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1. Introduction

ABSTRACT

Gravity currents are very common in nature and may appear in rivers, lakes,
oceans, and the atmosphere. They are produced by the buoyant forces
interacting between fluids of different densities and may introduce sediments
and pollutants into water bodies. In this study, the hydrodynamics and
propagation of gravity currents are investigated using WISE (Width Integrated
Stratified Environments), a 2DV hydrodynamic numerical model. An Explicit
Algebraic Reynolds Stress Model (EARSM) has been deployed and
implemented in the hydrodynamic model and the simulated results have been
compared against the laboratory measured values and the results obtained
from the k-& buoyant turbulence model originally implemented in WISE. The
numerical simulations focus on three types of gravity currents generated for
laboratory experiments, namely: Lock-exchange gravity current, buoyant
wall-jet flow and intrusive gravity current. The simulated evolution profiles
and propagation velocities are compared with measured values. The numerical
model shows good quantitative agreements for predicting the temporal and
spatial evolution of the gravity currents. The simulation results show better
agreements in case of EARSM compared to buoyant &-¢ turbulence closure. A
sensitivity study also has been conducted to investigate the influence of the
values of spatial and temporal increments on the accuracy of the prediction for
the turbulence closures.

the lighter fluid. Several laboratory experiments have

Gravity currents are flows driven by difference in
density between the current itself and its surroundings.
The difference in density may be caused by variations
in mixture composition or temperature. The
occurrence of density-driven gravity flows is
widespread in nature. Sea breezes, snow avalanches,
and thunderstorm microbursts are examples of density
currents occurring in the atmosphere, while turbidity
currents and saline density currents are examples that
occur in the aquatic environment. The monograph of
Simpson [1] contains many examples of natural and
man-made gravity currents. Laboratory gravity
currents may also be categorized as intrusion type or
lock-exchange type. In the intrusion-type flows, the
dense fluid enters the domain through an inlet
underneath the ambient fluid, while in the lock-
exchange type two fluids are separated initially by a
gate. As the gate is removed in the lock-exchange
configuration, the fluids suddenly become in contact
and the heavier fluid spreads horizontally underneath
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been performed to study gravity currents [2-6].

Numerical models are important tools which may be
employed to investigate the evolution and impact of
density currents. These models are not limited by the
scale restrictions of experimental studies but may
have limitation due to numerical solution. A number
of Direct Numerical Simulations (DNS) and Large
Eddy Simulations (LES) of gravity currents have been
reported in the literature [7-11]. DNS and LES are
powerful turbulence simulation tools but due to the
strong dependence of the required spatial and
temporal resolution to the Reynolds number, are
inherently restricted to low Reynolds numbers and are
not feasible for field-scale simulations. Reynolds-
Averaged Navier-Stokes (RANS) models are usually
preferred for such investigations, as they are
computationally less demanding than DNS or LES.
Among various RANS approaches, the eddy viscosity
models (EVM) like two-equation k-& models, have
received the most attention due to their simple form
and affordable computational cost [12-15]. Such
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models, however, lack the correct description of some
important physical aspects, and may give poor results
in more complex flow situations, e.g. in the presence
of buoyancy effects [16]. Differential Reynolds-stress
models (DRSM) incorporate more physics than the
standard two-equation models and are more widely
applicable, but these models require solving additional

transport equations for the different stress
components, which could result in numerical
difficulties. Good alternatives to DRSMs are

Algebraic Reynolds Stress Models (ARSMs) that are
derived directly from the transport equations for the
Reynolds stresses and the turbulent flux. Such models
may be obtained by applying the weak-equilibrium
assumption, first formulated by Rodi [17], which
states that both the advection and diffusion terms of
normalized stresses and fluxes may be neglected. This
leads to algebraic equations for the different
components of the Reynolds stresses and the scalar
flux. Instabilities are a major problem of early ARSM
models due to their implicit solution method [16].
Therefore, there has been a considerable renewed
interest in developing explicit models, which are the
so-called Explicit Algebraic Reynolds Stress Models
(EARSM). Recent advances for this class of models
are those of Gatski and Speziale [18], Girimaji [19],
Jongen and Gatski [20] and Wallin and Johansson
[21]. To a large extent, these models have the same
advantages as DRSM while require less computational
effort [16]. The objective of the present study is to
explore the dynamics of gravity currents using WISE,
a 2DV hydrodynamic numerical model [22], by two
different turbulence closures, the standard k-& model
with buoyancy terms and an Explicit Algebraic
Reynolds Stress Model (EARSM) developed herein.
The ability of the numerical model to predict the
behavior of various important hydrodynamic features
of gravity currents, such as propagation profiles and
velocity distribution is confirmed by comparing the
numerical simulations with the laboratory measured
values reported in literature. Lock-exchange, wall jet
flow and intrusive gravity currents have been
simulated and the numerical predictions employing
buoyant k-¢ and EARSM turbulence closures have
been compared against measured values.

