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 In response to rising global energy demand and the urgent need to reduce greenhouse 

gas emissions, Offshore Wind Turbines (OWTs) have emerged as promising renewable 

energy solutions. Among deep-water support structures, semi-submersible platforms 

offer superior motion stability and design flexibility, but their high structural weight 

significantly affects construction and installation costs. This study compares five 

metaheuristic algorithms—Genetic Algorithm (GA), Ant Colony Optimization for 

Continuous Domains (ACOR), Artificial Bee Colony (ABC), Firefly Algorithm (FA), 

and Particle Swarm Optimization (PSO)—for weight optimization of a four-column 

semi-submersible substructure supporting a Vertical Axis Wind Turbine (VAWT) with 

hexagonal pontoons. The algorithms were first validated with a reference platform 

optimized using the Generalized Reduced Gradient (GRG) method. They were then 

applied to minimize the VAWT substructure weight by optimizing pontoon and column 

geometry, spacing, and draft under hydrostatic stability, motion, airgap, and feasibility 

constraints. Each algorithm was executed five times, and Kolmogorov–Smirnov tests 

confirmed normality of optimized weight and Number of Function Evaluations (NFE). 

Analysis of Variance (ANOVA) indicated statistically significant differences among 

algorithms, and the Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS) was used for multi-criteria decision-making, considering average weight, 

NFE, accuracy, variance, and stability. Results indicate that ACOR achieved the highest 

rank, achieving ~37.6% (3690 tons) weight reduction. The findings demonstrate 

ACOR’s effectiveness as a decision-support tool for conceptual design of semi-

submersible substructure of OWTs. However, it is expected that hydrodynamic loading, 

aero-structural coupling to be also considered for further detailed design.  

Article type: 

Article type 
 

Keywords: 

Metaheuristic optimization 

Semi-submersible VAWT 

Statistical evaluation algorithm 

Hexagonal pontoons 

Multi-criteria decision 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOI:  
Copyright: © 2025 by the authors. Submitted for possible open access publication under 

the terms and conditions of the Creative Commons Attribution (CC BY) license 

[https://creativecommons.org/licenses/by/4.0/] 
 

ISSN: 2645-8136  

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

6-
02

-2
0 

] 

                             1 / 14

http://ijmt.ir/
mailto:zanyardelgarm@gmail.com
mailto:mgharabaghi@sut.ac.ir
mailto:emami@hormozgan.ac.ir
https://orcid.org/0009-0006-9384-6102
https://orcid.org/0000-0002-8731-1607
https://orcid.org/0000-0002-2803-2595
https://marine-eng.ir/
http://ijmt.ir/article-1-910-en.html


Zanyar Delgarm, et al. / IJMT 2026, Vol 22 No.1; p.66-79 
 

67 

 

 

1. Introduction 
With the increasing energy demand worldwide and the 

crucial obligations to decarbonization by 2050, 

offshore wind energy has appeared as a key solution in 

the transition to green energy resources [1]. The 

limitations of onshore wind resources and land-use 

competition have made it essential to focus on 

harvesting the vast potential of offshore wind. Statistics 

indicate that the installed capacity of offshore wind 

turbines will grow from 35.3 GW in 2020, to 2002 GW 

by 2050 [2]. This growth is particularly remarkable for 

semi-submersible turbines, whose capacity is projected 

to reach 1000 GW by 2050 [3]. Such growth highlights 

the increasing necessity for developing weight- and 

cost-optimized semi-submersible platforms. 

The concept of floating platforms was first proposed by 

William Heronemus during 1972–1990 [4]. Unlike 

fixed platforms such as monopiles, which are 

constrained by water depth, floating structures can be 

installed at depths exceeding 60 meters while offering 

superior motion stability and greater design flexibility 

[5]. These advantages, combined with reduced 

operational costs in remote offshore locations, make 

floating platforms an ideal solution for offshore wind 

farm development. However, the inherent complexity 

of floating infrastructures in deep waters demands 

innovative design methodologies [6]. Park and Wang 

[7] investigated the hydrodynamic behavior of regular 

polygonal floating platforms, including triangular, 

square, hexagonal, and circular shapes, which revealed 

that with similar added mass, radiation damping, and 

dynamic response, polygonal geometries can lower 

mooring costs by improving wave dispersion. On the 

other hand, they facilitate the fabrication process [8]. 

Despite considerable progress in floating wind 

systems, semi-submersible substructures continue to 

pose challenges due to excessive weight, which raises 

construction, installation, and transportation costs 

though impairing dynamic performance [9]. While 

extra weight increases inertial forces, reduces power 

transmission efficiency, and restricts deployment in 

deeper waters [10], inappropriate weight reduction 

threatens stability, safety, and operational integrity 

[11]. This complex relationship between structural 

weight and performance necessitates sophisticated 

optimization approaches.  Optimization methods are 

generally categorized into four groups: analytical, 

numerical, metaheuristic, and hybrid approaches. 

Analytical methods, based on differentiation and 

Karush-Kuhn-Tucker (KKT) conditions, are effective 

for convex problems with linear constraints but face 

limitations when dealing with nonlinear or multi-

objective problems [12]. Numerical methods, on the 

other hand, require intensive computations as model 

complexity increases [13]. In contrast, metaheuristic 

methods have emerged as powerful tools for solving 

nonlinear and multi-objective problems with large 

solution spaces [14]. Notable examples include Particle 

Swarm Optimization (PSO) [15], Ant Colony 

Optimization (ACO) [16], Genetic Algorithm (GA) 

[17], Artificial Bee Colony (ABC) [18], and Firefly 

Algorithm (FA) [19]. Furthermore, hybrid methods 

combining the advantages of multiple approaches have 

been developed [20]. 

Extensive research has investigated the optimization of 

floating platforms and other types of substructures, 

including various approaches and applications. For 

example, Paulsen et al. [21] and Liu et al. [22] studied 

the design optimization of floating VAWTs. Karimi et 

al. [23] presented a multi-objective design optimization 

approach for FOWTs. Reyes-Casimiro et al. [24] 

developed an automatically optimized methodology for 

the structural design of a semi-submersible hull. Ivanov 

et al. [8] explored the shape optimization of columns 

and pontoons of FOWTs. 

The selection of metaheuristic algorithms for structural 

optimization requires a comparative study. Therefore, 

the performance of different algorithms varies 

depending on the problem at hand. 

While most previous studies on semi-submersible 

substructures have focused on Horizontal Axis Wind 

Turbines (HAWTs) and employed classical 

optimization methods with limitations in solving 

complex problems [25, 26], this study addresses these 

challenges through three key aspects, aiming to 

develop a lightweight and stable substructure for 

offshore wind energy applications: 1) it focuses on the 

design of VAWT substructures, taking into account 

their unique and geometrically challenging features in 

marine environments; 2) it conducts a systematic 

statistical comparison and ranking of five conventional 

metaheuristic algorithms (GA, ABC, FA, PSO, and 

ACOR) for substructure weight optimization to identify 

the most suitable algorithm; 3) it introduces a four-

column configuration with regular hexagonal 

pontoons, providing geometric symmetry that enables 

precise evaluation of algorithm performance on 

unconventional structures.  

