Verlag Berlin Heidelberg.
32- El-Sherbenym, N. (2012). A New Class of a

Minimum Cost Flow Problem on a Time Varying and

Time Window. Scientific Research and Impact, 1(3),

18-28.

33- Salehi Fathabadi, H., Khodayifar, S., &

Raayatpanah, M. (2012). Minimum flow Problem on

network flows with time-varying bounds. Applied

Mathematical Modeling, 36(9), 4414-4421.

doi:10.1016/j.apm.2011.11.067.

34- Rashidi, H., & Tsang, E. (2005). Applying the

Extended Network Simplex Algorithm and a Greedy

Search Method to Automated Guided Vehicle

Scheduling. the 2nd Multidisciplinary International

Conference on Scheduling: Theory & Applications

(MISTA). New York, p. 677-693.

35- Grunow, M., Gunther, H., & Lehmann, M. (2004).

Dispatching multi-load AVGs in highly automated

seaport vontainer terminals. OR Spectrum, 26(2), 211-

235. doi:10.1007/s00291-003-0147-1.

36- Murty, K., Jiyin, L., Yat-Wah, W., Zhang, C.,

Maria, C., Tsang, J., & Richard, L. (2002). A Decision

Support System for operations in a container terminal.

Decision Support System, 39, 309-332.

37- Huang, Y., & Hsu, W. (2002). Two Equivalent

Integer Programming Models for Dispatching Vehicles

at a Container Terminal. Report No. 639798, Nan yang

Technological University, School of Computer

Engineering.

38- Cheng, Y., Sen, H., Natarajan, K., Ceo, T., & Tan,

K. (2003). Dispatching Automated Guided Vehicles in

A Container Terminal. Technical Report, National

University of Singapore.

39- Patrick, J., & Wagelmans, P. (2001). Dynamic

Scheduling of Handling Equipment at Automated

Container Terminals. Report No. EI 2001-33, Erasmus

University of Rotterdam, Econometric Institute.

40- Bose, J., Reiners, T., Steenken, D., & Vob, S.

(2000). Vehicle Dispatching at Seaport Container

Terminals Using Evolutionary Algorithms. In

Proceedings of the 33rd Annual Hawaii International

Conference on System Sciences. Hawaii, p. 1-10.

41- Rashidi, H., & Tsang, E. (2011). A Complete and

an Incomplete Algorithm for Automated Guided

Vehicle Scheduling in Container Terminals. Journal of

Computers and Mathematics with Applications, 61,

630-641. doi:10.1016/j.camwa.2010.12.009.

42- Rashidi, H. (2006). Dynamic Scheduling of

Automated Guided Vehicles in Container Terminals

(Doctoral dissertation).University of Essex,

Colchester.

43- Rashidi H., Tsang E. (2016). Vehicle Scheduling in

Port Automation: Advanced Algorithms for Minimum

Cost Flow Problems, Second Edition. CRC Press, New

York.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

m
t.i

r
on

 2
02

5-
07

-0
2

]

Powered by TCPDF (www.tcpdf.org)

 12 / 12

http://ijmt.ir/article-1-647-en.html
http://www.tcpdf.org