2. Mathematical Modelling

2.1. Governing Equations

The governing equations deployed to describe the
hydrodynamics of saline gravity currents are 2D width
integrated continuity, momentum and scalar transport
equations:
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where x and z are the horizontal and vertical directions
in Cartesian coordinate system respectively, u and w
the  horizontal and  vertical mean velocity
components  respectively, ¢ the salinity, p the
pressure, p, and p the reference density and density
of the fluid respectively, v the kinematic viscosity, g
the gravitational acceleration and w the grid velocity.
o; is the turbulent Schmit number and the prime
symbol shows the fluctuating quantities. Terms Tu’j

and u';c’ are Reynolds stress and Reynolds flux
tensors respectively.

2.2. Turbulence Modelling

In this study two different closures of turbulence
models; the standard k-& model with buoyancy terms
and an Explicit Algebraic Reynolds Stress model
(EARSM) with an Explicit Algebraic Scalar Flux
(EASFM) model for Reynolds fluxes, have been
implemented.

The standard buoyancy-modified k-¢ model [23] is
based on the eddy-viscosity/diffusivity concept of
Boussinesq, which uses an isotropic eddy-
viscosity/diffusivity to relate the Reynolds stresses
u';u’; and turbulent fluxes u';c” of concentration to the
mean field [23]:

7 aui (')u] 2
—uu; =7 ox; + ox, —§k6i]- (%)
o _ _r dc vy dc 6
wie = ox;  0,0x; ©)

In equations (5) and (6) u; and u’; are the mean and
fluctuating velocity components in x; direction
respectively, ¢ and ¢’ are the mean and fluctuating
concentration, v, is the turbulent or eddy viscosity, I’
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is turbulent diffusivity of concentration, and o; is the
turbulent Schmidt number which relates eddy
viscosity to the eddy diffusivity and its value is an
indication of the level of turbulent mixing. The
production and dissipation of turbulent kinetic energy
are subject to transport process. Thus, to describe the
evolution of turbulence, two transport equations for
turbulent kinetic energy, k, and the dissipation rate of
energy, &, in tensorial form are as follows [23]:

c’)k+ ok 0 (Vtak>+P+G
at uic’)xi_axi oy 0Xx; ¢ (7
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where P represents the production of k by interaction
of Reynolds stresses and mean velocity gradient, and
G represents the production/destruction of turbulence
by buoyancy [23] as described by equations (9) and

(10).
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In the k-& model the eddy viscosity, v, relates to k
and ¢ via Eq. (11), which is obtained from
dimensional analysis and eddy viscosity concept [24]:

k2
Vt=C —
K e

(11)

In above equations cye, Cpe, C3¢, B, and ¢, are
empirical constants, g; is the acceleration in x;
direction, and Ry is the flux Richardson number.

Empirical constants of standard k-& model are
tabulated in Table 1 [23].

Table 1. Parameters of standard k- model

Cu Ok o, Cie C2e o

0.09 1.0 1.3 1.4 1.92 1.0
The Explicit Algebraic Reynolds Stress Model
(EARSM) has played a significant role in
environmental hydraulics [25-26], especially in

simulating anisotropic problems of stratified flows
with different densities. Considering the buoyancy,
streamline curvature and rotation effect, etc., the
advantages of these models are particularly obvious
compared with the two-equation turbulent models. In
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this study the EARSM turbulence closure proposed by
Wallin and Johansson [21] has been deployed.
Algebraic Reynolds Stress Models belong to the
family of nonlinear models. However, they are
derived from the full Reynolds stress transport
equation. The equation may be presented as [21]:

k Da;; 1<6Tiﬂ u’,-u’j(')Tl(k)>

e Dt €\ 0x k 0dx (12)
u’iu’. P P;: £+ ..
_ J(__1)+_l_l+@
k \e¢ £ £

where a;; is the anisotropy tensor of Reynolds

stresses, and —T;;; and —Tl(k) are the turbulent and
molecular fluxes of the Reynolds stress and turbulent
kinetic energy, respectively. The dissipation rate
tensor, &;;, and the pressure-strain rate tensor, ¢;;,
need to be modelled whereas the production terms,
P =—u'a; (aui/ax,-) and P = P;;/2, do not need
any modelling since they are explicit in the Reynolds
stress tensor.

Many inhomogeneous flows of engineering interest
are steady flows and satisfy the weak equilibrium
assumption [17]. In this case it is possible to neglect
the advection and diffusion terms. The advection
term is indeed exactly zero for all stationary parallel
mean flows, such as fully developed channel and pipe
flows [21]. For inhomogeneous flows the assumption
of negligible effects of diffusion in the anisotropy
tensor can cause some problems, particularly in
regions where the production term is small or where
the inhomogeneity 1is strong. However, this
assumption has been found to be a reasonable
approximation of the full differential Reynolds stress
transport equations in a number of flow situations, and
in many respects is superior to the eddy-viscosity
hypothesis [21]. In the EARSM turbulence closure of
Wallin and Johansson, invoking weak equilibrium
condition results in [21]:

(13)

&
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By using appropriate models for the dissipation rate
tensor &;; and the pressure-strain rate tensor ¢;; [21]

and substituting, the following implicit form may be
then obtained:

P 15 _
(Cl - 1 +;>a” = _gsll

4 . . (14)
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where S¥. = S;; = and W = W;; = are written in terms
lj U e 9] e
of rate of strain and vorticity tensors:
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Eq. (14) may be rewritten in a matrix notation:

6
Na = _EST + (aW™ — WTa) (16)

where N is related to the production-dissipation ratio
by N = %(Cl +1+ S) Following the procedure

proposed by Pope [27], Wallin and Johansson [21]
proposed a general relation for the Reynolds stress
anisotropy tensor, a, by using a ten-tensor equation in
terms of S* and W for three-dimensional flows:

1
a = ,BlsT + BZ (STZ - 51151>
1
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2
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where the f5; coeffcients may be functions of the five
independent invariants in terms of S* and WF®
(IIs = {S*?}, I, ={W™}, IlIg={S"}, IV =
{STW™}, V = {S"2W"2}). By inserting Eq. (17) into
Eq. (16) and using the Cayley-Hamilton theorem to
reduce the higher-order tensor groups, f; coefficients
are obtained. For two-dimensional flows, there are

three independent groups: S7, (ST2 —%IISI) and
(STWT — W'S7) and only B; and B, are non-zero

coefficients. Then, the representation for a is formed
as [21]:

a=p;S"+ B,(STW™ — W*S") (18)
- _s_N . —_6_ 1 TWT _
where f; = 5 N2-21Iy,’ Ba = 5 N2-2IIy, G
VAL R

Now, from Eq. (18), a cubic equation for the unknown
N may be obtained:

s o (27 ,
N3 —C/N? — (EHS + 211W)1v +2C Iy

=0
where C{ = %(61 —1). The above equation may be

(19)

solved in a closed form with the solution for the
positive root being:
for P, = 0:
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and for P, < 0:
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where the P; and P, are defined as:
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In the model of Wallin and Johansson, the buoyancy
effect was not considered. For anisotropic buoyant
turbulent flows like saline gravity currents, the
buoyancy effect should not be neglected in general,
so, linear hypothesis was assumed in this study and
Reynolds stresses are considered as the sum of u’,u;|s

by strain and u';u’;|, by buoyancy:

ua; = vl + ], (23)
where u';u')|s is the same as that in the EARSM
proposed by Wallin and Johansson [21]. The algebraic
expression proposed by Rodi [28] was adopted to
express the last term in Eq. (23):

—enko (G2
| _(1 C3)sG(G 36”)
Wil =

! (e +—==—1)

24)

where G;j = —fg;u’;c — fgiu'ic ; G = —fgiu'ic ; k
is the turbulent kinetic energy; & is the turbulent
dissipation rate. u'u’; in P is simplified as u';u|
here, and ¢;=0.22 and ¢;=0.55 are the constant
parameters [28].

