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ABSTRACT

Efficiency of numerical methods is an important problem in dynamic
nonlinear analyses. It is possible to use of numerical methods such as beta-
Newmark in order to investigate the structural response behavior of the
dynamic systems under random sea wave loads but because of necessity to
analysis the offshore systems for extensive time to fatigue study it is important
to use of simple stable methods for numerical integration. The modified Euler
method (MEM) is a simple numerical procedure which can be effectively used
for the analysis of the dynamic response of structures in time domain. It is also
very effective for response dependent systems in the field of offshore
engineering. An important point is investigating the convergence and stability
of the method for strongly nonlinear dynamic systems when high initial values
for differential equation or large time steps are considered for numerical
integrating especially when some frequencies of the system is very high. In
this paper the stability of the method for solving differential equation of
motion of a nonlinear offshore system (tension leg platform, TLP) under
random wave excitation is presented. In this paper the stability criterion and
the convergence of the numerical solution for critical time steps are presented.

1. Introduction

Many studies have been carried out to understand
the structural behavior of TLP and determine the
effect of several parameters on dynamic response and
average life time of the structure [1-6]. The tether
system is a critical and basic component of the TLP.
The most important point in the design of TLP is the
pretension of the legs. The pretension causes that the
platform behaves like a stiff structure with respect to
the vertical degrees of freedom (heave, pitch and roll),
whereas with respect to the horizontal degrees of
freedom (surge, sway and yaw) it behaves as a
floating. structure. Therefore the periods of the
vertical degrees of freedom are lower than the others.
Another important problem is investigating the effects
of radiation and scattering on the hull and tendon
responses. An analytical solution for surge motion of
TLP was proposed and demonstrated [7], in which the
surge motion of a platform with pre-tensioned tethers
was calculated. In that study, however, the elasticity
of tethers was only implied and the motion of tethers
was also simplified as on-line rigid-body motion
proportional to the top platform. Thus, both the
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material property and the mechanical behavior for the
tether incorporated in the TLP system were ignored.
When this simplification was applied, no matter what
the material used was or what the dimension of tethers
was, the dynamic response of the platform would
remain the same in terms of the vibration mode,
periods and the vibration amplitude. An important
point in that study was linearization of the surge
motion. But it is obvious that the structural behavior
in the surge motion is highly nonlinear because of
large deformation of TLP in the surge motion degree
of freedom (geometric nonlinearity) and nonlinear
drag forces of Morison equation. Therefore the
obtained solution is not true for the actual engineering
application. For heave degree of freedom the
structural behavior is linear, because there is no
geometric nonlinearity in the heave motion degree of
freedom and drag forces on legs have no vertical
component. Similarly, an analytical heave vibration of
TLP with radiation and scattering effects for damped
systems

has been presented [8]. a similar method is presented
for hydrodynamic pitch response of the structure [9].
The modified Euler method [10] presented herein is a
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simple numerical procedure which can be effectively
used for the analysis of the dynamic response of
structures in the time domain. It has been shown that
the modified Euler method is conditionally stable
[11]. The application of the modified Euler method
made herein shows that it is efficient and easy to use,
and that it can be employed to obtain accurate
solutions to a wide variety of structural dynamics
problems. Simplicity is one of the distinguishing
features of the method. Because the modified Euler
method is conditionally stable, it may be inefficient
for the analysis by direct integration of the response of
a multidegree-of-freedom system with a very short
highest natural period of vibration. However, the
method is explicit, and it is particularly sited for the
analysis of non-linear systems. The modified Euler
method has been successfully used in the analysis for
the dynamic response of wave-excited offshore
structures [12].

A Comprehensive study on the results of tension leg
platform responses in random sea considering all
structural and excitation nonlinearities is presented by
Tabeshpour et al. [13]. This kind of interpretation of
the results is necessary for optimum design of TLP.
The effect of added mass fluctuation on the pitch
response of tension leg platform has been investigated
by using perturbation method both for discrete and
continues models [14]. Liu et al. described an analysis
of the non-linear effects and identification of non-
linear pitch motion on tension leg platforms. The
purpose of their paper was to accurately identify pitch
motion on the tension leg platform and to interpret the
non-linear effects using statistical methods, the
NARMAX methodology, and the higher order
frequency response functions [15].

