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 Internal corrosion poses a significant risk to offshore pipeline operations. This study 

aims to utilize a combination of the Finite Element Method (FEM) and Latin Hypercube 

Sampling (LHS) to create a database of structural response data for corroded pipelines 

experiencing longitudinally interacting internal corrosion defects under internal and 

external pressure loading. The database includes input data such as pipeline geometry 

parameters, pipeline material data, corrosion defect data and loading data. This 

generated database will be utilized to train various advanced machine learning (ML) 

models to develop a predictive model capable of estimating the Maximum von Mises 

Stress occurring in the outermost mesh layer of a mesh ligament within the thickness of 

the corroded pipeline at the defected area. Such predictive capabilities of the ML model 

will enhance the ability to forecast leakage based on pipeline and defect specifications, 

thereby saving costs and time. To achieve the optimal model, various ML algorithms 

have been compared. Finally, to assess the prediction accuracy of the models, results of 

models were compared and evaluated. 
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1. Introduction 
Despite the rapid expansion of renewable energy, oil 

and gas remain the primary sources of energy, and 

offshore pipelines play a crucial role in ensuring a 

reliable energy supply [1]. Corrosion failures in 

offshore pipelines transporting marine oil are becoming 

more frequent. Internal inspections frequently reveal 

substantial corrosion defects. These defects can appear 

in different forms, including deposit corrosion, 

cavitation corrosion, uniform corrosion, and pitting 

corrosion [2]. Among these, internal pitting corrosion, 

mainly caused by carbon dioxide (CO2) and hydrogen 

sulfide (H2S), is identified as a major failure 

mechanism in these pipelines [3]. The depth of 

corrosion defects, especially pitting, has a significant 

impact on the failure pressure of the pipelines [4]. As 

artificial intelligence (AI) progresses rapidly, data-

driven models utilizing machine learning (ML) 

algorithms have shown significant flexibility in 

managing high-dimensional data and intricate 

operating conditions. This capability is especially 

valuable for corrosion prevention and fault diagnosis in 

pipelines and equipment [5]. 

In this regard, numerous efforts have been undertaken 

to evaluate how the corrosion specifications impact the 

reliability and integrity of pipelines. For instance, 

Zhang [6] revealed that corrosion depth significantly 

affects the condition of pipelines during landslide 

events, with a notable impact on stress levels. The 

study identified a complex relationship between 

maximum stress, the position facing the landslide, and 

the location of corrosion around the pipe. Moreover, it 

was demonstrated that the axial placement of corrosion 

in relation to the landslide center affects the distribution 

of stress within the pipeline. Wang et al. [7] provided a 

detailed analysis of theoretical methods used to assess 

the remaining strength of seawater pipelines with 

corrosion defects. The study compared different 

evaluation results across various pipeline parameters 

and corrosion conditions, underscoring the importance 

of these methods for understanding how corrosion 

affects pipeline integrity and lifespan. Yang et al. [8] 

examined the reliability of gas pipelines with corrosion 

defects by employing ASME-B31G revised criteria 

alongside finite element numerical analysis methods. 

The study forecasts the residual strength and lifespan 

of pipelines, offering important insights for 

maintaining the safe and stable operation of natural gas 

pipelines. Cheng [9] highlighted the essential role of 

corrosion modeling in evaluating and forecasting 

pipeline failure and managing related risks. The 

complexity of pipeline corrosion stems from the 

interplay of multiple reactions and processes unique to 

the material and environmental conditions, affecting 

pipeline integrity. In a recent study by the same 

researchers, a new method called "IPA" (Internal 

Pressure Assessment) was introduced to evaluate the 

reliability of offshore pipelines with internal corrosion 

defects [10]. This approach is based on the probabilistic 

Incremental Dynamic Analysis (IDA) method 

developed by Vamvatsikos and Cornell [11]. However, 

the study focused solely on single defects and did not 

address the effects of defect interactions. 

Although the higher risk associated with interacting 

corrosion defects is well recognized, it has not been 

extensively studied, with most research concentrating 

on single defects. Nevertheless, some studies have 

shown that interactions between two defects can affect 

pipelines significantly. Mustaffa et al. [12] introduced 

a method for assessing the reliability of corroded 

pipelines arranged in series, focusing on how length-

scale effects impact pipeline integrity. The study 

emphasized the statistical correlation between 

corrosion features across different segments of the 

pipeline, noting that failure in one section can influence 

adjacent sections. By including a correlation distance 

parameter to address these effects, the research 

demonstrated that accounting for length-scale effects 

leads to a higher probability of failure for corroded 

pipelines compared to analyses that do not consider 

these factors. Kuppusamy et al. [13] examined the 

effect of interacting corrosion defects on the buckling 

strength of pipelines using numerical analysis. The 

study highlights how corrosion characteristics can 

impact the structural integrity of pipelines. Xie et al. 

[14] explored the interaction between corrosion and 

crack defects in pipelines and its effect on fatigue crack 

growth. The study introduced a crack propagation 

method to predict how corrosion influences fatigue 

cracks. Arumugam et al. [15] investigated the burst 

capacity of pipelines with multiple longitudinally 

aligned interacting corrosion defects using FEM. The 

study examined the effects of internal pressure and 

axial compressive stress on pipelines with two or three 

longitudinal internal defects. Moreover, Kuppusamy et 

al. [13] explored how corrosion defects in close 

proximity can interact, leading to a decrease in the 

overall strength of a pipeline, a phenomenon referred 

to as interacting corrosion defects. The study focused 

on the buckling strength of corroded pipelines with 

such interacting defects, offering a numerical analysis 

to better understand the effects on structural stability 

and dynamics in materials science. Zhang et al. [16] 

emphasized the need to consider the interaction 

between adjacent defects when evaluating the failure 

pressure of pipelines with corrosion clusters. The study 

introduced a "center failure location" method that 

focuses on the failure position of corrosion clusters, 

accounting for how adjacent defects affect the failure 

pressure of the central defect. Mondal and Dhar [17] 

highlighted that the proximity of interacting corrosion 

defects significantly affects the burst pressure of 

pipelines. Factors such as pipe wall thickness, 

corrosion depth, and defect locations are crucial in 
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determining the critical spacing for these interactions. 