In order to model the Reynolds scalar flux accurately,
the Explicit Algebraic Scalar Flux model of Hua et al.
[29] has been deployed. This model is based on
EASFM of Wikstrom et al. [30] and includes the
buoyancy effects in the algebraic relation. The model
may be written as:

u'ic
k— dc
=—(1- A ' u, ——
( C64-) ij su]ukaxk (25)
cope—1, _k* —— oc
—( Ajj g—zﬂgjukc 9%,


http://ijmt.ir/article-1-246-en.html

[ Downloaded from ijmt.ir on 2025-11-03 ]

Mohammad Kazem Sharifian, Kourosh Hejazi / IJMT 2014, Vol.2; p.43-54

Details may be found in [29].

2.3. Numerical Method

WISE (Width Integrated Stratified Environments) is
an Arbitrary Lagrangian-Eulerian (ALE) 2D vertical
hydrodynamic numerical model [22], based on time
dependent Reynolds-Averaged Navier-Stokes
(RANS) equations. The model is further refined and
developed herein for EARSM turbulence closure. A
structured non-orthogonal curvilinear staggered mesh
is used for computational domain. Finite volume
method has been utilized to discretize flow and
momentum equations as well as transport equations of
scalar quantities like salinity, concentration, %, &, and
also Reynolds stresses and fluxes. Finite volume
method provides flexibility for defining control
volumes in a staggered grid system, especially near
bed and water surface, where rapid changes of
bathymetry and free surface may have significant
effect on the prediction of the flow flied. Moreover,
the finite volume method, if accurately implemented,
provides the assurance of global conservation.

In the ALE method the mesh motion may be chosen
arbitrarily; the newly updated free surface is
determined purely by Lagrangian method, by the
velocity of fluid particles at the free surface, while in
horizontal direction the grids are fixed. The grid
geometry is computed and redistributed after
completion of each time step. With this consideration,
an additional grid velocity w,, appears in the the
Navier-Stokes and scalar transport equations.

The projection (fractional-step) method, proposed by
Chorin [31] and Temam [32], has been adopted. The
method generally is accomplished in two steps [22];
the pressure gradient terms are omitted from the
momentum equations in the first step and the transport
part of Navier-Stokes equations including advection
and diffusion are advanced in time to obtain a
provisional velocity field U*. In the second step, the
provisional velocity is corrected by accounting for the
pressure gradient and continuity constraint as follows:

Un+1 _ U*
—————4VPl =0 (26)
At
subject to the continuity constraint:
divU™1t =0 (27)

By taking the divergence of (26), the continuity
equation will be exerted and the Poisson equation is
obtained:

divU*

VZPn+1 —
At

(28)

From the above equations the pressure distribution is
obtained and the velocity quantities are then updated.
Advection and diffusion parts of transport equations

47

were computed in a locally one-dimensional manner
in sub-fractional-steps in two directions. A fifth
degree accurate scheme for advection and the Crank-
Nicolson method for diffusion computations were
utilized [22].

2.4. Boundary Conditions

2.4.1. Spatial Boundary Conditions

Spatial boundary conditions have been determined for
free surface, rigid surfaces including bed and walls,
and inlet and outlet boundaries for flow, transport of
species and turbulence parameters. The kinematic
boundary condition at the impermeable bottom gives:

dz
U—24+w=0 (29)

0x

where z,, is the bed elevation above datum. Similarly,
the kinematic boundary condition at the moving free
surface is:

an Jn
T +u Eri w (30)
where 711(x, t) is the free surface elevation. To keep the
consistency, the free surface equation is obtained by
integrating the continuity equation over depth and by
the application of the kinematic conditions at bed (Eq.
29) and free surface (Eq. 30) as follows:

on

n
0
—+—Judz=0 (30)
0x

at

Zp

At inlet and outlet boundaries the velocity, pressure or
water elevation may be regarded as known values
depending on circumstances. In the case of the known
velocity or pressure values, the corresponding
distribution is applied at the boundary. For the outlet
boundary a constant pressure was imposed. It was
further assumed that the flow was fully developed at
the outlet and the vertical derivative of the velocity
components was set to zero [22]. At wall boundaries
zero normal velocity and no-slip boundary conditions
were considered. On the free surface, Neumann
boundary for k£ and Dirichlet boundary for ¢ were used
and set to zero. Neumann boundary values for & and ¢
were set to zero at the outlet. At the inlet boundary, it
is assumed that the flow is smooth, and £ and ¢ are set
to small values different from zero.

