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ABSTRACT

In response to rising global energy demand and the urgent need to reduce greenhouse
gas emissions, Offshore Wind Turbines (OWTSs) have emerged as promising renewable
energy solutions. Among deep-water support structures, semi-submersible platforms
offer superior motion stability and design flexibility, but their high structural weight
significantly affects construction and installation costs. This study compares five
metaheuristic algorithms—Genetic Algorithm (GA), Ant Colony Optimization for
Continuous Domains (ACOg), Artificial Bee Colony (ABC), Firefly Algorithm (FA),
and Particle Swarm Optimization (PSO)—for weight optimization of a four-column
semi-submersible substructure supporting a Vertical Axis Wind Turbine (VAWT) with
hexagonal pontoons. The algorithms were first validated with a reference platform
optimized using the Generalized Reduced Gradient (GRG) method. They were then
applied to minimize the VAWT substructure weight by optimizing pontoon and column
geometry, spacing, and draft under hydrostatic stability, motion, airgap, and feasibility
constraints. Each algorithm was executed five times, and Kolmogorov—-Smirnov tests
confirmed normality of optimized weight and Number of Function Evaluations (NFE).
Analysis of Variance (ANOVA) indicated statistically significant differences among
algorithms, and the Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) was used for multi-criteria decision-making, considering average weight,
NFE, accuracy, variance, and stability. Results indicate that ACOg achieved the highest
rank, achieving ~37.6% (3690 tons) weight reduction. The findings demonstrate
ACOgR’s effectiveness as a decision-support tool for conceptual design of semi-
submersible substructure of OWTs. However, it is expected that hydrodynamic loading,
aero-structural coupling to be also considered for further detailed design.
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1. Introduction

With the increasing energy demand worldwide and the
crucial obligations to decarbonization by 2050,
offshore wind energy has appeared as a key solution in
the transition to green energy resources [1]. The
limitations of onshore wind resources and land-use
competition have made it essential to focus on
harvesting the vast potential of offshore wind. Statistics
indicate that the installed capacity of offshore wind
turbines will grow from 35.3 GW in 2020, to 2002 GW
by 2050 [2]. This growth is particularly remarkable for
semi-submersible turbines, whose capacity is projected
to reach 1000 GW by 2050 [3]. Such growth highlights
the increasing necessity for developing weight- and
cost-optimized semi-submersible platforms.

The concept of floating platforms was first proposed by
William Heronemus during 1972-1990 [4]. Unlike
fixed platforms such as monopiles, which are
constrained by water depth, floating structures can be
installed at depths exceeding 60 meters while offering
superior motion stability and greater design flexibility
[5]. These advantages, combined with reduced
operational costs in remote offshore locations, make
floating platforms an ideal solution for offshore wind
farm development. However, the inherent complexity
of floating infrastructures in deep waters demands
innovative design methodologies [6]. Park and Wang
[7] investigated the hydrodynamic behavior of regular
polygonal floating platforms, including triangular,
square, hexagonal, and circular shapes, which revealed
that with similar added mass, radiation damping, and
dynamic response, polygonal geometries can lower
mooring costs by improving wave dispersion. On the
other hand, they facilitate the fabrication process [8].
Despite considerable progress in floating wind
systems, semi-submersible substructures continue to
pose challenges due to excessive weight, which raises
construction, installation, and transportation costs
though impairing dynamic performance [9]. While
extra weight increases inertial forces, reduces power
transmission efficiency, and restricts deployment in
deeper waters [10], inappropriate weight reduction
threatens stability, safety, and operational integrity
[11]. This complex relationship between structural
weight and performance necessitates sophisticated
optimization approaches. Optimization methods are
generally categorized into four groups: analytical,
numerical, metaheuristic, and hybrid approaches.
Analytical methods, based on differentiation and
Karush-Kuhn-Tucker (KKT) conditions, are effective
for convex problems with linear constraints but face
limitations when dealing with nonlinear or multi-
objective problems [12]. Numerical methods, on the
other hand, require intensive computations as model
complexity increases [13]. In contrast, metaheuristic
methods have emerged as powerful tools for solving
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nonlinear and multi-objective problems with large
solution spaces [14]. Notable examples include Particle
Swarm Optimization (PSO) [15], Ant Colony
Optimization (ACO) [16], Genetic Algorithm (GA)
[17], Artificial Bee Colony (ABC) [18], and Firefly
Algorithm (FA) [19]. Furthermore, hybrid methods
combining the advantages of multiple approaches have
been developed [20].

Extensive research has investigated the optimization of
floating platforms and other types of substructures,
including various approaches and applications. For
example, Paulsen et al. [21] and Liu et al. [22] studied
the design optimization of floating VAWTSs. Karimi et
al. [23] presented a multi-objective design optimization
approach for FOWTs. Reyes-Casimiro et al. [24]
developed an automatically optimized methodology for
the structural design of a semi-submersible hull. lvanov
et al. [8] explored the shape optimization of columns
and pontoons of FOWTSs.

The selection of metaheuristic algorithms for structural
optimization requires a comparative study. Therefore,
the performance of different algorithms varies
depending on the problem at hand.

While most previous studies on semi-submersible
substructures have focused on Horizontal Axis Wind
Turbines (HAWTs) and employed classical
optimization methods with limitations in solving
complex problems [25, 26], this study addresses these
challenges through three key aspects, aiming to
develop a lightweight and stable substructure for
offshore wind energy applications: 1) it focuses on the
design of VAWT substructures, taking into account
their unique and geometrically challenging features in
marine environments; 2) it conducts a systematic
statistical comparison and ranking of five conventional
metaheuristic algorithms (GA, ABC, FA, PSO, and
ACOg) for substructure weight optimization to identify
the most suitable algorithm; 3) it introduces a four-
column configuration with regular hexagonal
pontoons, providing geometric symmetry that enables
precise evaluation of algorithm performance on
unconventional structures.