Abyani and Bahari [18] examined the impact of 

correlations between random variables in adjacent 

components on the time-variant system reliability of 

corroded pipelines. They addressed the challenge of 

non-positive definiteness in the multivariate target 

correlation matrix by applying optimization techniques 

to transform it into a positive definite matrix. In a recent 

study by the authors, internal corrosion was identified 

as a significant threat to offshore pipeline services. The 

study evaluated the reliability of 32” oil and gas 

offshore pipelines with internal corrosion considering 

the interaction of longitudinally aligned defects 

interaction. The findings underscored that multiple 

corrosion defects pose a greater risk to offshore 

pipelines, potentially leading to more severe 

consequences than a single defect alone, highlighting 

the importance of considering defect interactions in 

reliability assessments. 

Identifying and predicting pipeline failures is crucial 

for ensuring pipeline safety and integrity. Numerous 

studies have been carried out to develop techniques for 

estimating failure pressure, residual strength, and the 

probability of failure in corroded pipelines. Ossai et al. 

[19] developed a predictive model for internal pitting 

corrosion in aged non-piggable pipelines, incorporating 

various operational parameters. Using ten years of 

Ultrasonic Thickness Measurement (UTM) data, the 

study analyzed maximum pit depths in relation to 

factors such as temperature, CO2 partial pressure, flow 

rate, pH, sulfate ions, chloride ions, and water cut. The 

model's accuracy was validated with field data from 

twelve pipelines, demonstrating its effectiveness in 

predicting maximum pitting rates. This is essential for 

evaluating the strength and integrity of corroded 

pipelines and ensuring operational safety. Nizamani et 

al. [20] evaluated how corrosion affects the structural 

strength of offshore pipelines, focusing on assessing 

remaining strength to extend pipeline lifespan. The 

study employed Bayesian updating to assess the 

probability of failure and compared results from burst 

tests, including a sensitivity analysis of variables such 

as defect depth and thickness. additionally, Hou et al. 

(2019) performed a non-probabilistic time-varying 

reliability analysis of corroded pipelines, taking into 

account the interaction of various uncertainty variables 

[21]. The research conducted by Cui [22] introduced a 

management system for predicting corrosion failures in 

carbon steel oil and gas pipelines, improving the 

precision and effectiveness of corrosion failure 

predictions and control. This work advances the field 

by providing a model that simplifies the prediction 

process, supporting proactive maintenance for 

underwater oil and gas transport pipelines. Moreover, 

Colindres et al.  [23] investigated the mechanical 

responses of various pipelines subjected to different 

corrosion types, such as external, internal, and 

combined defects. The study demonstrated that finite 

element models provided more accurate predictions of 

failure pressures in corroded pipelines compared to 

traditional methods like B31G and DNV-99. Abyani et 

al. [24] conducted a study on the failure pressure and 

remaining lifespan of corroded offshore pipelines by 

applying various code-based methods, including 

ASME B31G, modified ASME B31G, DNV RP-F101, 

and FFS Level-1.  

In the contemporary era, ML tools are considered as 

decisive elements in costly industries and can play a 

supportive role to significantly improve the prediction 

of pipeline behavior, fostering heightened reliability 

and enabling proactive maintenance strategies. To 

predict the potential failure of corroded pipelines using 

machine learning (ML) tools, it is essential to review 

the application of ML in pipeline integrity management 

systems (PIMS). A comprehensive review of ML 

applications in pipeline integrity management is 

provided by Rachman et al. [5], which is directly 

related to the task. In a similar effort, a review study by 

Soomro et al. highlighted the essential role of ML in 

assessing hydrocarbon fluid integrity in oil and gas 

pipelines, particularly given the severe impacts of 

corrosion. Their study emphasizes that unlike 

conventional deterministic and probabilistic models, 

ML techniques such as ANN, Support Vector Machine 

(SVM), and hybrid models have been better suited to 

handle the complex nature of pipeline degradation. The 

study offers an extensive evaluation of current ML 

methods, datasets, and variables, and proposes future 

directions for researchers and practitioners to improve 

pipeline integrity assessment. [25]. Various facets of 

integrity management, encompassing the utilization of 

ML for predictive analysis and risk assessment in 

pipeline systems, are covered in the review. 

Additionally, a data-driven ML approach for corrosion 

risk assessment is presented by Ossai [26], 

emphasizing the efficacy of ML techniques, such as 

ANN, in forecasting future states of corrosion defect 

depth growth. Valuable insights into the application of 

machine learning specifically for corrosion risk 

assessment, pertinent to the task of predicting failure in 

corroded pipelines, are offered by this study. Data-

driven methods, including ANN and SVM, for 

predicting the burst strength of corroded line pipelines 

subjected to internal pressure are discussed by Cai et al. 

[27]. This research, addresses the prediction of pipeline 

strength, crucial for assessing the failure likelihood of 

corroded pipelines. The study provides a practical 

application of ML tools for predicting the strength of 

corroded pipelines, contributing to failure prediction in 

such systems. ML data analytics based on distributed 

fiber sensors for pipeline feature detection are the focus 

of Zhang et al. [28], aiming to enhance ML algorithms 

for the detection and size prediction of major pipeline 

structural changes and corrosion types. This research is 

relevant as it underscores the use of ML for detecting 

and predicting corrosion types, fundamental for failure 
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prediction in corroded pipelines. In a recent research, 

Abyani et al. employed ML techniques, specifically 

Gaussian Process Regression (GPR) and Multi-Layer 

Perceptron (MLP), to predict the failure pressure of 

corroded offshore pipelines, demonstrating their 

remarkable performance compared to other models, 

while also observing that Maximum Von Mises Stress 

(MVMS) of the pipeline increases with water depth at 

low levels of IP but decreases at high IP levels [29]. 

Although there are other recent researches related to 

ML and pipeline management, such as [30], [31], and 

[32] which have furnished valuable insights and 

methodologies for utilizing ML to address the 

challenges of predicting failure in corroded pipelines. 

This paper has aimed to use generated FEM analysis 

big data to train a ML model in order to predict the 

behavior of corroded pipelines having pipeline and 

defects data including the defect interaction effect. 

Subsequently, pipelines as key conduits transporting 

hydrocarbons transportation play a key role in the oil 

and gas industry. Offshore pipelines particularly, are 

vital due to their vulnerability to corrosive and severe 

conditions. Internal corrosions are the primary cause of 

failure for the offshore pipelines, posing a significant 

threat to their reliability and performance. It’s probable 

that Corrosion defects interact when they are in 

proximity which intensify the damage, making 

pipelines much weaker than those with isolated defects. 

To ensure safe and efficient operations and to predict 

pipeline failures, it is essential to estimate the behavior 

of offshore pipelines affected by interacting defects. 