Chandrasekaran et al. investigated the response of
triangular tension leg platform (TLP) for different
wave approach angles varying from 0° through 90°
and its influence on the coupled dynamic response of
triangular TLPs [16]. Barranco-Cicilia et al. presented
a methodology to perform a Load and Resistance
Factor Design (LRFD) criterion for the design of
tension leg platforms (TLP) tendons in their intact
condition [17]. A robust stochastic design framework
were discussed for design of mass dampers by
Taflanidis et al. The focus was on applications for the
mitigation of the coupled heave and pitch response of
Tension Leg Platforms under stochastic sea excitation
[18].

Tabeshpour et al. investigated design and effect of
tuned mass damper on response of tension leg
platform under wind and wave forces [19]. Efficiency
of numerical methods is an important problem in
dynamic nonlinear analyses. It is possible to use of
numerical methods such as beta-Newmark in order to
investigate the structural response behavior of the
dynamic systems under random sea wave loads but
because of necessity to analysis the offshore systems
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for extensive time to fatigue study it is important to
use of simple stable methods for numerical
integration. The key point of suitability of MEM for
solving the TLP system is that the maximum
frequency of the system is about 0.5 Hz. In this paper
the convergence and stability of the method for
solving differential equation of motion of a nonlinear
offshore system known as tension leg platform under
random wave excitation is presented.

2. The Modified Euler Method (Mem)

Consider the numerical evaluation of the free-
vibrational response of a linear, undamped, simple
mass-spring system governed by the following
differential equation:

X +ox =0 (1)

in which x is the displacement of the system; o is the
circular natural frequency of vibration of the system;
and a dot superscript denotes differentiation with

respect to time, . Let x, and x,6 be the known
displacement and velocity, respectively, of the system
at time ¢, . This time is expressed in terms of a non-
negative integer number, #, and a time step, Az, as
t,=nAt. By application of the MEM, the

displacement and velocity of the system, x and

n+l

X at time ¢, =(n+1)Af, are evaluated as

n+l 2

follows. By using eq. (1), compute

X =—w'x )

n n

Then, compute

X =% X% At 3)

Now there is two approaches in order to calculate
X ., . First approach is using only the velocity in time
step nt+1:

xn+l:xn +‘X':n+1At (4)

The second one is averaging of velocities of two
steps:

n+l +xn At (5)

If one uses the following equation

X, =x,+x, At (6)

then the method is called Euler method. With the
values of x,,, and x  available, the procedure
defined by eqs. (2)-(4 or 5) may be repeated to
compute the response of the system for subsequent
discrete times larger than ¢ . These computations
carried out proper

can be accurately by a
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implementation of the MEM. It is important to note
that, in the MEM, the solution for x is based on

using the equilibrium equation at time ¢, . Therefore,

n+l

the MEM is an explicit method. It is also important to
note in eq. (4) that the displacement x . is computed

by using the velocity x . . If x is replaced in eq.

n+l

(4) with x, , then the procedure defined by egs. (2)-

(4) reduces to the well known standard Euler method,
which is an unstable approach that should never be
used for structural dynamics applications.

3. Stability Analysis for the Mem
Eq. (2) is substituted into eq. (3), and eq. (4) is
rewritten to obtain

X =X —Aox, (7)

xn+l:xn+At‘X':n+l (8)

and it is apparent from eqs. (14) and (15) that

X, =xX  —AMo'x, 9
X, =x,, +Atx, (10)
Subtracting eq. (10) from eq. (8) leads to

xn+l_xn :xn_‘xnfl—'—At(x.nH_‘x:n) (11)

and the quantity (x,,, —x,)may be obtained from eq.
(3) and substituted into eq. (18) to obtain

x,,-Q2-At*0)x, +x,,=0 (12)
Eq. (19) is a linear homogeneous difference equation
of second order (Karman and Biot, 1940) and it can be
rewritten as

x,,-2-At’@0)x,, +x,=0 (13)
the solution of which may be expressed as
x, =A" (14)

By substituting eq. (14) into eq. (13), the following
characteristic equation is obtained:

A —(2-A o)A +1=0 (15)

and the roots of eq. (15), A; and A,, provide the values
of A which are needed to find x, in accordance with
eq. (14). These roots are found to be