The article is structured as follows: following the
introduction, Section 2 formulates the key parameters
of the reference substructure, including geometric and
hydrostatic properties, in a parametric manner, and
introduces the metaheuristic algorithms considered in
this study. Design constraints such as stability criteria,
motion characteristics, ballast weight, and airgap were
imposed. In Section 3, the developed algorithms and
formulations are validated, and a detailed statistical
comparison and ranking of the algorithms are
presented. After selecting the most suitable algorithm,
the output details of this algorithm are discussed.
Finally, Section 4 provides the overall conclusions and
suggestions for future research.
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2. Research methodology

2.1. Selection and mathematical modeling of the
substructure

2.1.1. Substructure selection

The optimization process in this study begins with the
mathematical modeling of the floating substructure.
The key design variables include the draft depth (with
a constant distance from the still water level to the top
of the column), dimensions of the columns and
hexagonal pontoons, and distances between column
centers. Parametric relationships have been developed
to calculate the weight and problem constraints. In this
regard, the case studied by Rajeswari and Nallayarasu
[27] was considered. It was a four-column substructure
with a Vertical Axis Wind Turbine (VAWT) installed
on the central column which revealed better
hydrodynamic responses compared to three-column
substructures. The related specifications are shown in
Fig. 1 and their values are presented in Table 1.

In this study, just the substructure of VAWT was
considered, while the effect of turbine’s weight and its
center of gravity were accounted for hydrostatic
stability analysis. As the primary objective of this study
was to provide a simplified model for comparison of
the performance of metaheuristic algorithms to serve as
a decision tool for conceptual design, so the following
simplification were adopted:

Figure 1. (a) Schematic view of VAWT; (b) Semi-submersible
substructure with hexagonal pontoons; (c) Plan and
segmentation of hexagonal pontoon into simpler shapes

Table 1. The primary details of VAWT & substructure [27]

Parameter Symbol Unit  Value
weight of VAWT Wrurbine kg 1539x103
COG of VAWT from keel Grurbine m 30.80
Free board F m 12.75
Draft D m 24.75
Column diameter dc m 11.25
Middle column diameter dcin m 6.75
Column height hc m 30.00
Hexagonal pontoon edge bp m 1237
length

Hexagonal pontoon height hp m 7.50
Brace diameter ds m 2.25
Displacement 4 kg 2.10x107
Center of gravity COG m 16.20
Metacentric height GM m 6.375
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Moment of inertia about the x- | kam? 2.46%
axis X gm 1010
Damping 3 % 8.46
Natural period in heave motion T Heave Sec 18.50
Added mass Asz kg 16650000

e As VAWTs have less tower sway and yaw
mechanism compared to Horizontal Axis Wind
Turbines (HAWTS) [28], so in this article, just
heave motion was considered.

e Added mass of hexagonal pontoons was
estimated using an empirical formulation.

e Bracing contribution was considered as a fixed
proportion of the total displaced volume.

e Fatigue was not considered despite its negative
effects on the lifetime of both types of HAWT
and VAWT, but it is lower for VAWT because
of its lower center of gravity [29].

e Stress control was not considered as the mass
of VAWT is less than HAWT due, so HAWT
is more affected by stress than the VAWT [29].

However, the following aspects are expected to be

included in detailed design:

o VAWTS have the potential to produce the same
amount of power as HAWTs with a lower
average thrust and/or lower position of the
Center of Pressure (CP), therefore imposing a
lower inclining moment but substantially
higher torque on the platform [30].

o Floating VAWTSs experience increased motion
in the frequency range close to the turbine
[number of blades] x [rotational speed]
frequency, which may overlap with the range
of wave excitation forces for very large
VAWTS with slower rotational speeds [30].

2.1.2. Displaced volume and displacement weight of
substructure

The total displaced volume (Vy,:4;) Was calculated as
the sum of the underwater volumes of all substructure
components as shown in Eq. (1), where V2 water »
Vewater and VB, .cer represent the displaced
volumes of the pontoon, column, and bracing members,
respectively. These quantities were calculated
according to Eq. (2) through Eq. (4). This formulation
accounts for the full hydrostatic contribution of each
submerged structural element while ensuring its
geometric criteria.

The concept of the formulas and related parameters are
inspired from the study of Gallala [31], who optimized
the hull dimensions of a semi-submersible rig using the
Generalized Reduced Gradient (GRG) method.

Viotar = VII;QWater + VIC;lWater + VIElWater (1)
P 3\/§ 2 2
Vinwater = 4 TbP hp = 6\/§thP 2
1
VIC;lWater =T [d(% (D - hP) + ZDd(%‘In] (3)
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l7115);1Water = ]B (VIP;WLWater + l7I$1Water) (4)

The parameters are illustrated in Fig. 1b. Furthermore,
for simplicity, the displaced volume of braces was
considered as a fraction of the total displaced volume
of the pontoons and columns (Jz), based on the initial
structural configuration. Consequently, the bracing
diameter was calculated using Eq. (5), where L, ater
is the length of the brace submerged in the water.

’4\73
dB — LIBnWater (5)
TLinwater

Once the displaced volume was determined, the
corresponding displaced weight (A) was calculated
from Eq. (6), where p,, represents the water density.