2.4.2 Temporal Boundary Conditions

The initial velocity and pressure values are set equal
to zero. k and ¢ are set to suitable values to give an
appropriate kinematic value for viscosity.
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Figure 1. Velocity profiles of turbulence models and
measured values in experiment of Kneller et al. [33]

3. Results and Discussion

In order to validate the new EARSM turbulence
model and to investigate the predicted results and
compare them with the simulated values obtained
from k-¢ turbulence closure, the predicted values for
hydrodynamic parameters have been compared with
the measured values of four experimental studies of
lock-exchange and intrusive type and wall jet flows.
These types of flows may represent gravity currents in
estuaries.

The first test is based on the experimental data
reported by Kneller et al. [33]. The experimental
apparatus consisted of a simple rectangular lock-
exchange tank, 0.2m wide and 2.15m long, and a
0.34m long lock compartment at one end. The flume
was filled with ambient fluid to a depth of 0.1m. The
lock compartment was filled to equal depth, and the
density difference between saline and fresh water was
41 kg/m’. For simulation, 20 layers with 100 grids of
dimension 0.025m in x-direction have been used to
construct the domain. The simulation time was 40s
and a time step of 0.05s has been used. Figure 1
shows the velocity profile comparison of two models
with measured values at x=800mm and =14s. y is the
depth of the flow from bottom and d is the total depth
of the flow. Velocities have been normalized for the
maximum velocity. Better agreement has been
obtained for EARSM; however at the boundaries
buoyant k-¢ closure, shows closer results.

The second test is a buoyant wall-jet flow, studied
experimentally by Gerber [34]. The experiment was
carried out in a Perspex flume with an inlet for the salt
current with an excess density of 2 kg/m® with respect
to water, and discharge of 0.59 I/s. The gravity current
was planned to travel along the flume bottom and exit
it to a damping tank to prevent creation of a reverse
flow to the upstream. The general characteristics of
flow and inlet conditions utilized in laboratory

experiment by Gerber [34] and in the simulations are
summarized in Table 2.

Table 2. Summary of general characteristics and inlet flow
conditions in experiment of Gerber [34]

Parameter Units  Value
water depth in flume m 0.30

depth of inlet current m 0.03
ambient density kg/m3 9982
excess 3

fractional density kg/m 20

inlet velocity m/s 0.079

ko m2.s™  6.875x10°
& m2.s73  1.38x10°°

For simulation, 30 layers with grids of dimension of
0.05m in x-direction have been used to construct the
domain. The simulation time was 300s and a time step
of 0.05s has been used. Figure 2 presents the
measured and simulated velocity profiles at x=0.9m
and x=2.4m. These profiles have been normalized
using their own outer flow scales . and yos. The
outer length scale y, 5 is defined as the height at which
the velocity u is equal to half the maximum velocity
Umax- Acceptable agreement has been obtained for both
models; away from the boundary, EARSM shows
closer values to measured data.

2.5

Exp.

S | (PP P TP PP buoyant k-¢
— — — EARSM

20F i\

3
B
1.0
0.5
0.0
-0.2 12
u/umax
1.6
3 Exp.
) .......... buoyant k-¢
N . — —— EARSM
&
ES

Figure 2. Velocity profiles of turbulence models and
measured values at (a) x=0.9m and (b) x=2.4m in
experiment of Gerber [34]
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Table 3. Summary of simulation setup in experiments of
Sutherland et al. [35]

Case H h, h; Po Pi
# (cm) (ecm) (cm) kg/m’, kg/m’
1 20 10 10 1000 1020
2 20 17.5 2.5 1000 1020
T Po h°

i P
——
Figure 3. Sketch of lock-exchange experiment of
Sutherland et al. [35]