The article is structured as follows: following the 

introduction, Section 2 formulates the key parameters 

of the reference substructure, including geometric and 

hydrostatic properties, in a parametric manner, and 

introduces the metaheuristic algorithms considered in 

this study.  Design constraints such as stability criteria, 

motion characteristics, ballast weight, and airgap were 

imposed. In Section 3, the developed algorithms and 

formulations are validated, and a detailed statistical 

comparison and ranking of the algorithms are 

presented. After selecting the most suitable algorithm, 

the output details of this algorithm are discussed. 

Finally, Section 4 provides the overall conclusions and 

suggestions for future research.  
 
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

6-
02

-2
0 

] 

                             2 / 14

http://ijmt.ir/article-1-910-en.html


Z. Delgarm, et al. / Comparison of Metaheuristic Algorithms for Weight Optimization of a Semi-Submersible VAWT Substructure with Hexagonal Pontoons 
 

68 

 

2. Research methodology 
2.1. Selection and mathematical modeling of the 

substructure 

2.1.1. Substructure selection 

The optimization process in this study begins with the 

mathematical modeling of the floating substructure. 

The key design variables include the draft depth (with 

a constant distance from the still water level to the top 

of the column), dimensions of the columns and 

hexagonal pontoons, and distances between column 

centers. Parametric relationships have been developed 

to calculate the weight and problem constraints. In this 

regard, the case studied by Rajeswari and Nallayarasu 

[27] was considered. It was a four-column substructure 

with a Vertical Axis Wind Turbine (VAWT) installed 

on the central column which revealed better 

hydrodynamic responses compared to three-column 

substructures. The related specifications are shown in 

Fig. 1 and their values are presented in Table 1. 

In this study, just the substructure of VAWT was 

considered, while the effect of turbine’s weight and its 

center of gravity were accounted for hydrostatic 

stability analysis. As the primary objective of this study 

was to provide a simplified model for comparison of 

the performance of metaheuristic algorithms to serve as 

a decision tool for conceptual design, so the following 

simplification were adopted: 
 

 
 

Figure 1. (a) Schematic view of VAWT; (b) Semi-submersible 

substructure with hexagonal pontoons; (c) Plan and 

segmentation of hexagonal pontoon into simpler shapes 

 
Table 1. The primary details of VAWT & substructure [27] 

 

Parameter Symbol Unit Value 
weight of VAWT WTurbine kg 1539×103 

COG of VAWT from keel GTurbine m 30.80 

Free board F m 12.75 

Draft D m 24.75 

Column diameter dC m 11.25 

Middle column diameter dCIn m 6.75 

Column height hC m 30.00 

Hexagonal pontoon edge 

length 
bP m 12.37 

Hexagonal pontoon height hP m 7.50 

Brace diameter dB m 2.25 

Displacement Δ kg 2.10×107 

Center of gravity COG m 16.20 

Metacentric height GM m 6.375 

Moment of inertia about the x-

axis 
Ixx kg.m2 

2.46× 

1010 

Damping 𝜉 % 8.46 

Natural period in heave motion 𝑇𝑛
𝐻𝑒𝑎𝑣𝑒 Sec 18.50 

Added mass A33 kg 16650000 

 

• As VAWTs have less tower sway and yaw 

mechanism compared to Horizontal Axis Wind 

Turbines (HAWTs) [28], so in this article, just 

heave motion was considered. 

• Added mass of hexagonal pontoons was 

estimated using an empirical formulation. 

• Bracing contribution was considered as a fixed 

proportion of the total displaced volume. 

• Fatigue was not considered despite its negative 

effects on the lifetime of both types of HAWT 

and VAWT, but it is lower for VAWT because 

of its lower center of gravity [29]. 

• Stress control was not considered as the mass 

of VAWT is less than HAWT due, so HAWT 

is more affected by stress than the VAWT [29]. 

However, the following aspects are expected to be 

included in detailed design: 

• VAWTs have the potential to produce the same 

amount of power as HAWTs with a lower 

average thrust and/or lower position of the 

Center of Pressure (CP), therefore imposing a 

lower inclining moment but substantially 

higher torque on the platform [30]. 

• Floating VAWTs experience increased motion 

in the frequency range close to the turbine 

[number of blades] × [rotational speed] 

frequency, which may overlap with the range 

of wave excitation forces for very large 

VAWTs with slower rotational speeds [30]. 

2.1.2. Displaced volume and displacement weight of 

substructure 

The total displaced volume (𝛻𝑇𝑜𝑡𝑎𝑙) was calculated as 

the sum of the underwater volumes of all substructure 

components as shown in Eq. (1), where 𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟
𝑃 , 

𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟
𝐶  and 𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟

𝐵  represent the displaced 

volumes of the pontoon, column, and bracing members, 

respectively. These quantities were calculated 

according to Eq. (2) through Eq. (4). This formulation 

accounts for the full hydrostatic contribution of each 

submerged structural element while ensuring its 

geometric criteria. 

The concept of the formulas and related parameters are 

inspired from the study of Gallala [31], who optimized 

the hull dimensions of a semi-submersible rig using the 

Generalized Reduced Gradient (GRG) method. 
 

𝛻𝑡𝑜𝑡𝑎𝑙 = 𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟
𝑃 + 𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟

𝐶 + 𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟
𝐵  (1) 

𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟
𝑃 = 4 (

3√3

2
𝑏𝑃

2) ℎ𝑃 = 6√3ℎ𝑃𝑏𝑃
2 (2) 

𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟
𝐶 = 𝜋 [𝑑𝐶

2(𝐷 − ℎ𝑃) +
1

4
𝐷𝑑𝐶𝐼𝑛

2 ] (3) 

(a) (b)

(c)

Blade

Tower

Shaft

Brace

X

Y

Z
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𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟
𝐵 = 𝐽𝐵(𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟

𝑃 + 𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟
𝐶 ) (4) 

 

The parameters are illustrated in Fig. 1b. Furthermore, 

for simplicity, the displaced volume of braces was 

considered as a fraction of the total displaced volume 

of the pontoons and columns (𝐽𝐵), based on the initial 

structural configuration. Consequently, the bracing 

diameter was calculated using Eq. (5), where 𝐿𝐼𝑛𝑊𝑎𝑡𝑒𝑟
𝐵  

is the length of the brace submerged in the water. 
 