A= pyViotal (6)

2.1.3. Heave’s natural period

Heave and pitch motions are one the main challenges
of VAWTSs, so in this paper, the heave motion is
considered. The heave's natural period was calculated
from Eq. (7) where A5 isthe added massand 4,, is the
waterplane area. The damping is neglected in this
equation. The added mass was calculated from Eq. (8)
where C,,, the added mass coefficient which depends
on the shape and dimensions of the pontoon. Given the
hexagonal cross-section of the pontoon, it was divided
into three sections I, 11, and Il according to Fig. 1c and
the added mass was calculated separately for each
section. In literature, the added mass coefficients for a
two-dimensional rectangle with different length (a) to
width (b) ratios are given [32]. So, by adapting them,
an equation (Eg. 9) was derived for added mass
coefficient. Then the results of each section were added
together to ultimately yield Eq. (8).

When damping is considered, Eqg. (10) is applied
instead, where the damping ratio parameter ¢ is taken
as 8.46% [27].

The waterplane area of the substructure should be
calculated as the summation of the cross-sectional
areas of all water-piercing members, including
columns and inclined diagonal bracing connected to the
central column. In this study, due to the slight
contribution of inclined diagonal braces and their
complicated cross-sectional relation required to
consider the change in the column height and draft
depth, only the effect of columns was considered (Eq.
11). Later, it was noticed that such simplification has
little effect on the results (refer to Fig. 2).

A+ Agg
THeave — 21 (7)
" pPgAw
Ass = C,,pV = 15.2341p,, h148p3852 (8)
C,, = 1.5488(a/b)~ 0148 (9)

Heave

Té—leave —__n (10)
1— &2
s

A, =7 (dg + Z’") (11)

2.1.4. Ballast weight

During the calculations, in order to keep a constant
freeboard, water ballast was used to adjust the draft
depth. It was assumed that the water ballast was filled
only inside the pontoons. Accordingly, the ballast
weight was calculated from Eq. (12), where t is the
member thickness, hgqiiqs: 1S the ballast water height
and bp is the width of the pontoons. By substituting bp
from Table 1 and the density of water from Table 2, the
final relation was obtained.

Wgallast = 6\/§(bP - 2t)thallast X Py
= Npaiase[1590198.27
—(514211.24 x t)
+ (4569.22 X t2)]

This equation expresses the ballast weight as a
quadratic function of both parameters and is applicable
when hggiase 1S known. Alternatively, the ballast
weight can also be determined using Eq. (13), based on
the turbine weight (Wyy-pine), the displaced weight (A)
and the platform weight (Wpea¢£orm)-

(12)

Whallast = A — Wpiatform — WrTurbine (13)

In this context, Wpqtorm Was defined as the sum of
the weights of all platform components (columns,
pontoons, and braces) as shown in Eq. (14), which was
calculated under the assumption that all structural
members are made from steel (ps:). The weight of
individual components can be calculated using Eq. (15)
to Eq. (17).

Wpiatform = Wp + W¢ + Wp (14)
We = [(47Thc(dct - tz))
+ (”(hc + hp)(dcint

— tZ)) (15)
+ (mt(d2 +0.25d%,) )| pse
wp = [(24\/§hp(bpt - tz)) 5)

+ (12V3b3t)] pse
Wp = [4nL?otal(dBt - tz)]pSt (17)
Thus, the ballast weight can be expressed as Eqg. (18).

Wpallase = 72945732.5t2 — 248059764.5¢
— 19461000

By equating Eq. (12) and (18), Eq. (19) can be derived.

(18)
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(72945732.5 — 4569.22hga11ast) >
— (248059764.5
—514211.24hgaase)t
+ (19461000
—1590198.27hga11ast) = 0

In this study, it was assumed that 80% of pontoon’s
capacity is filled, resulting in a member thickness of 4
cm.

(19)

2.1.5. Substructure’s center of gravity (COG)

The substructure's COG can be estimated from Eq.
(20), where, mp , mc and mp are the moments
generated by different components of the substructure.

Jkeel-CoG — mp +mc + Mg (20)
Wp + We + Wpg

The moment arms and related moments induced by the

pontoons, columns, and bracing members are given in

Eqg. (21) through Eq. (26).

1
dllgeel—COG — EhP (21)
mp = WPdl}geel—COG (22)
keel-COG
keel-coc _ 2Widc@) 23
ak = (23)
2w
me = chlcgeel—COG (24)
keel—COG
keel—COG _ L widp®
dk (25)
2w
mg = WBdch'eel—COG (26)

2.1.6. Second moment of area
In operational conditions, the second moment of area
for the waterplane surface is calculated based on the
columns. The considered structure is symmetric about
the horizontal and vertical axes in plan view; therefore,
the longitudinal and transverse second moments of area
are the same and is calculated by Eq. (27).
I= 6”—4(401‘5 +16d2B? + d,) 27)
2.1.7. Vertical distance between COB and MC
Due to the symmetry about both horizontal and vertical
axes, the vertical distance between the center of
buoyancy (COB) and metacenter (MC) is identical for
both longitudinal and transverse directions and can be
obtained from Eq. (28).

JCOB—MC — I

g (28)

2.1.8. Vertical distance from the COB to the keel

The vertical distance from the COB to the keel equals
the ratio of the moment generated by the displaced
weight to the displaced weight itself. Alternatively, the
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displaced volume can be used instead of the displaced
weight, according to Eq. (29).
dkeel—COB
(dP,COB X VP) + (dC,COB X VC) + (dB,COB X VB)
VP +VC +VE
The COB of individual structural components was
calculated from Eq. (30) through Eg. (32).