The third series of simulation cases are performed to
identify the propagation dynamics of intrusive gravity
currents. The simulations are compared with the
experimental measurements of Sutherland et al. [35].
The experiments have been conducted in a flume with
197.1cm length, 17.6cm width and 48.5cm height.
The lock-length (/) behind the gate is fixed at 18.6cm
and the total water depth (H) is set equal to 20cm
(Figure 3). Two tests have been selected for
simulation. In both simulation cases, the density of the
lock fluid (pg) is equal to the depth-weighted average
of the upper and lower layers. In the first case, the
depth of the two layers in the ambient fluids is also
equal (h,=h;). In the second case however, the depth
of the two layers in the ambient fluids is not equal.
Table 3 shows the initial conditions for the
simulations. The computational grid size in the x and z
directions are set to 5.0mm.

In the first symmetrical case, the simulation snapshots
are created to visualize the temporal evolutions of the
intrusive gravity current. Figure 4 shows that the fluid
contained behind the lock gate collapses
symmetrically and propagates along the interface after
the removal of lock gate, and the head is visible after
2s. The initial collapse begins with rapid acceleration
and the current head becomes uniform in shape after
26s. As it propagates to the right end of the wall, the
head of the gravity current causes strong mixing,
resulting in mass loss and dilution in the head. The
temporal evolution of the gravity current is illustrated
with images taken from the experiments and the
graphics obtained from numerical simulations as
shown in Figure 4. It shows that the numerical model
prediction with either buoyant k-¢ or EARSM
turbulence closures describe the dynamics of intrusive
gravity current with a symmetrical condition. It is also
evident that the numerical model resolves the fine
scales associated with the mixing that occur in the
vicinity of the gravity current head. The formation of
Kelvin-Helmholtz billows that show the wvertical
structure behind the head of intrusive gravity current,
is reproduced well by both closure schemes. However,
overall shape of the current is closer to experimental
results in case of EARSM, especially in the head
region. The traveling distance calculated from both
buoyant k-¢ and EARSM closures are plotted as a
function of time in Figure 5, which show very good
agreements with experimental measurements. In the
second case (Figure 6), a different dynamics
compared to the symmetrical case (case 1) has been

kg/m®
10000 10050 10100 10150 10200
1 T [
! : Experiment

(a) 2 sec.

(b) 14 sec.

B

ﬂ’v‘ﬂ Experiment

(c) 26 sec.

(d) 38 sec.

Figure 4. Temporal evolutions of an intrusive gravity current for case 1, where experimental results of Sutherland et al.
[35] are compared with simulated density contours based on buoyant k-¢ and EARSM turbulence closures.
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— @

150 & -

e

Distance (cm)
=
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Figure S. Traveling distance of intrusive gravity current as a
function of time in case 1, for simulated values of buoyant k-
€ and EARSM closures and measured values [35]

structured. In this case, the propagation speed is
observed to be slower than that of the case 1, in
particular, the gravity current does not form a
symmetrical head as it propagates. This is because the
return flows in the upper layer and lower layer of the
ambient fluid move at different speeds and they
interact with the end wall differently. Sutherland et al.
[35] also mentioned that due to the small density
difference between lock and ambient upper-layer
fluid, the top return flow takes longer to be
established, resulting in mixing between the lock and
ambient fluid behind lock-gate, whereas the return

flow in the lower layer of the ambient fluid intrudes

into the lock fluid rapidly with weak vorticity. After
the collapse phase, the lock fluid forms the head and
tail of the gravity current. Shear instability occurs
only across the interface between the gravity current
and the upper layer. The shape of the gravity current
seems similar to a gravity current propagating over a
no-slip bottom.

By comparing the experimental and simulation results
at =14s, the predictions show less mixing, whilst
some initial mixing is introduced by vorticity in the
upper lighter layer behind lock gate. After the collapse
phase, the numerical simulations also show weaker
shear instabilities in the rear part of the tail region
(Fig. 6¢). Sutherland et al. [35] note that the mixing
between lock fluid and the upper-later ambient fluid is
promoted by the vorticity created by the gate removal.
In both cases of buoyant k-¢ and EARSM models,
the vorticity developed by the lock-gate removal
cannot be simulated. However, the propagation speed
of the intrusive current is still correctly reproduced by
the numerical simulations.