𝑑𝐵 = √
4𝛻𝐼𝑛𝑊𝑎𝑡𝑒𝑟

𝐵

𝜋𝐿𝐼𝑛𝑊𝑎𝑡𝑒𝑟
𝐵  (5) 

 

Once the displaced volume was determined, the 

corresponding displaced weight ( ∆ ) was calculated 

from Eq. (6), where 𝜌𝑤 represents the water density. 
 

∆= 𝜌𝑤∇𝑡𝑜𝑡𝑎𝑙 (6) 
 

2.1.3. Heave’s natural period 

Heave and pitch motions are one the main challenges 

of VAWTs, so in this paper, the heave motion is 

considered. The heave's natural period was calculated 

from Eq. (7) where 𝐴33 is the added mass and 𝐴𝑤 is the 

waterplane area. The damping is neglected in this 

equation. The added mass was calculated from Eq. (8) 

where 𝐶𝑚, the added mass coefficient which depends 

on the shape and dimensions of the pontoon. Given the 

hexagonal cross-section of the pontoon, it was divided 

into three sections I, II, and III according to Fig. 1c and 

the added mass was calculated separately for each 

section. In literature, the added mass coefficients for a 

two-dimensional rectangle with different length (a) to 

width (b) ratios are given [32]. So, by adapting them, 

an equation (Eq. 9) was derived for added mass 

coefficient. Then the results of each section were added 

together to ultimately yield Eq. (8). 

When damping is considered, Eq. (10) is applied 

instead, where the damping ratio parameter 𝜉 is taken 

as 8.46% [27]. 

The waterplane area of the substructure should be 

calculated as the summation of the cross-sectional 

areas of all water-piercing members, including 

columns and inclined diagonal bracing connected to the 

central column. In this study, due to the slight 

contribution of inclined diagonal braces and their 

complicated cross-sectional relation required to 

consider the change in the column height and draft 

depth, only the effect of columns was considered (Eq. 

11). Later, it was noticed that such simplification has 

little effect on the results (refer to Fig. 2). 
 

𝑇𝑛
𝐻𝑒𝑎𝑣𝑒 = 2𝜋√

∆ + 𝐴33

𝜌𝑔𝐴𝑤
 (7) 

𝐴33 = 𝐶𝑚𝜌𝑉 = 15.2341𝜌𝑤ℎ𝑃
1.148𝑏𝑃

1.852 (8) 

𝐶𝑚 = 1.5488(𝑎 𝑏⁄ )−0.148 (9) 

𝑇𝐷
𝐻𝑒𝑎𝑣𝑒 =

𝑇𝑛
𝐻𝑒𝑎𝑣𝑒

√1 − 𝜉2
 (10) 

𝐴𝑤 = 𝜋 (𝑑𝐶
2 +

𝑑𝐶𝐼𝑛
2

4
) (11) 

 

 

 

2.1.4. Ballast weight 

During the calculations, in order to keep a constant 

freeboard, water ballast was used to adjust the draft 

depth. It was assumed that the water ballast was filled 

only inside the pontoons. Accordingly, the ballast 

weight was calculated from Eq. (12), where t is the 

member thickness, ℎ𝐵𝑎𝑙𝑙𝑎𝑠𝑡 is the ballast water height 

and 𝑏𝑃 is the width of the pontoons. By substituting 𝑏𝑃 

from Table 1 and the density of water from Table 2, the 

final relation was obtained. 
 

𝑤𝐵𝑎𝑙𝑙𝑎𝑠𝑡 = 6√3(𝑏𝑃 − 2𝑡)2ℎ𝐵𝑎𝑙𝑙𝑎𝑠𝑡 × 𝜌𝑤

= ℎ𝐵𝑎𝑙𝑙𝑎𝑠𝑡[1590198.27
− (514211.24 × 𝑡)
+ (4569.22 × 𝑡2)] 

(12) 

 

This equation expresses the ballast weight as a 

quadratic function of both parameters and is applicable 

when ℎ𝐵𝑎𝑙𝑙𝑎𝑠𝑡  is known. Alternatively, the ballast 

weight can also be determined using Eq. (13), based on 

the turbine weight (𝑊𝑇𝑢𝑟𝑏𝑖𝑛𝑒), the displaced weight (∆) 

and the platform weight (𝑊𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚). 
 

𝑤𝐵𝑎𝑙𝑙𝑎𝑠𝑡 = ∆ − 𝑤𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 − 𝑤𝑇𝑢𝑟𝑏𝑖𝑛𝑒 (13) 
 

In this context, 𝑊𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 was defined as the sum of 

the weights of all platform components (columns, 

pontoons, and braces) as shown in Eq. (14), which was 

calculated under the assumption that all structural 

members are made from steel (𝜌𝑆𝑡 ). The weight of 

individual components can be calculated using Eq. (15) 

to Eq. (17). 
 

𝑤𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 = 𝑤𝑃 + 𝑤𝐶 + 𝑤𝐵 (14) 

𝑤𝐶 = [(4𝜋ℎ𝐶(𝑑𝐶𝑡 − 𝑡2))

+ (𝜋(ℎ𝐶 + ℎ𝑃)(𝑑𝐶𝐼𝑛𝑡

− 𝑡2))

+ (𝜋𝑡(𝑑𝐶
2 + 0.25𝑑𝐶𝐼𝑛

2 ))] 𝜌𝑆𝑡 

(15) 

𝑤𝑃 = [(24√3ℎ𝑃(𝑏𝑃𝑡 − 𝑡2))

+ (12√3𝑏𝑃
2𝑡)] 𝜌𝑆𝑡 

(16) 

𝑤𝐵 = [4𝜋𝐿𝑡𝑜𝑡𝑎𝑙
𝐵 (𝑑𝐵𝑡 − 𝑡2)]𝜌𝑆𝑡 (17) 

 

Thus, the ballast weight can be expressed as Eq. (18). 
 

𝑤𝐵𝑎𝑙𝑙𝑎𝑠𝑡 = 72945732.5𝑡2 − 248059764.5𝑡
− 19461000 

(18) 

 

By equating Eq. (12) and (18), Eq. (19) can be derived. 
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(72945732.5 − 4569.22ℎ𝐵𝑎𝑙𝑙𝑎𝑠𝑡)𝑡2

− (248059764.5
− 514211.24ℎ𝐵𝑎𝑙𝑙𝑎𝑠𝑡)𝑡
+ (19461000
− 1590198.27ℎ𝐵𝑎𝑙𝑙𝑎𝑠𝑡) = 0 

(19) 

 

In this study, it was assumed that 80% of pontoon’s 

capacity is filled, resulting in a member thickness of 4 

cm. 
 

 

2.1.5. Substructure’s center of gravity (COG) 

The substructure's COG can be estimated from Eq. 

(20), where, 𝑚𝑃 , 𝑚𝐶  and 𝑚𝐵  are the moments 

generated by different components of the substructure. 
 