(29)

1

dPCOB — Ehp (30)
c 4C,COB

dCCOoB — XVvid; (31)
XY
B 1B,COB

groos — 2Vidi diB (32)
2V;

2.1.9. Vertical distance between the COG and MC
For stability, any floating structure must have a positive
GM (distance between the COG and the MC). Since the
distance between the COB and MC is identical in both
longitudinal and transverse directions, the longitudinal
and transverse GM values are estimated from Eq. (33).
GM = dkeel—COB + dCOB—MC _ dkeel—COG (33)
2.2. Constraints
2.2.1. Stability constraints
To ensure adequate stability, any floating vessel must
satisfy the positive GM condition, at the same time,
engineers avoid excessively high GM Values, since
they cause undesirable short rolling periods appeared
by increased reaction forces and accelerations (Eq. 34).

GMpin < GM < GMppq (34)

2.2.2. Constraint for motion characteristics

Safe operation in harsh marine environments requires
constraints on motion characteristics of the floating
structure. The most critical motion is heave oscillations
[33], whose magnitude depends on the heave natural
period. Eg. (35) ensures that the heave natural period
remains above a specified minimum threshold.

THeave > TAI/-IIieT;Je (35)
2.2.3. Ballast weight constraint

The ballast water quantity is a critical parameter for
achieving the target freeboard (vertical distance from
water surface to column top) and suitable draft depth.
The ballast mass must be positive, while the ballast
water volume in the pontoons is limited by the pontoon
capacity as expressed in Eq. (36), where parameter Z is
considered to be 80% of the pontoon's capacity.

Wiatast < (pw6V3hpb})Z 0<Z<1 (36)
2.2.4. Stability constraints
Freeboard ( F) is a critical parameter for semi-

submersible to prevent wave-in-deck loads. This
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constraint imposed by Eg. (37) to ensure adequate
freeboard during operation.

hc+hp—D=F (37)
2.2.5. Geometric constraints

In addition, several geometric constraints were
imposed in this study to preserve the initial structural
configuration and ensure the feasibility of the
optimization process. Also, structural dimensions were
bounded by upper and lower limits based on existing
similar structures. The constraints of construction and
fabrication was also considered.

Table 2 summarizes the parameter values applied
during the optimization process. Gr,rpipe denotes the
vertical distance from the top of the column to the COG
of the turbine.

Table 2. The primary details of VAWT & substructure [27]

Parameter Value Parameter Value
Pw 1000 [kg/m?] JB 0.06 [-]
Pst 7850 [kg/m3] GTurbine 30.8 [m]
G 9.806 [kg/m?] Z 0.8 [-]
pHax 20 [m] U 09[]
pMin 8 [m] F 12.75 [m]
hMax 15 [m] GMyrax 4 [m]
hMin 5[m] GMyin, 1.5[m]
daMex 20 [m] Byax 100 [m]
i 8 [m] Byin ___ 35[m]
h?"” 50 [m] Rumax 3 [']
P 20 [m] Ruin 10
THeave 18.5 [sec] Ditax 40 [m]
t 0.04 [m] Dytin 15 [m]

2.3. Metaheuristic algorithms

All metaheuristic algorithms were implemented with a
maximum iteration stopping criterion and penalty
function (csv=1x10%2) for constraint handling. The GA
was executed using MATLAB’s optimization toolbox
for its computational efficiency and to avoid the
convergence challenges often encountered in manual
implementations. The other four algorithms, ACOg,
PSO, FA, and ABC were custom-coded.

The ACO algorithm, which was introduced in the
1990s [34-36], simulates the intelligent foraging
behavior of ants in identifying the shortest path to food
sources [18]. In 2008, Socha and Dorigo [37] presented
a fundamental progress by introducing the continuous
ACOr framework, in which pheromones are
represented by a normal distribution function and an
archive of high-quality solutions guides the search
process. This study adopts that approach, with
parameters set as: maximum iterations = 9000, archive
size = 20, number of samples = 100, selection pressure
= 0.35, and Deviation-Distance Ratio = 1.

The GA, inspired by natural evolution principles,
employs selection, crossover, and mutation
mechanisms to explore the design space [15]. In this
study, the optimization parameters were set as follows:
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initial population size = 500 chromosomes, maximum
generations = 2000, crossover rate = 80%, and mutation
rate = 20%. An arithmetic crossover operator was used,
generating offspring as weighted linear combinations
of parent solutions.

The PSO algorithm simulates the collective behavior of
birds, utilizing particle positions and velocities to
explore the search space [16]. Key parameters were set
to: maximum iterations = 5000, swarm size = 100, and
cognitive/social coefficients - both set to 2.05.

The FA simulates the phototropic behavior of insects
[20], utilizing light intensity (objective function) and
light absorption (8 = 2) parameters. Other parameters
were: maximum iterations = 5000, population size = 10
fireflies, randomization coefficient = 0.2, and damping
ratio for randomization coefficient = 0.99.

The ABC algorithm, inspired by the intelligent
foraging behavior of honeybees [19], was implemented
with a population of 50 scout bees and a maximum of
5000 iterations. The algorithm employed three bee
groups: 25 worker bees for selected sites, 10 onlooker
bees for elite sites, and scout bees exploring the design
space using the uniform bee dance operator, gradually
reducing the search radius with coefficient = 0.99.
The key hyperparameters used in the metaheuristic
algorithms of this study are summarized in Table 3.