This research establishes a novel, data-driven 

framework by integrating Latin Hypercube Sampling, 

advanced finite element analysis, and machine learning 

to develop a high-fidelity predictive model for the 

structural response of pipelines with interacting 

corrosion defects. The final outcome is a robust and 

computationally efficient machine learning tool 

capable of accurately forecasting pipeline reliability, 

providing a significant contribution to the field of 

pipeline integrity management that supports proactive 

and informed decision-making. 
 

2. Methodology 
The primary objective of this research is to construct a 

model for forecasting the likelihood of failure and the 

Maximum Von Mises Stress (MVMS) in pipelines 

featuring two interacting, longitudinally aligned 

corrosion flaws. Figure 1 illustrates the proposed 

methodological workflow, with each stage detailed 

below. 

 
Figure 1. Diagram of the suggested approach 

Step 1: FEA results were validated by comparing them 

against data from an experimental study. 

Step 2:  Latin Hypercube Sampling (LHS) technique 

was employed to generate 200 realizations of the 8 

random variables [33], creating an input matrix for the 

subsequent analysis. 

Step 3: For a given realization (i), the MVMS was 

computed using ABAQUS FEA software. The analysis 

began at an internal pressure (IP) of 0 MPa and a 

longitudinal defect spacing (Sl) of 0 mm. 

Step 4: For a fixed defect spacing, the internal pressure 

was incrementally increased. If the pipeline did not fail, 

IP was increased by 1 MPa increments up to 20 MPa. 

Beyond 20 MPa, the increment was refined to 0.1 MPa 

to accurately pinpoint the failure pressure. This 

approach efficiently tracks failure while conserving 

computational resources. 

Step 5: After completing the pressure cycle for a given 

spacing, the effect of defect interaction was assessed by 

increasing the longitudinal spacing by 0.2√𝐷𝑡 This 

process was repeated for each realization until the 

spacing reached the maximum limit of 2√𝐷𝑡. 

Step 6: Steps 3 through 5 were repeated for all 200 

realizations. 

Step 7: The FEA results were compiled into a 

comprehensive dataset. The input features include 

pipeline geometry (OR, t), defect characteristics (d, l, 

Sl), material properties (E, EYS, EUS), and loading 

conditions (IP, EP). The target output variable is the 

MVMS. 

Step 8: Several well-known regression machine 

learning models were selected and trained on the 

generated dataset to predict MVMS based on the input 

parameters. 

Step 9: The performance of the trained models was 

compared and evaluated on a held-out test set. 

Techniques like k-fold cross-validation were used to 

assess accuracy and prevent overfitting. 

Step 10: The best-performing machine learning model 

was identified and presented as the final predictive tool 

for estimating MVMS in pipelines with longitudinally 

aligned corrosion defects. 

 

3. Random Sampling 
Abyani and Bahaari [34] demonstrated that the LHS 

technique effectively evaluates the reliability of 

corroded pipelines while requiring fewer random 

samples than the MCS method. Additionally, TDA 

analysis was applied to investigate how different 

parameters influence the sensitivity of corroded 

pipelines' MVMS, aiding in parameter selection [10]. 

Table 1 outlines the probabilistic properties of the 

random variables obtained through the LHS method 

and specify 95% Confidence Intervals (CI) of each. A 

total of 200 random samples were generated for each 

parameter, with studies by Hosseinzadeh et al. [35] and 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

5-
10

-1
0 

] 

                             4 / 18

http://ijmt.ir/article-1-885-en.html


Soheyl Hosseinzadeh et al. / Machine Learning Models Development to Predict Corroded Pipeline Behavior Considering Defects Interaction 
 

18 

 

Abyani and Bahaari [10] confirming the adequacy of 

this sample size. 

 
Table 1. Statistical attributes of the examined random 

variables 
Paramet

er 

Sig

n 

Dis

t. 

Uni

te 

Mea

n 

CO

V 

95% 

CI 

Referen

ce 

Defect 

Depth 
d N mm 10 0.1 

[8.04, 

11.96] 

[36] 

Defect 
Length 

l N mm 200 0.05 
[180.4, 
219.6] 

[37] 

Pipeline 

Outer 

Radius 
OR N* mm 406.4 0.03 

[382.5

0, 

430.30
] 

[37] 

Pipeline 

Thicknes
s 

t N mm 20 0.05 

[18.04, 

21.96] 
[36] 

External 

Pressure 
EP G** 

MP

a 
0.6 0.03 

[0.564

7, 

0.6353

] 

[38] 

Young’s 

modulus 
E N 

MP
a 

2100
00 

0.05 

[18942

0, 
23058

0] 

[39] 

Engineeri

ng Yield 
Stress 

EY
S 

L*** 
MP
a 

464.5 
0.05
6 

[414.0

3, 
520.77

] 

[36] 

Engineeri
ng 

Ultimate 

Tensile 
Strength 

EU
S 

N 
MP
a 

563.8 0.03 

[530.6
7, 

596.93

] 

[40] 

* Normal 

** Log-Normal 

   

   

***Gamble )max)  

 

 

4. Numerical modeling 
For stress analysis on offshore pipelines corroded by 

interacting defects, a 3D finite element model has been 

generated utilizing ABAQUS 6.14. Within this model, 

a dataset for burst pressure is generated, considering 

variations in pipeline geometry, materials, and defect 

characteristics. Corroded pipe models are created as a 

quarter pipe model according to symmetry rules 

utilizing solid elements and featuring two identical 

defects on the inner surface. The details of the FEM  

model’s properties and its validation is extensively 

covered in earlier research by the authors.[35]. A 

summary of the FEM model development procedure 

for an offshore pipeline suffering from interacting 

corrosion defects is outlined below: 

 

4.1. Defect shapes and configurations 

The simulated corrosion defects represent localized 

metal loss, which encompasses both pitting corrosion 

and general metal loss. To define rational models, 

interaction rules available in the literature were studied 

to estimate suitable longitudinal spacing levels between 

defects. Various interaction rules have been established 

to demonstrate interacting defects, with specific limits 

defined for this purpose. These rules are categorized 

into longitudinal and circumferential types, based on 

the defects' size and position. Both industry standards 

and academic studies contribute interaction rules that 

determine the distance at which defects influence one 

another. Idris et al. [41]  have gathered significant 

interaction rules from existing literature which provide 

the engineering basis for determining the distance at 

which defects influence one another. This review 

categorizes these rules into longitudinal and 

circumferential types, based on the defects' size and 

position. Consequently, this study evaluates the 

interaction of defects arranged longitudinally, as 

depicted in Figure 2. 
 