𝑑𝑘𝑒𝑒𝑙−𝐶𝑂𝐺 =
𝑚𝑃 + 𝑚𝐶 + 𝑚𝐵

𝑤𝑃 + 𝑤𝐶 + 𝑤𝐵
 (20) 

 

The moment arms and related moments induced by the 

pontoons, columns, and bracing members are given in 

Eq. (21) through Eq. (26). 
 

𝑑𝑃
𝑘𝑒𝑒𝑙−𝐶𝑂𝐺 =

1

2
ℎ𝑃 (21) 

𝑚𝑃 = 𝑤𝑃𝑑𝑃
𝑘𝑒𝑒𝑙−𝐶𝑂𝐺 (22) 

𝑑𝐶
𝑘𝑒𝑒𝑙−𝐶𝑂𝐺 =

∑ 𝑤𝑖𝑑𝐶(𝑖)
𝑘𝑒𝑒𝑙−𝐶𝑂𝐺

∑ 𝑤𝑖
 (23) 

𝑚𝐶 = 𝑤𝐶𝑑𝐶
𝑘𝑒𝑒𝑙−𝐶𝑂𝐺 (24) 

𝑑𝐵
𝑘𝑒𝑒𝑙−𝐶𝑂𝐺 =

∑ 𝑤𝑖𝑑𝐵
𝑘𝑒𝑒𝑙−𝐶𝑂𝐺

∑ 𝑤𝑖
 (25) 

𝑚𝐵 = 𝑤𝐵𝑑𝐵
𝑘𝑒𝑒𝑙−𝐶𝑂𝐺 (26) 

 

2.1.6. Second moment of area 

In operational conditions, the second moment of area 

for the waterplane surface is calculated based on the 

columns. The considered structure is symmetric about 

the horizontal and vertical axes in plan view; therefore, 

the longitudinal and transverse second moments of area 

are the same and is calculated by Eq. (27). 
 

𝐼 =
𝜋

64
(4𝑑𝐶

4 + 16𝑑𝐶
2𝐵2 + 𝑑𝐶𝐼𝑛

4 ) (27) 

 

2.1.7. Vertical distance between COB and MC 

Due to the symmetry about both horizontal and vertical 

axes, the vertical distance between the center of 

buoyancy (COB) and metacenter (MC) is identical for 

both longitudinal and transverse directions and can be 

obtained from Eq. (28). 
 

𝑑𝐶𝑂𝐵−𝑀𝐶 =
𝐼

∇
 (28) 

 

2.1.8. Vertical distance from the COB to the keel 

The vertical distance from the COB to the keel equals 

the ratio of the moment generated by the displaced 

weight to the displaced weight itself. Alternatively, the 

displaced volume can be used instead of the displaced 

weight, according to Eq. (29). 
 

𝑑𝑘𝑒𝑒𝑙−𝐶𝑂𝐵

=
(𝑑𝑃,𝐶𝑂𝐵 × ∇𝑃) + (𝑑𝐶,𝐶𝑂𝐵 × ∇𝐶) + (𝑑𝐵,𝐶𝑂𝐵 × ∇𝐵)

∇𝑃 + ∇𝐶 + ∇𝐵  
(29) 

 

The COB of individual structural components was 

calculated from Eq. (30) through Eq. (32). 
 

𝑑𝑃,𝐶𝑂𝐵 =
1

2
ℎ𝑃 (30) 

𝑑𝐶,𝐶𝑂𝐵 =
∑ ∇𝑖

𝐶𝑑𝑖
𝐶,𝐶𝑂𝐵

∑ ∇𝑖
𝐶  (31) 

𝑑𝐵,𝐶𝑂𝐵 =
∑ ∇𝑖

𝐵𝑑𝑖
𝐵,𝐶𝑂𝐵

∑ ∇𝑖
𝐵  (32) 

 

2.1.9. Vertical distance between the COG and MC 

For stability, any floating structure must have a positive 

GM (distance between the COG and the MC). Since the 

distance between the COB and MC is identical in both 

longitudinal and transverse directions, the longitudinal 

and transverse GM values are estimated from Eq. (33). 
 

𝐺𝑀 = 𝑑𝑘𝑒𝑒𝑙−𝐶𝑂𝐵 + 𝑑𝐶𝑂𝐵−𝑀𝐶 − 𝑑𝑘𝑒𝑒𝑙−𝐶𝑂𝐺 (33) 
 

2.2. Constraints 

2.2.1. Stability constraints 

To ensure adequate stability, any floating vessel must 

satisfy the positive GM condition, at the same time, 

engineers avoid excessively high GM Values, since 

they cause undesirable short rolling periods appeared 

by increased reaction forces and accelerations (Eq. 34). 
 

𝐺𝑀𝑚𝑖𝑛 ≤ 𝐺𝑀 ≤ 𝐺𝑀𝑚𝑎𝑥 (34) 

  

2.2.2. Constraint for motion characteristics 

Safe operation in harsh marine environments requires 

constraints on motion characteristics of the floating 

structure. The most critical motion is heave oscillations 

[33], whose magnitude depends on the heave natural 

period. Eq. (35) ensures that the heave natural period 

remains above a specified minimum threshold. 
 

𝑇𝐻𝑒𝑎𝑣𝑒 ≥ 𝑇𝑀𝑖𝑛
𝐻𝑒𝑣𝑒 (35) 

 

2.2.3. Ballast weight constraint 

The ballast water quantity is a critical parameter for 

achieving the target freeboard (vertical distance from 

water surface to column top) and suitable draft depth. 

The ballast mass must be positive, while the ballast 

water volume in the pontoons is limited by the pontoon 

capacity as expressed in Eq. (36), where parameter 𝑍 is 

considered to be 80% of the pontoon's capacity. 
 

𝑤𝐵𝑎𝑙𝑙𝑎𝑠𝑡 ≤ (𝜌𝑤6√3ℎ𝑃𝑏𝑃
2)𝑍           0 ≤ 𝑍 ≤ 1 (36) 

 

2.2.4. Stability constraints 

Freeboard ( 𝐹 ) is a critical parameter for semi-

submersible to prevent wave-in-deck loads. This 
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constraint imposed by Eq. (37) to ensure adequate 

freeboard during operation. 
 

ℎ𝐶 + ℎ𝑃 − 𝐷 = 𝐹 (37) 

 

2.2.5. Geometric constraints 

In addition, several geometric constraints were 

imposed in this study to preserve the initial structural 

configuration and ensure the feasibility of the 

optimization process. Also, structural dimensions were 

bounded by upper and lower limits based on existing 

similar structures. The constraints of construction and 

fabrication was also considered.  

Table 2 summarizes the parameter values applied 

during the optimization process. 𝐺𝑇𝑢𝑟𝑏𝑖𝑏𝑒 denotes the 

vertical distance from the top of the column to the COG 

of the turbine. 