Table 3. Parameters of the studied metaheuristic algorithms

Algorithm  Population Max Key Parameters
/ Archive lterations

GA 500 2000 Crossover = 0.8,
Mutation = 0.2

PSO 100 5000 c1=C2=2.05

FA 10 5000 B=2,a=0.2,
Damping = 0.99

ABC 50 5000 Limit coefficient =

0.99
ACOr 20 9000 Samples = 100, q
=0.35

2.4. Comparison of algorithms

The final evaluation of the metaheuristic algorithms
was conducted based on five key indicators: 1) average
weight of results, 2) average Number of Function
Evaluations (NFE), 3) relative accuracy of solutions, 4)
stability, and 5) reliability. Additional secondary
criteria, including decision variable outcomes and
computational time, were also assessed. Relative
accuracy was defined as the ratio of the minimum result
obtained among the five algorithms to the solutions of
each algorithm. Stability was expressed as the inverse
of the coefficient of variation (1/CV) of weight results,
while reliability was represented by the variance of
weight results. Initial comparisons of algorithms were
made using these criteria, followed by an investigation
of whether the differences were due to their stochastic
nature or inherent algorithmic characteristics. The
Kolmogorov-Smirnov (K-S) test confirmed the normal
distribution of each algorithm’s outputs across five


http://ijmt.ir/article-1-910-en.html

[ Downloaded from ijmt.ir on 2026-02-20 ]

Z. Delgarm, et al. / Comparison of Metaheuristic Algorithms for Weight Optimization of a Semi-Submersible VAWT Substructure with Hexagonal Pontoons

independent runs, thereby permitting the application of
parametric statistical tests, namely ANOVA and
Tukey. ANOVA was employed to determine the
significance of overall differences, while Tukey’s test
was used for pairwise comparisons of algorithms; a
significance level of 5% was considered for both of
them. Finally, the TOPSIS method, which is described
in section 3.5, was applied to perform the final ranking
of the algorithms [38, 39].

Although a larger number of independent runs would
further enhance statistical robustness, five runs per
algorithm were selected as a trade-off between
computational cost and statistical validity. The
implications of limited sample size are reflected in the
reported variance and discussed as a limitation.

3. Results and Discussion

3.1. Validation

Before executing the coded algorithms for optimizing
the semi-submersible wind turbine substructure,
validation process was conducted not only for the
developed formulations but also for the generated
coded algorithms. Fig. 2 demonstrates the validation
results obtained by applying the reference VAWT and
related substructure parameters [27] to the developed
formulations (presented in section 2). This includes
verification of the damped heave natural period,
vertical distance between the COG and MC, added
mass, displaced weight, and stiffness. There is good
agreement between the calculated results and their
physical quantities. In this case, the initial structural
weight was estimated about 9,802 tons.

Afterwards, for validation of the generated coded
algorithms, the drilling rig model which was optimized
by Gallala [31] using the GRG method under transit,
operational, and survival conditions (shown in Fig. 3)
utilized as the benchmark case study. For brevity, only
the outputs of ACOr are shown in Fig. 4 and the results
obtained from all of the studied algorithms are
presented in Table 4. The GRG-based benchmark
results were reproduced in MATLAB under identical
geometric constraints reported by Gallala [31]. Default
solver configurations were retained to maintain
methodological consistency, and no additional
parameter tuning was introduced in the reproduction
process. The optimal weight obtained using ACOr is
7,954 tons, approximately 1.73% lower than the 8,083
tons reported using the GRG method. This is an
acceptable difference between the reproduced weight
and the reported GRG method. This confirms the
reliability of the developed formulations and coded
algorithms, however, due to the stochastic nature of
metaheuristic algorithms, exact repetition of reference
study’s results was not expected.
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Figure 2. Validation of the developed mathematical
formulations

Figure 3. Schematic configuration of drilling rig proposed by
Gallala [31] with rectangular pontoons and columns
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Figure 4. Validation of the ACOr through comparison of the
results with the GRG method [31]

Table 4. Results for decision variables of the drilling rig
obtained from the generated algorithms

Algorithm ACOr PSO BA FA GA GRG
Ic (M) 9.07 9.11 9.28 8.86 10.23 9.11
hc (m) 28.00 28.00 2820 28.00 28.00 27.96
bc (M) 9.66 9.62 9.26 9.89 8.81 9.92
Ip (M) 87.00 87.00 91.16 87.00 87.00 87.00
hp (m) 8.00 8.00 7.80 8.00 8.00 8.04
bp (M) 12.00 12.00 11.70 12.00 12.06 12.06
dc (m) 74.00 74.00 7477 7400 7293 74.00
dr (M) 74.68 75.08 76.36 7556 73.61 73.97
Weight (t) 7954 7954 7901 7955 8068 8093
Difference 1.71 172 238 171 031

with GRG % % % % %
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3.2. Evaluation of algorithms

3.2.1. Comparing the performance of metaheuristic
algorithms

After validation of the generated coded algorithms,
they were implemented for optimization of the decision
variables of the substructure of studied VAWT [27].
The results are shown in Fig. 5 which supports almost
similar quantities. The difference is mainly observed
for the column height, resultant draft and their distance
to each other. In the next step, these five metaheuristic
algorithms were evaluated through five independent
runs aimed at minimizing the weight of the VAWT
substructure. As illustrated in Fig. 6, although the
decision variable resultsin Fig. 5 appear almost similar,
but meaningful differences in substructure weight is
observed. This highlights that the importance of design
parameters is different in marine structure’s weight
optimization. Furthermore, it seems that the dispersion
of the results is different for the studied metaheuristic
algorithms. The optimized weight results from each
independent run, their standard deviation (STD) and
their mean value for each algorithm are summarized in
Table 5. It confirms that the ACOg algorithm achieved
the best performance with an average weight of 6,112
tons, while ABC produced the worst results of mean
weight of 6,694 tons. It also reveals the ACORr's smaller
standard deviation (STD) compared to other algorithms
which indicates its significant higher reliability.
Although, from some viewpoint, computational time
may be more important criterion, but the number of
function evaluations (NFE) required to neutralize the
penalty function, as a measure for convergence speed,
can be more suitable which is shown in Fig. 7.
Performance differences arise from the distinct search
mechanism employed by each algorithm within the
design space.