 
Figure 2. Defects’ geometry and arrangement scheme 

 
As a result, the current research aims to evaluate the 

influence of interaction of defect on pipeline 

performance. Rectangular-shaped defects rounded at 

edges will be aligned along the pipeline length. As a 

quarter model has been modeled due to symmetry 

rules, a single defect was created (see Figure 3). The 

gap between defects will gradually increase from 0 to 

2√𝐷𝑡  , with intervals of 0.2√𝐷𝑡, resulting in 11 

distinct distances for every samples. 
 

 
Figure 3. defect geometry design in Abaqus 

 

4.2. Material properties 

The present paper analyzes a pipeline constructed from 

API-5L-X65 steel, a common material for hydrocarbon 

transport. The material’s behavior is modeled using the 

stress-strain relationship defined by the Ramberg-

Osgood equation (See Eq. (1)) [42]. 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

5-
10

-1
0 

] 

                             5 / 18

http://ijmt.ir/article-1-885-en.html


Soheyl Hosseinzadeh et al. / IJMT 2026, Vol 22 No.1; p.14-31 

 

19 

 

𝜀𝐸 =
𝜎𝐸

𝐸
+ 𝑆0 (

𝜎𝐸

𝜎𝐸𝑌
)

𝑁

 (1) 

 

The true stress is then determined by [43]:  

 

𝜀𝑇 = 𝐿𝑛(1 + 𝜀𝐸) (2) 

𝜎𝑇 = 𝜎𝐸(1 + 𝜀𝐸) (3) 

 

Here, 𝜎𝐸𝑌, 𝜎𝑇 , and 𝜀𝑇 represents the engineering yield 

stress, true stress, and true strain, while 𝑆0 and 𝑁 are 

material-specific constants. For API-5L-X65 steel, 

𝑆0 is set to 0.003 and 𝑁 is set to 22.12 [44]. A full true 

stress–strain curve derived from the mentioned 

equation is shown in Figure 4: 

 

 

Figure 4. API 5L X65 true stress–strain curve 

 

4.3. Boundary conditions and loads 

The pipeline is subjected to internal and external 

pressures on its respective surfaces. IP begins at 0 MPa 

and steadily rises until it meets the failure criteria. 

Additionally, water depth-induced hydrostatic pressure 

is applied to the pipeline. In the study area, a water 

depth of 60 m is assumed (maximum depth in the 

midline area of the Persian Gulf), with seawater density 

considered to be 1020 
𝑘𝑔

𝑚3 [10]. 

The pipeline model, representing a quarter of the 

complete corroded pipeline, is developed based on 

symmetry rules. The longitudinal faces are restricted to 

movement exclusively in the Z and Y directions and 

allowed to rotate solely around the X axis. 

Additionally, the freedom of the pipe section is 

restricted to translate in the X and Y direction and 

rotate around the Z axis. A point positioned in Z=0 and 

X=Y=OR is treated as rigid. Further details of these BC 

are depicted in Figure 5. 

 
Figure 5. Pipeline model load condition and boundary 

condition 

 

4.4. Meshing Structure 

Hexahedral elements, such as Abaqus C3D8, were used 

in this study and also, a mesh sensitivity analysis, 

combined with model validation have been carried out. 

The model was partitioned into three areas: the defect 

area, defect-free area, and transition area (see Figure 6). 

In the defect-free area, a coarser mesh was utilized 

compared to the defect zone to minimize computational 

demands. A transition area was defined too, to ensure a 

smooth integration of the mesh structure utilizing a 

single biased meshing rule (illustrated in Figure 6).  

 
Figure 6.  Meshing model system 
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4.5. Failure criteria 

According to earlier studies [35][10][45][46], this 

research determines that pipeline failure happens when 

the Von Mises stress across the thickness of the 

ligament exceeds the true ultimate strength of the 

element. This method employs a recognized standard 

to evaluate the critical condition and identify failure in 

the model.  

 

4.6. Model Verification 

The model results were validated using an 

experimental data from Benjamin et al. [47], which 

involved an IDTS3 specimen – a pipeline with two 

longitudinally aligned corrosion defects matching the 

current model. The verification process is detailed in 

the authors' recent paper [35]. Model performance was 

evaluated by analyzing the failure pressure as the mesh 

size decreased, with results compared to the 

experimental data. As shown in Table 2, a minimum 

error of 1.39% was observed for mesh sizes smaller 

than one-fifth of the pipeline thickness. 

 
Table 2. The verification model results for different mesh 

layer counts in pipeline thickness 
Number of 

mesh layers 

in thickness 

1 2 3 4 5 6 7 8 

Failure 

Pressure 

(Mpa) 

22.9 22.7 20.8 20.7 20.6 20.6 20.6 20.6 

Error (%) 11.29 10.51 2.34 1.86 1.39 1.39 1.39 1.39 

 
To optimize the model a sensitivity analysis was 

performed to assess the minimum acceptable length for 

the Pipe model. The FEM model consists of 3 parts, the 

length of the defect zone is equal to the defect length 

and the length of part 2 which is a transition part to help 

the meshing algorithm has been selected 10 percent of 

the defect length. Therefore, to obtain the optimum 

length of the model, the length of the 1st part has been 

reduced from 20D to 0.5D and the burst pressure of the 

model has been assessed in each case as shown in Table 

3. Also, to assess the effect of defects longitudinal 

spacing the effect of model length was observed in 

cases where the longitudinal space between defects is 0 

and 250 mm (approximately equal to 2√𝐷𝑡 for a 32” 

pipeline). 

 
Table 3. The failure pressure in various model length 

 

Sl 

(mm) 

L/D 

20 10 5 2.5 1 0.5 

0 20 20 20 20 18.5 14.5 

20.5 20.6 20.6 20.6 20.6 20 17.6 

250 21.25 21.25 21.25 21.25 21.25 21.18 

 

According to the sensitivity analysis results it can be 

concluded that by choosing a length equal to 2.5 times 

of pipe diameter for part 3 which is about 100 mm the 

results are converged. 

 

 

5. ML Algorithms 
In this section, various Artificial Intelligence (AI) 

models have been examined to find the best ML 

method for predicting the MVMS, based on the main 

parameters of pipeline geometry (outer radius and 

thickness), defect geometry (depth, and length), 

loading condition (internal and external pressure), and 

material specification (Ultimate Tensile Strength, 

Yield Stress, and young modulus). 

AI is a branch of computer science aimed at designing 

systems that handle tasks requiring human-like 

cognitive abilities, such as solving problems and 

making decisions. [48]. ML falls under the broader 

category of AI. that deals with algorithms enabling 

computers to learn from data and make predictions 

[49]. Regression is a specific type of ML technique 

used to model relationships between variables when the 

goal is to predict continuous numerical outcomes [50]. 