 
Table 2. The primary details of VAWT & substructure [27] 

 

Parameter Value Parameter Value 

𝜌𝑤 1000 [kg m3⁄ ] 𝐽𝐵 0.06 [-] 

𝜌𝑆𝑡 7850 [kg m3⁄ ] 𝐺𝑇𝑢𝑟𝑏𝑖𝑛𝑒  30.8 [m] 

𝐺 9.806 [kg m3⁄ ] 𝑍 0.8 [-] 

𝑏𝑃
𝑀𝑎𝑥 20 [m] 𝑈 0.9 [-] 

𝑏𝑃
𝑀𝑖𝑛 8 [m] 𝐹 12.75 [m] 

ℎ𝑃
𝑀𝑎𝑥 15 [m] 𝐺𝑀𝑀𝑎𝑥 4 [m] 

ℎ𝑃
𝑀𝑖𝑛 5 [m] 𝐺𝑀𝑀𝑖𝑛 1.5 [m] 

𝑑𝐶
𝑀𝑎𝑥 20 [m] 𝐵𝑀𝑎𝑥 100 [m] 

𝑑𝐶
𝑀𝑖𝑛 8 [m] 𝐵𝑀𝑖𝑛 35 [m] 

ℎ𝐶
𝑀𝑎𝑥 50 [m] 𝑅𝑀𝑎𝑥 3 [-] 

ℎ𝐶
𝑀𝑖𝑛 20 [m] 𝑅𝑀𝑖𝑛 1 [-] 

𝑇𝑀𝑖𝑛
𝐻𝑒𝑎𝑣𝑒 18.5 [sec] 𝐷𝑀𝑎𝑥 40 [m] 

𝑡 0.04 [m] 𝐷𝑀𝑖𝑛 15 [m] 

 

2.3. Metaheuristic algorithms 

All metaheuristic algorithms were implemented with a 

maximum iteration stopping criterion and penalty 

function (csv=1×10¹²) for constraint handling. The GA 

was executed using MATLAB’s optimization toolbox 

for its computational efficiency and to avoid the 

convergence challenges often encountered in manual 

implementations. The other four algorithms, ACOR, 

PSO, FA, and ABC were custom-coded. 

The ACO algorithm, which was introduced in the 

1990s [34-36], simulates the intelligent foraging 

behavior of ants in identifying the shortest path to food 

sources [18]. In 2008, Socha and Dorigo [37] presented 

a fundamental progress by introducing the continuous 

ACOR framework, in which pheromones are 

represented by a normal distribution function and an 

archive of high-quality solutions guides the search 

process. This study adopts that approach, with 

parameters set as: maximum iterations = 9000, archive 

size = 20, number of samples = 100, selection pressure 

= 0.35, and Deviation-Distance Ratio = 1. 

The GA, inspired by natural evolution principles, 

employs selection, crossover, and mutation 

mechanisms to explore the design space [15]. In this 

study, the optimization parameters were set as follows: 

initial population size = 500 chromosomes, maximum 

generations = 2000, crossover rate = 80%, and mutation 

rate = 20%. An arithmetic crossover operator was used, 

generating offspring as weighted linear combinations 

of parent solutions. 

The PSO algorithm simulates the collective behavior of 

birds, utilizing particle positions and velocities to 

explore the search space [16]. Key parameters were set 

to: maximum iterations = 5000, swarm size = 100, and 

cognitive/social coefficients - both set to 2.05. 

The FA simulates the phototropic behavior of insects 

[20], utilizing light intensity (objective function) and 

light absorption (𝛽 = 2) parameters. Other parameters 

were: maximum iterations = 5000, population size = 10 

fireflies, randomization coefficient = 0.2, and damping 

ratio for randomization coefficient = 0.99. 

The ABC algorithm, inspired by the intelligent 

foraging behavior of honeybees [19], was implemented 

with a population of 50 scout bees and a maximum of 

5000 iterations. The algorithm employed three bee 

groups: 25 worker bees for selected sites, 10 onlooker 

bees for elite sites, and scout bees exploring the design 

space using the uniform bee dance operator, gradually 

reducing the search radius with coefficient = 0.99. 

The key hyperparameters used in the metaheuristic 

algorithms of this study are summarized in Table 3. 
 

Table 3. Parameters of the studied metaheuristic algorithms 
 

Algorithm Population 

/ Archive 

Max 

Iterations 

Key Parameters 

GA 500 2000 Crossover = 0.8, 

Mutation = 0.2 

PSO 100 5000 c1 = c2 = 2.05 

FA 10 5000 β = 2, α = 0.2, 

Damping = 0.99 

ABC 50 5000 Limit coefficient = 

0.99 

ACOR 20 9000 Samples = 100, q 

= 0.35 

 

2.4. Comparison of algorithms 

The final evaluation of the metaheuristic algorithms 

was conducted based on five key indicators: 1) average 

weight of results, 2) average Number of Function 

Evaluations (NFE), 3) relative accuracy of solutions, 4) 

stability, and 5) reliability. Additional secondary 

criteria, including decision variable outcomes and 

computational time, were also assessed. Relative 

accuracy was defined as the ratio of the minimum result 

obtained among the five algorithms to the solutions of 

each algorithm. Stability was expressed as the inverse 

of the coefficient of variation (1/CV) of weight results, 

while reliability was represented by the variance of 

weight results. Initial comparisons of algorithms were 

made using these criteria, followed by an investigation 

of whether the differences were due to their stochastic 

nature or inherent algorithmic characteristics. The 

Kolmogorov-Smirnov (K-S) test confirmed the normal 

distribution of each algorithm’s outputs across five 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

6-
02

-2
0 

] 

                             6 / 14

http://ijmt.ir/article-1-910-en.html


Z. Delgarm, et al. / Comparison of Metaheuristic Algorithms for Weight Optimization of a Semi-Submersible VAWT Substructure with Hexagonal Pontoons 
 

72 

 

independent runs, thereby permitting the application of 

parametric statistical tests, namely ANOVA and 

Tukey. ANOVA was employed to determine the 

significance of overall differences, while Tukey’s test 

was used for pairwise comparisons of algorithms; a 

significance level of 5% was considered for both of 

them. Finally, the TOPSIS method, which is described 

in section 3.5, was applied to perform the final ranking 

of the algorithms [38, 39]. 

Although a larger number of independent runs would 

further enhance statistical robustness, five runs per 

algorithm were selected as a trade-off between 

computational cost and statistical validity. The 

implications of limited sample size are reflected in the 

reported variance and discussed as a limitation. 
 