In addition to NFE, the average computational time
over five independent runs was recorded. Although
execution time depends on hardware specifications and
implementation environment, the recorded averages
(GA:59s, ABC: 55, FA: 105, PSO: 135, ACOg: 26 5)
provide complementary insight into practical
computational cost. Nevertheless, NFE was retained as
the primary convergence indicator due to its hardware-
independent nature.

Value [m]

Pontoon width  Pontoon height Column diameter Column height Column distance  Draft depth
Decision variables

BGA ©ABC WFA WPS0O EMACOR

Figure 5. Optimized decision variables for substructure of
VAWT obtained by the studied algorithms
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Figure 6. Discrepancy in the weight of substructure obtained
from five independent runs of each algorithm

The evaluation of algorithm efficiency based on the
NFE reveals that the FA presented the fastest
convergence with NFE of 16,200. In contrast, the GA
exhibited the slowest performance with a NFE of
607,400, highlighting the inherent benefit of intelligent
search mechanisms like those in FA compared to GA.
As noticed in the overdrawn section of Fig. 7, although
GA's final results fall within an acceptable range, its
high NFE prior to full convergence is notable. This is
further supported by GA's gradual, downward-sloping
convergence curve during the final stages.

Table 5. Optimized weight results, their STD and mean value
from five independent runs of each algorithm

10.00

(ton)

RunNo. — =2 ABC FA PSO  ACOr

1 622381 670356 612842 6184.84 6109.82

2 624278 688032 609402 622041 611183

3 623509 636395 619406 617820 6109.22

4 6133.93 642418 6099.027 6093.06 6110.17

5 643039 7097.70 611682 6307.62 6117.20
STD 108 308 40 78 3
Mean — oocs 6604 6126 6197 6112
weight

s 1000000000000.00 6800.00

£ 100000000000.00 47000

€ 1000000000000 o600

x 1000000000.00 650000
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Figure 7. Optimization and convergence trend of algorithms,
displaying the criterion for NFE

3.2.2. Accuracy of optimal solutions and stability of

algorithms

The relative accuracy of the algorithms, assessed by the
average solution ratio shown in Fig. 8a, indicates that
the ABC algorithm has the lowest precision, likely due
to its short search process, and Fig. 8b presents the
stability coefficient, defined as the ratio of average
optimal weight to standard deviation, which shows that
ACOr is the most stable algorithm, with a stability
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coefficient of 1,879. Hence the key question arises
whether these differences in results and NFE metrics
are simply due to the stochastic nature of the algorithm,
or does the choice of the algorithms fundamentally
affect the optimization results? To address this, data
normality was first verified by the K-S test shown in
Fig. 9. All algorithms exhibited K-S statistics below the
critical value of 0.56327 at the 5% significance level
[40], validating the use of parametric ANOVA and
Tukey tests.

GA GA

ABC  ACOR 1879 ABC
58,

80" 152

PSO “FA PSO FA
(@) (b)

Figure 8. (a) Accuracy and (b) Stability of optimization
algorithms in 5 iterations.

3.3. ANOVA test results

Analysis of variance (ANOVA) test for final weight of
platform and NFE criteria are presented in Tables 6 and
7 respectively, which shows F-statistic of 12.63 and
9.85 for the final platform’s weight and NFE criteria,
individually, both exceeding the critical value of 2.866.
This indicates that the null hypothesis (H,), assuming
equal means for these two criteria is refused.
Significant level of P = 5% was adopted in this study.
The calculated p-values were 2.75%x107° for the
optimized platform weight and 1.43x10* for NFE,
both substantially below the 5% significance threshold.
Given that the Kolmogorov—Smirnov test confirmed
normality of the samples, the application of parametric
ANOVA is statistically justified despite the limited
number of independent runs.

In other words, ANOVA demonstrated that the
probability of differences in the scattered output results
is below 5%, confirming statistically significant
differences among the algorithms. Thus, the variations
discussed in the previous sections are not due to
algorithmic randomness (H,), but rather arise from the
intrinsic mechanisms of the algorithms. Specifically,
ANOVA indicated that at least one algorithm in this
study differs from the others, and its inclusion or
exclusion in  substructure optimization could
fundamentally alter the results. Consequently, the
ANOVA outcomes necessitate pairwise comparisons
of algorithms, which are addressed in the following
section.