A, =(1-05At" 0*) +0.5At o (At* @* —4)"*  (16)
A, =(1-0.5At" ) - 0.5At o (At & — 4)"” (17)
There are three important cases: in Case 1, the roots

are real-valued and distinct; in Case 2, the roots are
real-valued and equal; and in Case 3, the roots are
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complex-valued quantities. Cases 1 and 2 lead to
unstable solutions for x, ; and Case 3, which leads to

stable solutions, is obtained if
At’w’ <4

(18)

This expression gives the condition for the stability of
the MEM and may be reformulated as

At<l
Vi3

(19)

in which T =27/ w is the natural period of vibration
of the system. Therefore, the MEM is stable only
when eq. (26) is satisfied.

Similar calculation and considering eq. (12) instead of
(11) results in

At<£
Vi3

(20)

Assuming that the condition for stability is satisfied,
egs. (16) and (17) may be rewritten as

A =(1-0.5At @*) +i 0.5At 0(4— At 0*)? =e'* (21)

A =(1-0.5A1> @) —i 0.5At 0 (4 - At* @*)* =e " (22)

where i =+/-1 , and
0.5At (4 — At*w*)" J

(23)

= arctan
K ( 1-0.5M %0

and the solution for the displacements x, is obtained
from egs. (14), (20) and (21) as

Xn :CIein‘u +Czefin‘u (24)
or, alternatively, as
x, =D, cos(nn)+D,sin(nn) (25)

in which C, C,, D, and D, are constants to be
determined from the specified initial conditions.

4. TLP, Strongly Nonlinear System

Because of large displacement of TLP and
nonlinear terms in exciting force, the equation of
motion of TLP is strongly nonlinear and the exciting
wave force is response dependent as well
(Chandrasekaran, S., Jain, A.K., 2001, 2002). A brief
review on structural modeling of TLP is presented
here in.

5. Mass Matrix of TLP

Structural mass is assumed to be lumped at each
degree of freedom. Hence, it is diagonal in nature and
is constant. The added mass, M,, due to the water
surrounding the structural members and arising from
the modified Morrison equation is considered up to


http://ijmt.ir/article-1-155-en.html

[ Downloaded from ijmt.ir on 2026-01-08 ]

M. R. Tabeshpour, A. A. Golafshani, M. S. Seif / Stability of the Modified Euler Method for Nonlinear Dynamic Analysis of TLP

the mean sea level (MSL) only. The fluctuating
component of added mass due to the variable
submergence of the structure in water is considered in
the force vector depending upon whether the sea
surface elevation is above (or) below the MSL. The
mass matrix of TLP is

Surge Sway  Heave Roll Pitch Yaw
M, 0 0 0 0 0 |
o M,, 0 0 0 0
M ]= MO MO AA: " MO 8 g
aRS aRWw aRH RR
aPS MaPW MaPH 0 MPP 0
. 0 0 0 0 0 M,
(20)
where Mg =M,, =M, =M and
M =M ,+M, and M, 6 =M,, +M_,, and

M, =M,, +M ,, . Mis the total mass of the entire
structure, M ,,is the total mass moment of inertia
about the x axis = Mr?, M, is the total mass

moment of inertia about the y axis = Mry2 , M,, is

the total mass moment of inertia about the z axis =
My, ry is the radius of gyration about the x axis, 7, is
the radius of gyration about the y axis, and 7, is the
radius of gyration about the z axis. The added mass
terms are:

My =M,, =M_, =025zD*(C, -Dpdl  (27)

M= [ aM (28)

lenght

M ,, is the added mass moment of inertia in the roll
degree of freedom due to hydrodynamic force in the
surge direction. M ,, is the added mass moment of
inertia in the roll degree of freedom due to
hydrodynamic force in the sway direction. M ,, is
the added mass in the roll degree of freedom due to
hydrodynamic force in the heave direction. M ,; is
the added mass moment of inertia in the pitch degree
of freedom due to hydrodynamic force in the surge
direction. M ,, is the added mass moment of inertia
in the pitch degree of freedom due to hydrodynamic
force in the sway direction. M ,, is the added mass
in the pitch degree of freedom due to hydrodynamic
force in the heave direction. The presence of off
diagonal terms in the mass matrix indicates a
contribution in the added mass due to the
hydrodynamic loading. The loading will be attracted
only in the surge, heave and pitch degrees of freedom
due to the unidirectional wave acting in the surge
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direction on a symmetric configuration of the platform
about the x and z axes).