3. Results and Discussion 
3.1. Validation 

Before executing the coded algorithms for optimizing 

the semi-submersible wind turbine substructure, 

validation process was conducted not only for the 

developed formulations but also for the generated 

coded algorithms. Fig. 2 demonstrates the validation 

results obtained by applying the reference VAWT and 

related substructure parameters [27] to the developed 

formulations (presented in section 2). This includes 

verification of the damped heave natural period, 

vertical distance between the COG and MC, added 

mass, displaced weight, and stiffness. There is good 

agreement between the calculated results and their 

physical quantities. In this case, the initial structural 

weight was estimated about 9,802 tons. 

Afterwards, for validation of the generated coded 

algorithms, the drilling rig model which was optimized 

by Gallala [31] using the GRG method under transit, 

operational, and survival conditions (shown in Fig. 3) 

utilized as the benchmark case study. For brevity, only 

the outputs of ACOR are shown in Fig. 4 and the results 

obtained from all of the studied algorithms are 

presented in Table 4. The GRG-based benchmark 

results were reproduced in MATLAB under identical 

geometric constraints reported by Gallala [31]. Default 

solver configurations were retained to maintain 

methodological consistency, and no additional 

parameter tuning was introduced in the reproduction 

process. The optimal weight obtained using ACOR is 

7,954 tons, approximately 1.73% lower than the 8,083 

tons reported using the GRG method. This is an 

acceptable difference between the reproduced weight 

and the reported GRG method. This confirms the 

reliability of the developed formulations and coded 

algorithms, however, due to the stochastic nature of 

metaheuristic algorithms, exact repetition of reference 

study’s results was not expected. 

 

 
 

Figure 2. Validation of the developed mathematical 

formulations 

 
 

Figure 3. Schematic configuration of drilling rig proposed by 

Gallala [31] with rectangular pontoons and columns 

 

 
 

Figure 4. Validation of the ACOR through comparison of the 

results with the GRG method [31] 
 

Table 4. Results for decision variables of the drilling rig 

obtained from the generated algorithms 
 

Algorithm ACOR PSO BA FA GA GRG 

lC (m) 9.07 9.11 9.28 8.86 10.23 9.11 

hC (m) 28.00 28.00 28.20 28.00 28.00 27.96 

bC (m) 9.66 9.62 9.26 9.89 8.81 9.92 

lP (m) 87.00 87.00 91.16 87.00 87.00 87.00 

hP (m) 8.00 8.00 7.80 8.00 8.00 8.04 

bP (m) 12.00 12.00 11.70 12.00 12.06 12.06 

dC (m) 74.00 74.00 74.77 74.00 72.93 74.00 

dP (m) 74.68 75.08 76.36 75.56 73.61 73.97 

Weight (t) 7954 7954 7901 7955 8068 8093 

Difference 

with GRG  

1.71 

% 

1.72 

% 

2.38 

% 

1.71 

% 

0.31 

% 
- 
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3.2. Evaluation of algorithms 

3.2.1. Comparing the performance of metaheuristic 

algorithms 

After validation of the generated coded algorithms, 

they were implemented for optimization of the decision 

variables of the substructure of studied VAWT [27]. 

The results are shown in Fig. 5 which supports almost 

similar quantities. The difference is mainly observed 

for the column height, resultant draft and their distance 

to each other. In the next step, these five metaheuristic 

algorithms were evaluated through five independent 

runs aimed at minimizing the weight of the VAWT 

substructure. As illustrated in Fig. 6, although the 

decision variable results in Fig. 5 appear almost similar, 

but meaningful differences in substructure weight is 

observed. This highlights that the importance of design 

parameters is different in marine structure’s weight 

optimization. Furthermore, it seems that the dispersion 

of the results is different for the studied metaheuristic 

algorithms. The optimized weight results from each 

independent run, their standard deviation (STD) and 

their mean value for each algorithm are summarized in 

Table 5. It confirms that the ACOR algorithm achieved 

the best performance with an average weight of 6,112 

tons, while ABC produced the worst results of mean 

weight of 6,694 tons. It also reveals the ACOR's smaller 

standard deviation (STD) compared to other algorithms 

which indicates its significant higher reliability. 

Although, from some viewpoint, computational time 

may be more important criterion, but the number of 

function evaluations (NFE) required to neutralize the 

penalty function, as a measure for convergence speed, 

can be more suitable which is shown in Fig. 7. 

Performance differences arise from the distinct search 

mechanism employed by each algorithm within the 

design space. 

In addition to NFE, the average computational time 

over five independent runs was recorded. Although 

execution time depends on hardware specifications and 

implementation environment, the recorded averages 

(GA: 59 s, ABC: 5 s, FA: 10 s, PSO: 13 s, ACOR: 26 s) 

provide complementary insight into practical 

computational cost. Nevertheless, NFE was retained as 

the primary convergence indicator due to its hardware-

independent nature. 
 

 
 

Figure 5. Optimized decision variables for substructure of 

VAWT obtained by the studied algorithms 

 

 
 

Figure 6. Discrepancy in the weight of substructure obtained 

from five independent runs of each algorithm 

 

The evaluation of algorithm efficiency based on the 

NFE reveals that the FA presented the fastest 

convergence with NFE of 16,200. In contrast, the GA 

exhibited the slowest performance with a NFE of 

607,400, highlighting the inherent benefit of intelligent 

search mechanisms like those in FA compared to GA. 

As noticed in the overdrawn section of Fig. 7, although 

GA's final results fall within an acceptable range, its 

high NFE prior to full convergence is notable. This is 

further supported by GA's gradual, downward-sloping 

convergence curve during the final stages. 
 
Table 5. Optimized weight results, their STD and mean value 

from five independent runs of each algorithm 
 

Run No. 
(ton) 

GA ABC FA PSO ACOR 

1 6223.81 6703.56 6128.42 6184.84 6109.82 

2 6242.78 6880.32 6094.02 6220.41 6111.83 

3 6235.09 6363.95 6194.06 6178.20 6109.22 

4 6133.93 6424.18 6099.027 6093.06 6110.17 

5 6430.39 7097.70 6116.82 6307.62 6117.20 

STD 108 308 40 78 3 

Mean 

weight 
6253 6694 6126 6197 6112 

 

 
 

Figure 7. Optimization and convergence trend of algorithms, 

displaying the criterion for NFE 

 

3.2.2. Accuracy of optimal solutions and stability of 

algorithms 

The relative accuracy of the algorithms, assessed by the 

average solution ratio shown in Fig. 8a, indicates that 

the ABC algorithm has the lowest precision, likely due 

to its short search process, and Fig. 8b presents the 

stability coefficient, defined as the ratio of average 

optimal weight to standard deviation, which shows that 

ACOR is the most stable algorithm, with a stability 
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coefficient of 1,879. Hence the key question arises 

whether these differences in results and NFE metrics 

are simply due to the stochastic nature of the algorithm, 

or does the choice of the algorithms fundamentally 

affect the optimization results? To address this, data 

normality was first verified by the K-S test shown in 

Fig. 9. All algorithms exhibited K-S statistics below the 

critical value of 0.56327 at the 5% significance level 

[40], validating the use of parametric ANOVA and 

Tukey tests. 
 