In continuation,  various regression ML models have 

been assessed to find the best AI model to predict the 

MVMS in corroded pipelines with longitudinal 

interacting defects. Scikit-Learn (sklearn) is utilized to 

create regression ML models [51]. This Python library 

is renowned for its versatility in ML, offering a uniform 

interface for a broad spectrum of tasks. The integrity of 

other Python libraries such as NumPy and pandas, 

makes Scikit-Learn an invaluable resource for 

streamlining the development and deployment of ML 

models across diverse applications.  

In the present study, 5 Extensively employed ML 

models such as Linear Regression (LR), Stochastic 

Gradient Descent (SGD), K-nearest Neighbors (KNN), 

Decision Tree Regression (DTR), and Neural Network 

(NN) have been utilized. 80% of input data has been 

used for training the models. Also, 20% of the data will 

be reserved for the test dataset, while the remaining 

80% will be allocated for training the ML model. The 

test dataset plays a vital role in assessing the model's 

performance. The input features have been transformed 

to have a mean value of 0 and a standard deviation of 

1. This method is a typical preprocessing procedure to 

enhance the data compatibility with ML algorithms, 

particularly those that are influenced by the feature 

scales, like SVM and k-nearest neighbors. 

Standardization has been done to avoid biases related 

to parameter values that can occur when features are on 

different scales. 

 
5.1. Linear Regression (LR) 

Linear regression is a fundamental ML algorithm, that 

establishes a linear model that establishes a connection 

between a dependent variable (the target) and several 

independent variables (predictors) by fitting a linear 

equation [52]. The model seeks to minimize the 

discrepancy between its predictions and the actual 
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values in a training dataset, utilizing the least squares 

method. Once trained, the model can provide forecasts 

for new data. It is a widely applied and easily 

interpretable approach for comprehending and 

forecasting relationships between variables in 

situations where those relationships are linear, although 

it may not excel when dealing with non-linear 

associations. Evaluation metrics like Mean Squared 

Error and R-squared are used to gauge its effectiveness. 

This relationship is represented by a linear equation, 

typically in the form Eq.(4): 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + +𝛽𝑛𝑥𝑛 + 𝜀 
(4)  

 

Where: y is the dependent variable. 𝑥1, 𝑥2, … , 𝑥𝑛 are 

the independent variables.  𝛽0 is the intercept.  𝛽1,
𝛽2, … ,  𝛽𝑛 are the coefficients for each independent 

variable, representing their respective slopes and 𝜀 is 

the error term. 
 

5.2. Stochastic Gradient Descent (SGD) 

Stochastic Gradient Descent (SGD) regression is a 

widely employed optimization algorithm within the 

realm of machine learning and statistical modelling. 

،This model is well-suited for addressing large-scale 

optimization challenges associated with substantial 

training sets, SGD is well known for its simplicity and 

prevalence in stochastic optimization methods [53]. 

The algorithm iteratively refines an objective function 

with precision, rendering it a potent tool for minimizing 

objective functions across various applications [54]. 

Moreover, SGD exhibits an implicit regularization 

mechanism, ensuring that solutions derived through its 

application generalize effectively, regardless of the 

number of parameters involved [55]. 

 

5.3. K-Nearest Neighbors (KNN) 

K-nearest neighbor (KNN) regression represents a 

supervised learning algorithm designed for regression 

tasks. This straightforward method determines the 

output of a new instance by considering the average or 

weighted average of its k-nearest neighbors within the 

feature space. The KNN algorithm is recognized for its 

simplicity and performance that rivals more intricate 

regression techniques[56]. Notably, KNN regression 

can be extended to support interval regression. In this 

approach, a novel method leveraging tolerance 

intervals determines the hyper-parameter K for each 

instance, balancing precision and uncertainty arising 

from limited sample size [57]. Additionally, KNN 

regression finds application in multidimensional query 

processing, exemplified by the k-nearest neighbor 

(kNN) query, which identifies the k-nearest points 

using distance metrics from a given location [58]. In a 

simple case with one feature, the predicted value for a 

test data point would be the average of the target values 

of its 'k' nearest neighbors [59] (Eq. (5)). 

 

𝑦 =
1

𝑘
∑ 𝑦𝑖

𝑘

𝑖=1

 (5) 

 

Where 𝑦 is the predicted target value for the test data 

point. 𝑘 is the number of nearest neighbors. And 𝑦𝑖 is 

the target value of the i-th nearest neighbor. 

 

5.4. Decision Tree Regression (DTR) 

Decision tree regression stands out as a versatile tool 

employed for regression tasks, where the primary 

objective is to predict a continuous value. This 

algorithm, though simple, proves effective and 

applicable to both classification and regression 

problems [60]. Its operational principle involves 

recursively partitioning data into subsets based on input 

feature values and subsequently fitting a simple model 

within each subset. The outcome is a tree-like model 

where the leaves signify predictions. Decision tree 

regression finds extensive application across various 

domains, encompassing sales prediction, stock price 

forecasting, and retail promotion planning [61]. 

decision tree regression models exhibit versatility in 

handling both numerical and categorical data, 

showcasing robustness to outliers owing to their non-

parametric nature [62]. Notably, the resultant model is 

interpretable, offering insights into the significance of 

different features in the prediction process.  

 

5.5. Neural Network (NN) 

Neural network regression emerges as a potent tool for 

modeling and forecasting continuous values. 

Successfully implemented in diverse applications [63]. 

What sets neural networks apart is their capacity to 

capture intricate relationships within data, rendering 

them well-suited for nonlinear regression tasks [64]. 

Additionally, they demonstrate superior prediction 

accuracy compared to traditional regression models 

[65].  

The architecture of a neural network is composed of 

elementary processing units called neurons, which 

perform mathematical functions [66]. Neurons are 

structured into different layers, which generally include 

an input layer, multiple hidden layers, and an output 

layer. [67]. The input layer accepts the initial data, 

which is then handled by the hidden layers before 

reaching the output layer that delivers the final output. 

The weights of the connections between neurons are 

adjusted during training, allowing the network to refine 

its learning based on the data. As the number of hidden 

layers and nodes in a neural network grows, both its 

complexity and processing time increase markedly. 

[68]. Also, Tirumala & Narayanan [69] found that 

when hidden layers have the same number of nodes, 

performance is better than when hidden layers have 

different numbers [69].  In the present study the input 

layer consists of pipeline and defects characteristics 
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and outer layer is the MVMS value analyzed by FEM. 

For instance, a schematic of an NN model including 2 

hidden layers has been depicted in Figure 7. 