Table 6. ANOVA test results for optimized weight data of
studied algorithms in five different runs

Source of Between Within Total
Variation Groups Groups

SS 1154171981  457037.307 1611209.289
df 4 20 24

MSE 288542.995 22851.865

F 12.627

P-value 2.753E-05

Fcrit 2.866
0.600 0.554 0.56327

B Al S - il Sttt

0.500 o_ies o533 0543 ° 0.552
0.400

« 0305 0322

é 0.300 |0.334 °

3 0.200 © Weight results

N4 = Critical
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0.000

GA ABC FA PSO ACOR
Algorithm

Figure 9. Comparing the K-S statistics with its critical value in
the Kolmogorov-Smirnov test for weight and NFE results

3.4. Pairwise comparison of algorithms (Tukey)

The pairwise comparison of the studied algorithms are
presented in Table 8 which is the absolute difference
between two results obtained from each algorithm. If
this difference exceeds the value HSD =g X

JVMSE /n, it is considered statistically significant and
highlighted in red. In this expression, MSE denotes the
mean square error obtained from the ANOVA test, n is
the number of samples in each group (n=5), and q is the
studentized range distribution based on error, which,
for n, number of groups (k=5), and a 5% significance
level, HSD is calculated as 4.232 from the
corresponding values of q obtained from its related
tables [42]. Although software such as SPSS or R can
be used for this analysis, Excel is applied in this study.
The Tukey test shows that, for the substructure weight
criterion, the ABC algorithm is significantly different
from the others, while no statistically significant
difference is observed among FA, PSO, and ACOkg
algorithms. Regarding the NFE criterion, results
indicate that only GA is significantly different from the
other algorithms, with no notable difference among the
other four algorithms. These findings highlight that
although some algorithms such as GA and ABC clearly
demonstrate lower performance, the others including
FA, PSO, and ACOr are statistically at the same level
and can be considered suitable alternatives.

Table 7. ANOVA test results for NFE data of studied
algorithms in five different runs

Source of Between Within Total
Variation Groups Groups

SS 1.054E+12 5.348E+11 1.589E+12
df 4 20 24
MSE 2.634E+11 2.674E+10

F 9.851

P-value 1.428E-04

Fcrit 2.866

3.5. Ranking algorithms using the TOPSIS method
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To comprehensively evaluate the performance of the
studied algorithms, the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS)
method, a Multi-Criteria Decision-Making (MCDM)
technique was applied. The values of the criteria and
their assigned weights (C.W.) are presented in Table 9.
Criteria weights were assigned based on engineering
judgment, prioritizing structural weight reduction as
the primary objective. Considering that the mean
optimized weights obtained from the five algorithms
are relatively close in magnitude, moderate variations
in the weight assigned to the primary objective are not
expected to alter the overall ranking outcome.

The final weight of each criterion was obtained by
combining their relative weights [43]. The authors
assigned values from 1 to 9 to each criterion based on
the "Combined relative weighting" section of Table 9
and the importance of each criterion, as reported in the
"Relative weight" row of the same table. These values
were then divided pairwise in Table 10 and normalized
in Table 11. Finally, the final weight of each criterion,
presented under the designation C.W., was calculated
by averaging the values of each row in Table 11.

This approach evaluates the algorithms based on five
key criteria: average optimal weight, NFE, dispersion
of weight results, accuracy, and model stability.
TOPSIS facilitates comparison and selection of the best
option by calculating the distance of each algorithm
from the positive ideal solution and the negative ideal
solution. For all criteria, except relative accuracy and
stability, the positive ideal corresponds to the minimum
value obtained by the algorithms, while the negative
ideal corresponds to the maximum; this condition is
reversed for accuracy and stability. Based on the
TOPSIS ranking results shown in Table 12, ACOkg,
with a similarity index of 0.881, was identified as the
best algorithm. This superiority was mainly attributed
to achieving the lowest platform weight (7970 tons),
combined with the highest accuracy, stability, and
reliability, although the number of NFE in this
algorithm is higher compared to PSO and FA. FA and

PSO ranked second and third, respectively, whereas
GA and ABC, with weaker performance, are positioned
in the lower ranks. These findings clearly reveal ACOg
as the preferred option for this engineering problem,
despite higher computational demands, due to its
substantial advantages across other criteria. The
following sections present the algorithm results in
detail.

3.6. ACORr results

3.6.1. Accuracy of optimal solutions and stability of
algorithms

Multiple runs demonstrated the model's capability to
satisfy all constraints with 5,000 iterations and a
population size of 20. The model was further tested by
increasing the iterations up to 10,000. As shown in Fig.
10 the optimized weight in all cases was lower than the
initial weight, with convergence achieved after
approximately 8,000 iterations. As mentioned earlier,
in this study, the maximum number of iterations for the
ACOg algorithm was considered to be 9000. It should
be noted that the other algorithms were assigned
maximum iterations in a similar manner.

All optimized configurations satisfied the predefined
hydrostatic stability, ballast, freeboard, and geometric
feasibility constraints imposed in the optimization
model. Although detailed structural strength and
fatigue verification were beyond the scope of the
present work, the resulting geometric dimensions fall
within ranges reported for comparable semi-
submersible platforms in the literature.

3.6.2. VAWT substructure results from the ACOr
Due to the stochastic nature of the model, as reported
in Table 13, multiple executions yield different but
valid results, all satisfying the constraints. On average,
a 37.6% weight reduction (approximately 3,686 tons)
was observed. The standard deviation, around 0.05% (3
tons), demonstrates the proposed model’s reliability
across different runs. This consistency, despite the
stochastic nature, confirms the algorithm's capability to
identify stable optimal solutions.