 
 

Figure 8. (a) Accuracy and (b) Stability of optimization 

algorithms in 5 iterations. 
 

3.3. ANOVA test results 

Analysis of variance (ANOVA) test for final weight of 

platform and NFE criteria are presented in Tables 6 and 

7 respectively, which shows F-statistic of 12.63 and 

9.85 for the final platform’s weight and NFE criteria, 

individually, both exceeding the critical value of 2.866. 

This indicates that the null hypothesis (𝐻0), assuming 

equal means for these two criteria is refused. 

Significant level of 𝑃 = 5% was adopted in this study. 

The calculated p-values were 2.75×10⁻⁵ for the 

optimized platform weight and 1.43×10⁻⁴ for NFE, 

both substantially below the 5% significance threshold. 

Given that the Kolmogorov–Smirnov test confirmed 

normality of the samples, the application of parametric 

ANOVA is statistically justified despite the limited 

number of independent runs. 

In other words, ANOVA demonstrated that the 

probability of differences in the scattered output results 

is below 5%, confirming statistically significant 

differences among the algorithms. Thus, the variations 

discussed in the previous sections are not due to 

algorithmic randomness (𝐻1), but rather arise from the 

intrinsic mechanisms of the algorithms. Specifically, 

ANOVA indicated that at least one algorithm in this 

study differs from the others, and its inclusion or 

exclusion in substructure optimization could 

fundamentally alter the results. Consequently, the 

ANOVA outcomes necessitate pairwise comparisons 

of algorithms, which are addressed in the following 

section. 
 

Table 6. ANOVA test results for optimized weight data of 

studied algorithms in five different runs 
 

Source of 

Variation 

Between 

Groups 

Within 

Groups 
Total 

SS 1154171.981 457037.307 1611209.289 

df 4 20 24 

MSE 288542.995 22851.865  

F 12.627   

P-value 2.753E-05   

FCrit 2.866   

 

 
 

Figure 9. Comparing the K-S statistics with its critical value in 

the Kolmogorov-Smirnov test for weight and NFE results 
 

3.4. Pairwise comparison of algorithms (Tukey) 

The pairwise comparison of the studied algorithms are 

presented in Table 8 which is the absolute difference 

between two results obtained from each algorithm. If 

this difference exceeds the value 𝐻𝑆𝐷 = 𝑞 ×

√𝑀𝑆𝐸 𝑛⁄ , it is considered statistically significant and 

highlighted in red. In this expression, MSE denotes the 

mean square error obtained from the ANOVA test, n is 

the number of samples in each group (n=5), and q is the 

studentized range distribution based on error, which, 

for n, number of groups (k=5), and a 5% significance 

level, HSD is calculated as 4.232 from the 

corresponding values of q obtained from its related 

tables [42]. Although software such as SPSS or R can 

be used for this analysis, Excel is applied in this study. 

The Tukey test shows that, for the substructure weight 

criterion, the ABC algorithm is significantly different 

from the others, while no statistically significant 

difference is observed among FA, PSO, and ACOR 

algorithms. Regarding the NFE criterion, results 

indicate that only GA is significantly different from the 

other algorithms, with no notable difference among the 

other four algorithms. These findings highlight that 

although some algorithms such as GA and ABC clearly 

demonstrate lower performance, the others including 

FA, PSO, and ACOR are statistically at the same level 

and can be considered suitable alternatives. 
 

Table 7. ANOVA test results for NFE data of studied 

algorithms in five different runs 
 

Source of 

Variation 

Between 

Groups 

Within 

Groups 
Total 

SS 1.054E+12 5.348E+11 1.589E+12 

df 4 20 24 

MSE 2.634E+11 2.674E+10  

F 9.851   

P-value 1.428E-04   

FCrit 2.866   

 

3.5. Ranking algorithms using the TOPSIS method 
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To comprehensively evaluate the performance of the 

studied algorithms, the Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) 

method, a Multi-Criteria Decision-Making (MCDM) 

technique was applied. The values of the criteria and 

their assigned weights (C.W.) are presented in Table 9. 

Criteria weights were assigned based on engineering 

judgment, prioritizing structural weight reduction as 

the primary objective. Considering that the mean 

optimized weights obtained from the five algorithms 

are relatively close in magnitude, moderate variations 

in the weight assigned to the primary objective are not 

expected to alter the overall ranking outcome. 

The final weight of each criterion was obtained by 

combining their relative weights [43]. The authors 

assigned values from 1 to 9 to each criterion based on 

the "Combined relative weighting" section of Table 9 

and the importance of each criterion, as reported in the 

"Relative weight" row of the same table. These values 

were then divided pairwise in Table 10 and normalized 

in Table 11. Finally, the final weight of each criterion, 

presented under the designation C.W., was calculated 

by averaging the values of each row in Table 11. 

This approach evaluates the algorithms based on five 

key criteria: average optimal weight, NFE, dispersion 

of weight results, accuracy, and model stability. 

TOPSIS facilitates comparison and selection of the best 

option by calculating the distance of each algorithm 

from the positive ideal solution and the negative ideal 

solution. For all criteria, except relative accuracy and 

stability, the positive ideal corresponds to the minimum 

value obtained by the algorithms, while the negative 

ideal corresponds to the maximum; this condition is 

reversed for accuracy and stability. Based on the 

TOPSIS ranking results shown in Table 12, ACOR, 

with a similarity index of 0.881, was identified as the 

best algorithm. This superiority was mainly attributed 

to achieving the lowest platform weight (7970 tons), 

combined with the highest accuracy, stability, and 

reliability, although the number of NFE in this 

algorithm is higher compared to PSO and FA. FA and 

PSO ranked second and third, respectively, whereas 

GA and ABC, with weaker performance, are positioned 

in the lower ranks. These findings clearly reveal ACOR 

as the preferred option for this engineering problem, 

despite higher computational demands, due to its 

substantial advantages across other criteria. The 

following sections present the algorithm results in 

detail. 
 

3.6. ACOR results 

3.6.1. Accuracy of optimal solutions and stability of 

algorithms 

Multiple runs demonstrated the model's capability to 

satisfy all constraints with 5,000 iterations and a 

population size of 20. The model was further tested by 

increasing the iterations up to 10,000. As shown in Fig. 

10 the optimized weight in all cases was lower than the 

initial weight, with convergence achieved after 

approximately 8,000 iterations. As mentioned earlier, 

in this study, the maximum number of iterations for the 

ACOR algorithm was considered to be 9000. It should 

be noted that the other algorithms were assigned 

maximum iterations in a similar manner. 

All optimized configurations satisfied the predefined 

hydrostatic stability, ballast, freeboard, and geometric 

feasibility constraints imposed in the optimization 

model. Although detailed structural strength and 

fatigue verification were beyond the scope of the 

present work, the resulting geometric dimensions fall 

within ranges reported for comparable semi-

submersible platforms in the literature. 
 