 

 
Figure 7.  NN model schematic  

 

6. Model Performance Assessment Methods 
Various metrics are typically employed to assess the 

effectiveness of regression models, offering insights 

into their accuracy, precision, and ability to generalize. 

Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and Coefficient of Determination R-squared 

(R2) are extensively employed metrics for gauging 

model performance [70]. MAE represents the average 

magnitude of errors between predicted and observed 

values, calculated as the absolute mean of the error (Eq. 

(6)) [71].  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑃̂𝑓𝑖 − 𝑃𝑓𝑖|

𝑁

𝑖=1

 (6) 

Conversely, RMSE quantifies the square root of the 

average squared differences between predicted and 

observed values, assigning more significance to larger 

errors (Eq. (7)) [72]. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑃̂𝑓𝑖 − 𝑃𝑓𝑖)2

𝑁

𝑖=1

 (7) 

Moreover, R2 or the coefficient of determination 

indicates the proportion of predictable variance in the 

dependent variable from the independent variable(s) 

(Eq. (8)) [73]. 

𝑅2 = 1 −
∑ (𝑃̂𝑓𝑖 − 𝑃𝑓𝑖)2𝑁

𝑖=1

∑ (𝑃̂𝑓𝑖 − 𝑃̅𝑓𝑖)2𝑁
𝑖=1

 (8) 

where 𝑃̂𝑓𝑖 and 𝑃𝑓𝑖 are the predicted and actual failure 

pressures, respectively, and 𝑃̅𝑓𝑖 is the average value of 

the actual failure pressures and 𝑁 is the number of 

variables. 
 

7. Results and discussion 
 

7.1 LHS-FEM Dataset 

As mentioned before the taking advantages of 

ABAQUS software a FEM model were developed to 

analyze the MVMS value in 121 IP levels (from 1 MPa 

to 20 MPa in increments of 1 MPa and from 20.1 MPa 

to 30 MPa in increments of 0.1 MPa) and 11 spacing 

levels (ranging from 0 to 2.0√𝐷𝑡 in increments of 

0.2√𝐷𝑡) for each of 200 random variables. A sample of 

ABAQUS results has been illustrated in  Figure 8 

illustrating MVMS contours. The results show the 

highest MVMS values has been occurred in the defect 

and defects spacing area. 

 

 
Figure 8.  Example of ABAQUS FEM analysis results 

 

Having these Valuable data, a data set matrix has been 

generated containing 10 input variables including 

Outer Radius (𝑂𝑅), Thickness (𝑡), defect depth (d), 

defect length (𝑙), Engineering Ultimate Strength (𝐸𝑈𝑆), 

Engineering Yield Strength (𝐸𝑌𝑆), Young Module (𝐸), 

longitudinal Spacing (𝑆𝑙), and Internal Pressure (𝐼𝑃) 

and Maximum Von Mises Stress (MVMS) as output 

data which leads to 11 columns and 266,200 rows.  

Figure 9 illustrates the count histograms corresponding 

to each input data. The initial eight data, comprising 

𝑂𝑅, 𝑡, 𝑑, 𝐸𝑃, 𝑙, 𝐸𝑈𝑆, 𝐸𝑌𝑆, and 𝐸, are generated through 

LHS, adhering to a defined distribution. The histogram 

for 𝐼𝑃 similar to 𝑆𝑙  demonstrates a uniform distribution 

when IP<20. However, beyond IP>20, the counts 

increase as the IP interval decreases from 1 to 0.1, but 

a declining trend emerges subsequently due to 

observed failures. 

 

 
Figure 9. Input data histogram 
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7.2 AI Model Development 

The machine learning dataset contains 266,200 

samples, with each sample containing 10 input and one 

output variable. Out of these, 212,960 samples are used 

for training the prediction models, and 53,240 samples 

are used for evaluating the models' performance, 

maintaining an 8:2 ratio. This division supports 

detailed analysis of how the input variables relate to the 

output, leading to the creation of reliable ML models 

for accurate predictions.  

Considering the significance of hyperparameters in 

attaining high-performing models, in this paper, k-fold 

cross-validation techniques were applied to evaluate 

the performance of the proposed model, ensuring its 

resilience and dependability across numerous train-test 

divisions. K-fold cross-validation stands as a widely 

embraced approach for assessing the predictive 

efficacy of regression models [74]. This method entails 

segmenting the dataset into k subsets, utilizing k-1 

subsets for training, and reserving one subset for 

validation, iterating this process k times to ensure 

robustness and guard against overfitting [75]. The 

resulting k-fold cross-validation error estimation serves 

as a crucial metric for evaluating the model's 

generalization capabilities [76], proving especially 

beneficial in data-scarce scenarios by leveraging all 

available data for training and validation purposes [77]. 

Moreover, it serves as a tool for selecting optimal 

hyperparameters, such as λ in regularization techniques 

[78].  

Also, a grid search was utilized to methodically 

investigate hyperparameter combinations aimed at 

optimizing model performance. Grid search is a well-

known hyperparameter optimization technique within 

regression models. Grid search methodology follows 

an exhaustive exploration of a predetermined subset of 

hyperparameter values to pinpoint the combination that 

elicits the finest model performance [79]. Grid search 

is esteemed for its simplicity and broad applicability in 

parameter optimization [80], proving particularly 

advantageous in fine-tuning hyperparameters across a 

spectrum of ML models.   

In the LR model, grid search explores different settings 

of the 'fit_intercept' hyperparameter. The 

"fit_intercept" parameter in linear regression denotes 

the constant factor within the regression formula. It 

permits the regression line to intersect the y-axis at a 

designated position rather than originating from the 

origin. This parameter is crucial for capturing the 

baseline value of the dependent variable when all 

independent variables are set to zero. It constitutes a 

fundamental aspect of the linear regression model, 

enhancing its capability to capture the relationship 

between independent and dependent variables with 

greater flexibility [81] When "fit_intercept" is set to 

True, the linear regression model will estimate an 

intercept, or bias term, along with the coefficients for 

the input features. This intercept represents the value of 

the dependent variable (target) when all input features 

are zero. 

The SGD model has been optimized assessing the loss 

function, maximum iteration (max_iter), alpha and 

epsilon parameters. The loss function represents the 

function to be minimized during the training of the 

SGD model [82]. On the other hand, alpha parameter 

controls the regularization strength in the SGD model. 