6. Stiffness Matrix of the TLP

The coefficients, K 3, of the stiffness matrix of the
triangular TLP are derived as the reaction in the
degree of freedom 4 due to unit displacement in the
degree of freedom B, keeping all other degrees of
freedom restrained. The coefficients of the stiffness
matrix have nonlinear terms due to the cosine, sine,
square root and squared terms of the displacements.
Furthermore, the tendon tension changes due to the
motion of the TLP in different degrees of freedom
makes the stiffness matrix response-dependent. The
stiffness matrix [K] of a TLP is:

Surge Sway Heave Roll Pitch Yaw|

K, 0 0 0 0 0 |
0 K,, 0 0 0 0
[K]= KHS KHW KHH KHR KHP KHY (29)
0 K,, 0 K, 0 0
K, 0 0 0 K,
| 0 0 o 0 0 K, |

In the stiffness matrix the presence of off-diagonal
terms, reflects the coupling effect between the various
degrees of freedom and the coefficients depend on the
change in the tension of the tendons, which is
affecting the buoyancy of the system. Hence, the [K]
is not constant for all time instants but the coefficients
are replaced by a new value computed at each time
instant depending upon the response value at that time
instant. The stiffness matrix of the four-legged square
TLP is taken as suggested by Morgan and Malaeb
(1983).

7. Damping Matrix, [C]

Assuming [C] to be proportional to [K] and [M],
the elements of [C] are determined by the equation
given below, using the orthogonal properties of [M]
and [K]:

C=aM +pK (30)

o and fB are constant. This matrix is calculated
based on the initial values of [K] and [M] only.

8. Wave Forces

The problem of suitable representation of the wave
environment or more precisely the wave loading is the
problem of prime concern. Once the wave
environment is evaluated, wave loading on the
structure may be computed based on suitable theory.
In this work the water particle position 77 is

determined according to Airy’s linear wave theory:

n(x,t)=A4cos(kx —at) (31)
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where A4 is the amplitude of the wave, k is the wave
number, @ is the wave frequency and x is the
horizontal distance from the origin.

In stochastic modeling, sea waves are commonly
characterized by their PSDFs. Water particle
kinematics, at different location on the structure, are
considered to be derived processes and these need not
be specified in addition to the sea surface elevation.
On account of various physical processes involved in
the generation of waves, a random wave is regarded as
a superposition of an infinite number of independent
waves of different wave heights and wave periods
with arbitrary phase angles. In the present simulation
procedure, waves are assumed to be stationary,
homogeneous and ergodic in the statistical sense. By
considering the random process as a linear
superposition of a large number of independent
waves, its distribution becomes Gaussian. Depending
upon the fetch conditions, several analytical
expressions exist for the approximation of the sea
surface elevation spectrum (i.e. its PSDF). A well-
known spectrum model for ocean waves is Peirson-
Moskowitz (P-M) model. The modified P-M spectrum
model is assumed to adequately represent the sea
state. It is given by:

HT (T w)” 1(T.o)"
S””(w)zﬁ{ 227r } exp{—;( 227r j (32)

where H_ is the significant wave height in m, 7' is

zero up crossing period in s and @ is the angular
frequency. Figure 1 shows the curve of the spectrum.
The linearized small-amplitude wave theory allows
the summation of velocity potential, wave elevation,
and water particle kinematics of the individual regular
wave to form a random wave made up of a number of
components. The generated synthetic random wave is
considered to be adequately represented by a
summation of linear harmonic regular waves. The
series representation of sea surface elevation is given
by the equation

k

nx,t)= IimZA,. cos(k,x —ait +¢,) (33)
i=l

A, =,/2Sm(a),.)Aa),. (34)

where 4; is the amplitude of the i-th component wave,
k; is the wave number of the i-th component wave, @,
is the wave frequency of the i-th component wave, @
is the phase angle of the i-th component wave, varying
between 0 and 2, x is the horizontal distance from the
origin and S;,(w) is the one-sided sea surface
elevation PSDF. Once the sea surface elevation time
history m(x,f) is known from Eq. (33), the time
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histories of the water particle velocity and
acceleration are computed by wave superposition,
according to Airy’s linear wave theory. The horizontal
water particle velocity u(x,t)and the vertical water