3.6.2. VAWT substructure results from the ACOR 

Due to the stochastic nature of the model, as reported 

in Table 13, multiple executions yield different but 

valid results, all satisfying the constraints. On average, 

a 37.6% weight reduction (approximately 3,686 tons) 

was observed. The standard deviation, around 0.05% (3 

tons), demonstrates the proposed model’s reliability 

across different runs. This consistency, despite the 

stochastic nature, confirms the algorithm's capability to 

identify stable optimal solutions.
 

Table 8. Tukey tests for optimized weight and average NFE results in five independent runs 
 

Algorithm GA ABC FA PSO ACOR 

Average weight results 

GA -     
ABC  -    
FA   -   
PSO    -  
ACOR     - 

Average NFE results 

GA -     
ABC  -    
FA   -   
PSO    -  
ACOR     - 

440.741 126.733 56.375 141.553

440.741 567.747 497.116 582.294

126.733 567.747 70.358 14.821

56.375 497.116 70.358 85.179

141.553 582.294 14.821 85.179

328890 591199 522740 342860

328890 262309 193850 13970

591199 262309 68459 248339

522740 193850 68459 179880

342860 13970 248339 179880
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Table 9. Decision criteria used in the TOPSIS method and their relative weights 
 

 Avg. weight [ton] Avg. NFE Variance Accuracy Stability 

GA 6253.2 607400 11730.61 0.977 57.735 

ABC 6694.0 278510 94878.00 0.913 21.732 

FA 6126.5 16200 1617.40 0.998 152.321 

PSO 6196.8 84660 6022.45 0.986 79.851 

ACOR 6111.7 264540 10.58 1.000 1879.142 

Relative weight 9 3 5 7 6 

C.W. 0.328 0.098 0.149 0.229 0.196 

 Combined relative weighting  

Option A 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Option B 

 

 
Table 10. Pairwise division weight of criteria 

 

  Avg. weight [ton] Avg. NFE Variance Accuracy Stability 

Avg. weight [ton] 1.000 3.000 3.000 1.286 1.500 

Avg. NFE 0.333 1.000 0.600 0.429 0.500 

Variance 0.556 1.000 1.000 0.714 0.833 

Accuracy 0.778 2.333 1.400 1.000 1.167 

Stability 0.667 2.000 1.200 0.857 1.000 

Sum 3.333 9.333 7.200 4.286 5.000 

 
Table 11. Normalized pairwise weights and final weight of criteria 

 

  Avg. weight [ton] Avg. NFE Variance Accuracy Stability C. W. 

Avg. weight [ton] 0.300 0.321 0.417 0.300 0.300 0.328 

Avg. NFE 0.100 0.107 0.083 0.100 0.100 0.098 

Variance 0.167 0.107 0.139 0.167 0.167 0.149 

Accuracy 0.233 0.250 0.194 0.233 0.233 0.229 

Stability 0.200 0.214 0.167 0.200 0.200 0.196 

Sum 1.000 1.000 1.000 1.000 1.000 1.000 

Table 12. Ranking results of metaheuristic algorithms based 

on the TOPSIS method 
 

Similarity index 
Rank 

Alg. 𝑫𝒊
+ 𝑫𝒊

− 𝑫𝒊
+ + 𝑫𝒊

− 𝑷𝒊 

GA 0.206 0.130 0.337 0.387  

ABC 0.246 0.045 0.291 0.153  

FA 0.179 0.167 0.347 0.482  

PSO 0.187 0.156 0.344 0.455  

ACOR 0.034 0.248 0.282 0.881  

 

 
 

Figure 10. Comparison of primary [27] and optimized weights 

with standard deviation of optimization results in five runs 
 

 

4. Conclusion 
This study developed a parametric framework to 

evaluate five metaheuristic algorithms (GA, ACOR, 

ABC, FA, PSO) for optimizing a semi-submersible 

VAWT substructure with hexagonal pontoons. The 

optimization process adhered to constraints of 

hydrostatic stability, motion performance, geometric 

feasibility, and airgap. Each algorithm was executed 

five times, and the K-S test confirmed that the results 

followed a normal distribution. The findings are 

summarized as follows: 

1) Overall, ANOVA, at a 5% significance level, 

indicated that the choice of algorithm had a statistically 

significant effect on optimization results, and the 

differences observed were not due to randomness but 

were attributable to the mechanisms and inherent 

characteristics of the algorithms. 

2) Specifically, Tukey’s test revealed that the ABC 

algorithm, in terms of structural weight, and the GA 

algorithm, in terms of NFE, significantly differed from 

the others, with these differences reflecting their 

inferior performance relative to the rest. 

3) The final ranking using the TOPSIS method, based 

on criteria of average weight, average NFE, relative 

accuracy, stability, and reliability, identified the ACOR 

algorithm as the best method, achieving a 37.6% 

reduction in structural weight (from the initial 9802 

4

5

2

3

1

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

W
e
ig

h
t 

(t
o

n
)

Itraition
Thousands

Optimal weight

Primary weight

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

6-
02

-2
0 

] 

                            11 / 14

http://ijmt.ir/article-1-910-en.html


Zanyar Delgarm, et al. / IJMT 2026, Vol 22 No.1; p.66-79 
 

77 

 

tons to 6112 tons), despite requiring higher 

computational effort compared to PSO and FA. 

4) The FA, PSO, GA, and ABC algorithms ranked 

next, respectively. 

5) Furthermore, it was shown that, comparatively, 

ACOR exhibited superior relative accuracy (100%), 

stability (1/CV = 1879.142), and reliability (Variance 

= 10.58) compared to the others. 

The main limitations of this study include simplified 

hydrodynamic modeling, neglect of aero-structural 

coupling, and the absence of detailed structural strength 

assessment. Future research should incorporate fully 

coupled time-domain simulations, multi-objective 

optimization frameworks, and extended statistical 

sampling for detailed design. 
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Table 13. Results of decision variables from the ACOR algorithm 

 

Try 

Pontoon 

width 

Pontoon 

height 
Column 

diameter 

Column 

height 

distance 

of 

column 

Depth 

draft 

Substructure 

weight 
Avg. 

weight 

Reduced 

weight  

Standard 

deviation 

[m] [ton] [ton] [%] [ton] 

1 9.44 6.83 6.83 20.20 61.13 13.53 6109.817 

6112 37.64 3 

2 9.63 6.32 7.01 17.49 58.15 11.06 6111.827 

3 9.61 6.31 7.00 17.67 58.36 11.23 6109.217 

4 9.62 6.30 7.00 17.67 58.37 11.22 6110.174 

5 9.66 6.35 7.004 17.14 57.75 10.74 6117.202 
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