It is the coefficient that multiplies the regularization 

term [55]. Furthermore, the epsilon parameter is related 

to the margin of tolerance for the model and it controls 

the width of the epsilon-insensitive tube [83]. Finally, 

the last analyzed hyperparameter (max_iter) sets the 

maximum number of iterations for the solver to 

converge. It specifies the maximum number of 

iterations taken for the solver to converge or reach a 

stopping criterion [84].  

To enhance KNN model performance, the grid search 

explores optimal values for Number of neighbors to 

consider (n_neighbors), The weight function used in 

prediction (weight), and the power parameter (p) for 

the Minkowski distance metric. The weight function 

used in prediction can be 'uniform' (all neighbors have 

equal weight) or 'distance' (weight points by the inverse 

of their distance) (Altay, Ulaş, and Alyamaç 2020). For 

(p = 1), the distance measured is the Manhattan 

distance; for (p = 2), it is the Euclidean distance [85].  

Exploring optimal values for DTR model 

hyperparameters, different configurations for the 

maximum depth of the tree (max_depth), the least 

number of samples needed to divide an internal node 

(min_samples_split), and the smallest number of 

samples required at a leaf node (min_samples_leaf) 

were analyzed. Increasing max_depth allows the tree to 

delve deeper, capturing more intricate relationships 

within the training data. However, this also heightens 

the risk of overfitting, particularly if the tree becomes 

excessively deep and captures noise in the data [86]. 

On the other hand, higher values for min_samples_split 

yield a tree with fewer splits, preventing the model 

from becoming overly tailored to the training data, 

thereby aiding in overfitting control. However, setting 

this parameter too high may lead to underfitting, as the 

tree may fail to capture essential patterns in the data 

[87]. min_samples_leaf, similar to min_samples_split, 

regulates the minimum number of samples at the 

terminal (leaf) nodes. Larger values for 

min_samples_leaf result in more conservative models, 

impeding the creation of small leaf nodes. While this 

helps mitigate overfitting, excessively high values may 

contribute to underfitting [88]. 

The grid search for the NN model probes the best 

values for 3 hyperparameters. First, the optimum 

number of neurons in each hidden layer of the neural 

network is assessed,  second the activation function 

used in each neuron is specified and third the alpha 

parameter is evaluated which is the regularization 
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strength, controlling the penalty on the complexity of 

the neural network [89]. 

The Grid search configurations and results have been 

summarized in Table 3. 

 
Table 4. Grid search configurations and results 

Model Hyperparameters Range Final Value 

LR Fit Intercept [True, False] True 

SGD 

loss 
[squared_loss, huber, 

epsilon_insensitive] 
epsilon_insensitive 

alpha [0.0001, 0.001, 0.01] 0.0001 

epsilon [0.1, 0.01, 0.001] 0.1 

max_iter [1000, 2000, 3000] 1000 

KNN 

n_neighbors [3, 5, 7] 3 

weights ['uniform', 'distance'] distance 

p [1, 2] 2 

DTR 

max_depth  [None, 5, 10, 15] None 

min_samples_split [2, 5, 10] 5 

min_samples_leaf  [1, 2, 4] 1 

NN 

hidden_layer_sizes [(100,), (50, 50), (25, 

25, 25)] 

 (50, 50) 

activation ['relu', 'tanh'] tanh 

alpha [0.0001, 0.001, 0.01] 0.01 

 
To ensure the robustness and reproducibility of the 

machine learning models developed in this study, key 

specifications were rigorously implemented 

throughout the modeling process. The models were 

trained using an 80/20 train/test split, with a fixed 

random seed (random_state=42) applied to all 

stochastic processes to guarantee consistent results. 

Hyperparameter tuning was performed using 5-fold 

cross-validation on the training set only. The neural 

network model utilized the Adam solver for 

optimization. Crucially, feature scaling was fitted 

exclusively on the training data to prevent any data 

leakage, and the same scaling parameters were then 

applied to the test set. These measures ensured that the 

reported performance metrics provide an unbiased 

estimate of the models' generalization capability. 

 
 

7.3 Models Evaluation 

The validity of the ML models has been evaluated by 

comparing the model results vs the MVMS values 

calculated by FEM, the results are derived from an 

analysis of the test dataset, constituting 20% of the total 

data. The comparison among model actual and 

predicted MVMS value (MPa) are illustrated in the 

Figure 10 to Figure 14. As can be seen in Figure 10 and 

Figure 11  ,The LR and SGD models demonstrates loos 

fit in the lower MVMS values. Notably, the KNN 

algorithm outperforms these methods and has a better 

performance in MVMS values greater than 50 MPa. 

DTR and NN (Figure 13 and Figure 14) models exhibit 

good performance and almost mirror FEM values while 

the NN model produces even less noise data in 

comparison with the DTR model. 

 

 
Figure 10. LR Model Prediction Accuracy 

 

 
Figure 11. SGD Model Prediction Accuracy 

 

 
Figure 12. KNN Model Prediction Accuracy 

 

 
Figure 13. DTR Model Prediction Accuracy 

 

 
Figure 14.  NN Model Prediction Accuracy 
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In order to have a better insight into model 

performances, Evaluation metrics such as 𝑅𝑀𝑆𝐸, 

𝑀𝐴𝐸, and 𝑅2 are explored and compared in Figure 15, 

offering a comprehensive insight into the model's 

accuracy and predictive capabilities. The results show 

that KNN, DTR, and NN models present metrics lower 

than 10 for a data range of 0 to 600 which demonstrates 

a satisfying fit. The DTR and NN have presented the 

best performances according to metrics and NN has an 

RMSE of 15% lower than DTR. Also, according to 

Figure 14, the dispersion of data from the 𝑋 = 𝑌 line is 

a lower than DTR predictions shown in Figure 13. 

Therefore, the NN model has been selected to predict 

the MVMS data. 
 

 
Figure 15. Model’s performance metrics 

 

7.4. Parameters Importance Order Assessment 

Assessing random parameters' importance order is a 

way to assess the significance of uncertainties of each 

variable in evaluating the reliability. Various methods 

have been presented for evaluating predictor variable 

significance, such as recursive feature elimination [90], 

permutation importance (PI) ranking across diverse 

ML models [91], and utilizing ML approaches for 

feature selection and evaluation [92]. PI is a widely 

adopted technique for evaluating the relative 

significance of parameter features within ML models. 

PI provides a pragmatic and effective means to 

delineate the hierarchy of feature importance [93]. This 

method gauges the influence of each parameter feature 

on model performance by quantifying the rise in 

prediction error when the variable's values undergo 

random permutation while maintaining other variables 

constant [94].  