particle velocity v (x,t) are given as:

k
u(x,t)= ZAia)i cos(k,.x —wt +¢, )M
=l sinh(k, (d +7))
(35)
k .
V(x,t) =2Aiw,« sin(k.x — .t +‘Pf)M
=l sinh(k, (d +7))
(36)

where £; is the i-th component wave number, y is the
vertical distance at which the wave kinematics is
calculated, d is the water depth, 7 is the sea surface
elevation, which is equal to n(x,f) given by Eq. (31).
The wave forces acting on the cylindrical member of
the TLP structure are obtained by using modified
Morison’s equation, which takes relative velocity and
acceleration between the structure and water particles
into account. While calculating the wave forces, water
particle kinematics for each member are determined
with respect to the average value across the diameter
of the member. The integration of the elemental forces
acting on the pontoons and columns is performed
numerically by dividing the cylinder into small
elements. The instantaneous total hydrodynamic force
is determined at each time station with the assigned
values of the structural displacements, velocities and
accelerations.

In order to probability work on the wave height the
knowledge of the wave height distribution is of great
importance since various valuable information can be
derived from this distribution. It has been found that
wave heights of an irregular sea follow a Rayleigh
distribution.

9. Hydrodynamic Force

Water particle kinematics are evaluated using
Airy’s linear wave theory. This description assumes
the wave form whose wave height, H, is small in
comparison to its wave length, L, and water depth, d.
Knowing the water particle kinematics, the
hydrodynamic force vector is calculated in each
degree of freedom. According to Morison’s equation,
the intensity of wave force per unit length on the
structure is given as:

f(x,y.,)=0.5p,C,D @i —x +1i, )i =% +ui,
+0.252D°p,C,ii +(0.257D[C,, ~1]p, ¥

(37)

where i is the current velocity, u is the horizontal
water particle velocity, x is the horizontal structural
velocity, D is the diameter of the column, x is the
horizontal structural acceleration, and u is the
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horizontal water particle acceleration. The last term in
Eq. (37) is the added mass term and a positive sign is
used when the water surface is below the MSL and a
negative sign is used when water surface is above the
MSL. The contribution of added mass up to the MSL
will already be considered along with structural mass.
It is seen that both structural stiffness and external
load are nonlinear.

10. Equation of Motion
The equation of motion of the TLP under a regular
wave is given as:

[M X} +[CTHX L+ [K X } = {F ()} (38)

where [M ],[C]and [K] are the matrices of mass,
damping and stiffness respectively, {X}, {X} and
(X'} are the structural displacement, velocity and
acceleration vector respectively and {F(¢)} is the

excitation force vector.

11. Suitability of Mem for TLP Analysis

The most important reason of suitability of MEM
for solving the differential equation of motion of TLP
is that the natural periods of TLP are limited between
1.5 sec to 120 sec and therefore the criterion of being
small time step is easily satisfied. In order to satisfy
the stability condition developed in eq. (19) for
systems with multiple degrees of freedom the time
step should satisfy the equation Az <T' . /7 in which

T . is the lowest period of the system. Minimum

natural period of TLP is related to one of the stiff
degrees of freedom: heave, roll or pitch. This value is
abot 1.5 to 2.5 sec. Therefore considering Az <1.5/x
the solution will be stable.

12. Numerical Study

A TLP in 500 m deep water has been chosen for
the numerical study. The characteristics of the TLP
under study are: Diameter of Column D, =18m ;

Diameter of Pontoon D =12m and hull length is 80m.
Tether tensions are assumed to be equally distributed
in all the four tethers. TLP structure is assumed to
behave like a rigid body. The stiffness matrix
developed takes into account large deformations and
other nonlinearities like tether tension, etc. The angle
of attack of long crested sea is 30" with x direction
and H =10m ,T. =15sec. Figure (1) shows the

spectrum of sea-state for 4 =10 m and T. =15 sec.

Based on the mentioned formulation, random surface
elevation has been derived. A typical generated wave
is shown in Figure 2.