Table 8. Tukey tests for optimized weight and average NFE results in five independent runs

Algorithm GA ABC FA PSO ACOr
Average weight results
GA - 440.741 i26.733 P 56.375 41 553
ABC 440.741 - B67.747 07116 562204
FA i26.733 567.747 - I 70358 | 14821
PSO B 56.375 457 116 P 70358 - 85179
ACOr 41553 582,294 14.821 Pss.179 -
Average NFE results
GA - 328590 551199 522740 342560
ABC 328590 - 262300 193850 | 13970
FA 551199 262309 - P 68459 248339
PSO 522740 193850 P 68459 - 179880
ACORr 342860 | 13970 248339 179830 -
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Table 9. Decision criteria used in the TOPSIS method and their relative weights

Avg. weight [ton] Avg. NFE Variance Accuracy Stability
GA 6253.2 607400 11730.61 0.977 57.735
ABC 6694.0 278510 94878.00 0.913 21.732
FA 6126.5 16200 1617.40 0.998 152.321
PSO 6196.8 84660 6022.45 0.986 79.851
ACOr 6111.7 264540 10.58 1.000 1879.142
Relative weight 9 3 5 7 6
C.w. 0.328 0.098 0.149 0.229 0.196
Combined relative weighting
Option A 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 OptionB
Table 10. Pairwise division weight of criteria
Avg. weight [ton] Avg. NFE  Variance  Accuracy Stability
Avg. weight [ton] 1.000 3.000 3.000 1.286 1.500
Avg. NFE 0.333 1.000 0.600 0.429 0.500
Variance 0.556 1.000 1.000 0.714 0.833
Accuracy 0.778 2.333 1.400 1.000 1.167
Stability 0.667 2.000 1.200 0.857 1.000
Sum 3.333 9.333 7.200 4.286 5.000
Table 11. Normalized pairwise weights and final weight of criteria
Avg. weight [ton] Avg. NFE  Variance  Accuracy Stability C.W.
Avg. weight [ton] 0.300 0.321 0.417 0.300 0.300 0.328
Avg. NFE 0.100 0.107 0.083 0.100 0.100 0.098
Variance 0.167 0.107 0.139 0.167 0.167 0.149
Accuracy 0.233 0.250 0.194 0.233 0.233 0.229
Stability 0.200 0.214 0.167 0.200 0.200 0.196
Sum 1.000 1.000 1.000 1.000 1.000 1.000
Table 12. Ranking results of metaheuristic algorithms based 4. Conclusion

on the TOPSIS method

Similarity index

Rank

Alg. D} D; Df+D; P
GA 0.206 0.130 0.337 0.387 I 4
ABC 0.246  0.045 0.291 0.153 . 5
FA 0.179 0.167 0.347 0482 [ 2
PSO 0.187 0.156 0.344 0.455 I 3
ACOr 0.034 0.248 0.282 0.881 | 1
10000 1
ool o~
9000
8500 A =0-Optimal weight
’g 8000 | = Primary weight
TE’ 7500
2 7000 {
= 6500 1 ?\+\+\0_’¢
6000
5500 . . . . . . »
4 5 6 7 8 9 10 11

. Thousands
Itraition

Figure 10. Comparison of primary [27] and optimized weights
with standard deviation of optimization results in five runs
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This study developed a parametric framework to
evaluate five metaheuristic algorithms (GA, ACOkg,
ABC, FA, PSO) for optimizing a semi-submersible
VAWT substructure with hexagonal pontoons. The
optimization process adhered to constraints of
hydrostatic stability, motion performance, geometric
feasibility, and airgap. Each algorithm was executed
five times, and the K-S test confirmed that the results
followed a normal distribution. The findings are
summarized as follows:

1) Overall, ANOVA, at a 5% significance level,
indicated that the choice of algorithm had a statistically
significant effect on optimization results, and the
differences observed were not due to randomness but
were attributable to the mechanisms and inherent
characteristics of the algorithms.

2) Specifically, Tukey’s test revealed that the ABC
algorithm, in terms of structural weight, and the GA
algorithm, in terms of NFE, significantly differed from
the others, with these differences reflecting their
inferior performance relative to the rest.

3) The final ranking using the TOPSIS method, based
on criteria of average weight, average NFE, relative
accuracy, stability, and reliability, identified the ACOr
algorithm as the best method, achieving a 37.6%
reduction in structural weight (from the initial 9802
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tons to 6112 tons), despite requiring higher optimization frameworks, and extended statistical
computational effort compared to PSO and FA. sampling for detailed design.

4) The FA, PSO, GA, and ABC algorithms ranked

next, respectively. 5. Author Contribution

5) Furthermore, it was shown that, comparatively, Z. Delgarm: Writing — original draft, Visualization,
ACOg exhibited superior relative accuracy (100%), Validation, Methodology, Investigation, Data curation.
stability (1/CV = 1879.142), and reliability (\Variance A.R. Mostafa Gharabaghi: Writing — review &
= 10.58) compared to the others. editing, Supervision, Methodology, Conceptualization.
The main limitations of this study include simplified A. Emami: Writing — review & editing, Supervision.
hydrodynamic modeling, neglect of aero-structural

coupling, and the absence of detailed structural strength 6. Data Availability Statement

assessment. Future research should incorporate fully Data will be made available on request.

coupled time-domain simulations, multi-objective

Table 13. Results of decision variables from the ACOr algorithm

Pontoon Pontoon Column Column dlst;nce Depth Substructure  Avg. Reduced Standard
Try width height  diameter height column draft weight weight weight deviation
[m] [ton] [ton] [%6] [ton]

1 9.44 6.83 6.83 20.20 61.13 13.53 6109.817

2 9.63 6.32 7.01 17.49 58.15 11.06 6111.827

3 9.61 6.31 7.00 17.67 58.36 11.23 6109.217 6112 37.64 3

4 9.62 6.30 7.00 17.67 58.37 11.22 6110.174

5 9.66 6.35 7.004 17.14 57.75 10.74 6117.202
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