Consequently, the Random Variables parameter 

importance has been calculated using permutation for 

the NN and DTR models to specify the role of each 

feature in finding the 𝑀𝑉𝑀𝑆 values. The PI value of 

each feature in the NN and DTR model has been 

illustrated in Figure 16 and Figure 17 respectively. As 

the results demonstrate the 𝑡 value can influence the 

𝑀𝑉𝑀𝑆 value more than other random features. In The 

second stage both models take a material parameter in 

their importance order nevertheless, NN model 

consider and DTR consider EYS and EUS respectively 

as their more effective parameter. Defect depth in both 

models stand in third place of importance order. A 

significant different in the models is about defects 

length which is the 4th effective parameter in NN 

model while it has the least effect on the DTR results.  
 

 
Figure 16.  Features’ importance order for NN model 

 

 
Figure 17. Features’ importance order for DTR model 

 

7.5. Model Results 

To assess the performance of ML models in predicting 

the MVMS based on pipeline and defect 

characteristics, the predicted MVMS values by NN and 

DTR models were compared. In Figure 18, the MVMS 

was predicted at different longitudinal spacing and 

internal pressure levels using both models. The results 

are presented in a 3D scatter plot, where the X and Y 

axes represent longitudinal spacing and internal 

pressure, respectively, and the Z axis shows the 

predicted MVMS for specified internal pressure and 

spacing levels when other variables are at their mean 

values (as listed in Table 1).  
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(A) 

 
(B) 

Figure 18. Predicted MVMS by NN (A) and DTR (B) models 

in different longitudinal spacings and internal pressures 

 

As observed, the DTR model, due to its classification-

based approach, produces jagged results and shows a 

decrease in precision at certain points despite its 

general accuracy. In contrast, the NN model provides a 

smoother surface with better accuracy. As expected, in 

both models, MVMS decreases with higher 

longitudinal spacing, reflecting reduced defect 

interaction, and increases with greater internal 

pressure.  

Furthermore, the effect of pipeline thickness and 

corrosion rate on the MVMS at two longitudinal 

spacing levels (𝑆𝑙 = 0 𝑎𝑛𝑑 𝑆𝑙 = 250 𝑚𝑚) with other 

input parameters at their mean values is illustrated in 

Figure 19. As seen, the DTR results are rough due to 

the inherent behavior of DTR models. Both models 

show a reduction in MVMS values as the corrosion rate 

decreases and indicate that MVMS is inversely 

proportional to pipeline thickness. The results also 

reveal that the DTR model predictions are more 

conservative; for instance, when 𝑡 = 18 𝑚𝑚, the DTR 

model predicts pipeline failure at a 40% corrosion rate, 

whereas the NN model predicts failure at corrosion 

rates above 50%. Therefore, it can be concluded that 

the NN model performs better in predicting MVMS in 

corroded pipelines. 

 
(A) 

 
(B) 

Figure 19. Pipeline thickness and corrosion rate effect on 

Predicted MVMS using NN (A) and DT (B) models 

 

The ML model can also be beneficial in assessing 

interaction rules. As previously mentioned, various 

interaction rules provided in the literature can 

determine the maximum space between defects where 

the interaction affects pipeline performance. The NN 

model was employed to evaluate the maximum defect 

spacing level where interaction impacts the MVMS in 

different defect geometries. 

For this analysis, all input data were set to their mean 

values. Spacing and MVMS were assessed across 

various defect depths and lengths under different 

internal pressures (0:1:20 for 𝐼𝑃 <  20 and 20.1:0.1:30 

for 𝐼𝑃 >  20). The pressure at which the MVMS 

exceeds the true ultimate strength value was defined as 

the burst pressure (see Figure 20).  
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Figure 20. Burst Pressure in different Spacing levels 

 

The spacing level at which interaction does not 

influence the results was defined as the maximum 

interacting spacing level, as illustrated in Figure 21. 

The results indicate an approximate increase in 

effective spacing with an increase in defect depth, 

consistent with interaction rules in the literature. 

However, changes in defect length do not exhibit a 

significant relationship with variations in the maximum 

interacting spacing level. 

 

 
Figure 21. Maximum Spacing Between defects which the 

interaction is effective on MVMS assessed by NN model 

 

8. Conclusions 
In this paper, a study was conducted to generate an 

LHS-FEM database aimed at training an ML model 

capable of predicting MVMS in the outermost mesh 

layer of a ligament within the defective area of the 

pipeline thickness, considering the interaction of two 

longitudinally aligned defects. 

Using ABAQUS software and leveraging Abaqus 

Python scripting an FEA dataset was generated. The 

LHS method was used to generate 200 random 

variables to study the MVMS for each one at 121 

internal pressure (IP) levels (ranging from 1 to 20 MPa 

and from 20.1 to 30 MPa) and 11 spacing levels 

(ranging from 0 to 2√𝐷𝑡 in steps of 0.2√𝐷𝑡). 

Using the LHS-FEM generated big data, 5 well-known 

and rigorous ML models including LR, SGD, KNN, 

DTR, and NN were trained to predict MVMS value. 

The database includes input data such as pipeline 

geometry parameters like outer radius ( 𝑂𝑅 ) and 

pipeline thickness (𝑡), pipeline material data including 

engineering yield stress (𝐸𝑌𝑆), engineering ultimate 

strength (𝐸𝑈𝑆), and Young's modulus (𝐸), as well as 

corrosion defect data encompassing defect depth (𝑑), 

defect length ( 𝑙 ), and levels of longitudinal defect 

spacing (𝑆𝑙). To achieve the best hyperparameters in 

each model a gridsearch were executed. Also, the 

performance of the models was evaluated using k-fold 

cross-validation techniques, ensuring its resilience and 

dependability across various train-test divisions. The 

predictive models presented in this paper are validated 

for use within the 95% confidence intervals of the input 

parameters.  

To evaluate the performance and accuracy of the 

models, the first 20% of the dataset, reserved as test 

data, was used for comparison with the actual FEM 

results to define the best model with the most accurate 

outcomes. In the subsequent step, the model's ability to 

generalize its results was assessed using the learning 

curve method.  

The results indicated that the DTR and NN models 

exhibited the best prediction accuracy among the 

assessed models. The prediction performances of the 

NN and DTR models were compared, revealing that the 

NN model produced smoother and more accurate 

results. The findings indicated that the MVMS 

increases with a rise in spacing level when other 

parameters remain constant. Additionally, the MVMS 

decreases with a reduction in the corrosion rate and an 

increase in pipeline thickness. The NN results were 

also used to assess the maximum defect spacing level 

where the interaction significantly affects MVMS. The 

results demonstrated that the depth of the defect 

impacts the defect interacting space. 
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