Eigenvalue analysis results the following periods:
Surge: 72.8 sec; Sway: 72.8 sec ; Heave: 2.44 sec;
Roll: 2.16 sec; Pitch: 2.16 sec; and Yaw: 87.8 sec. A
computer program (SNATELP) has been developed
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using MATLAB, for nonlinear dynamic analysis of
TLP system.

The minimum period of the structure is related to roll
and pitch motion. Cosidering eq. (19) in order to
satisfy the stability condition, time step should
beAr <2.16/7=0.68sec. It means that if one
considers At =0.67sec (At —¢) the solution will be
stable and for Afr =0.69sec (At +¢) it is not stable.
£ is a small variation in time step.

Time history of deformations is illustrated in figure 3
for At =0.67sec. In order to have a better view on the
responses they are plotted in time between 200 to 500
sec and 400 to 500 sec in figures 4 and 5. It is seen
that the solution is stable and has converged to the
steady state response related to wave excitation and
structural period. For stiff degrees of fredom (heave,
roll, pitch) the stable converged response is seen
clearly after about 100 seconds. But for flexible
degrees of freedom (surge, sway, yaw) from the
beginning of the motion, stable response is viewed.
Phase planes are useful to interpret the stability of
motion fand gives a conceptual view of structural
response. Phase planes of all degrees of freedom are
plotted in Figure 6. It is seen that all rsponses are
limited to the higher bound of deformation and related
velocity. Dense graphs of phase plane for stiff degrees
of fredom shows that we are near the boundary of
stability.

Similar plots for At =0.68sec are illustrated in
figures 7-10. It is clearly observed beating
phenomenon in both roll and pitch motions because of
small difference between roll period rounded to 0.68
sec and considered time step. It means that
At =0.68sec is the boundary limit of time step to
lead to stable solution or not. In figure 9 it is seen the
resonance type motion of roll and pitch motions.
Phase plane of these motions shown in figure 10
represents the resonance type motion and no stability
point.

It is noted that beating type response of roll and pitch
is related to the marginal instability condition. If only
a small increasing occurs in A¢ them the clear
instability will be seen. In order to have a view on the
instability of solutions similar plots are illustrated for
At =0.69sec in figures 11-14. It is seen that roll and
pitch responses have a large amplitude of vibration
with a constant period of motion.

There is no convergence and stability in roll and pitch
motions. Figure 11 shows that pitch and roll motions
have large amplitudes with no convergence. Also
there is no stability point for pitch and roll in figure
14.

Now At is increased to 0.7 sec. Similar plots for
At =0.7sec are illustrated in figures 15-18.
Comparing the amplitude of roll and pitch sown in
Figure 13 with Figure 17, one can find that increase in
time step of integration leads to increase in amplitude
of unstable response. Also there is relatively linear
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relation between rotation and velocity both for roll
and pitch motion.

As mentioned above the period of heave motion is
equal to 2.44 sec. However the response of heave
motion is stable for all values of discussed Az, but for
At =244/ 7 =0.78secthe heave response is not
converged to a finite value and the amplitude of
vibration increases rapidly at the start of the motion as
shown in figures 19 and 20.

After ¢t = At (at the end of first step) High amplitude
motions of stiff degrees of freedom is observed. Note
that after 4 sec the amplitude of heave motions is
more than surge motion. The structural periods of
surge, sway and yaw motions are very high. But for
stiff degrees of freedom (roll, pitch and heave) that
their period is about 1.5 to 2.5 sec it is important to
have a view on stability condition. Also however the
system is coupled, it can be separately investigated the
condition of stability for each degree of freedom as
mentioned in the text

13. Conclusion

The convergence and stability of the MEM for
strongly nonlinear dynamic system (TLP) under
random wave excitation was discussed. The key point
of suitability of the MEM for solving the TLP system
is that the maximum frequency of the system is less
than 0.5Hz. However the MEM is conditionally
stable, it is very efficient for solving response
dependent offshore systems with bounded maximum
natural frequency. The importance of using such
simple methods with relatively large time step is on
the fatigue study and necessity to develop time history
of responses for long time. Based on the numerical
example it can be said that it is possible using the
MEM for TLP system with large time step for
integration. This leads to consuming in time and
ability of doing complicated nonlinear dynamic
analyses in design process.
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