The last test is based on the experimental study
accomplished by Zhu et al. [36] as a lock-exchange
type of gravitational flow. The experiments were
carried out in a rectangular Perspex flume, 200mm
wide, 400mm deep and 2590mm long. The flume was
filled with fresh water to a depth of H)=100mm and a
Perspex gate was positioned vertically at a distance
x=200mm away from the left end of the channel to
form a lock. Salt was dissolved into the water behind

kg/m*
10000 10050 10100 10150 10200
| I I |
(a) 2 sec. (b) 14 sec.
Experiment

|

; ! o

(©

6 sec. (d) 38 sec.

Experiment

= S—— - - .\

Figure 6. Temporal evolutions of an intrusive gravity current for case 2, where experimental results of Sutherland et al.
[35] are compared with simulated density contours based on buoyant k-¢ and EARSM turbulence closures.
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the Perspex gate to create a density difference
between the two parts of the flume. A densimeter was
used to measure the densities of saline and fresh
waters. Densities of p,=1009.5 and py=999.5 kg/m’
were used for saline and fresh waters, respectively,
corresponding to a density difference of Ap = p, —
po =10 kg/m’. Zero velocity boundary conditions
were implemented at solid walls. In order to
accurately simulate the hydrodynamic parameters of
the gravity current flow and the salinity concentration
within the water, a grid dependency study should be
carried out. For a coarse gridding, the solution will be
sensitive to the grid resolution. With the grid
refinement, the computational cost increases but the
solution becomes insensitive to the grid resolution.
The aim is, therefore to find the coarsest possible grid,
requiring the lowest computational effort, while
remaining insensitive to the grid resolution. A grid

14 T T T

12 F
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150x10
240x10
Exp.

0 1 1 1
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t*

120x10
150x10

Exp.

0 1 1 1

2

240x10 |+
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independent solution was found by simulating the
same gravity current on successively refined grids.
The reference mesh was 10x150 (10 layers and 150
cells in x-direction). Different number of layers and
grids in x-direction were utilized for both turbulence
closures, respectively. The time step in each case was
adjusted according to the cell size characteristics, and
the simulation time was 62s. Figure 7 shows that, for
both turbulence models, grid independent profiles are
obtained for grids 12x150 and finer (time and front
position values are in non-dimensional form x; =
Xf ,t* — t Xo 1 _ 94p )

Xo to te = (g'Ho)1/? g = Pa
Figure 8 shows the gravity current profiles for

buoyancy-modified k-& and EARSM turbulence
closures. The front position at successive times after

14 T T

150x10
150x12
150x14
Exp.

30

14 T T T

15010
15012
150x14 | 4
Exp.

0 10 20 30

t*

Figure 7. Simulated front position profiles for different grid resolutions with buoyant k-¢ (a and b) and
EARSM (c and d) turbulence closures in experiment of Zhu et al. [36]
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Figure 8. Results of simulated salinity distribution for EARSM and buoyant k-¢ turbulence closures at 0, 23, 36, 52 and 62s in
experiments of Zhu et al. [36]. The dotted line in the frames is the experimentally reported location of the nose of the gravity

the release has been reported [36]. Also, Figure 9
shows the front position of the gravitational current
versus time for simulated results and measured values
of Zhu et al. in non-dimensional form. During an
initial slumping phase, the front head position x,
increases linearly with time. Two distinct phases of
lock-exchange front propagation were observed and at

14 . ' '
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2+ EXp T
— — —  EARSM
0 ' ' '
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Figure 9. Comparison of front head position for EARSM and

buoyant k-¢ turbulence closures with measured values of Zhu
et al. [36]

52

about 10 lock lengths, the transition from the first to
the second phase occurs [36]. While in the first phase
of the gravitational flow extent, both models predict
the front head position well, the k-& model shows a
little more underestimation in the second phase.
Figure 10 shows the velocity profiles of EARSM and
k-& turbulence models in comparison with measured
values at x=1020, 1040, 1060 and 1080mm
respectively, and at ~=12.28s. It is evident that
EARSM turbulence closure predicts the velocities
more accurately, with the exception of near bed
values. This may justify the need for further research
for improvement of appropriate wall functions for
Reynolds stresses.

4. Conclusion

Lock-exchange, wall jet and intrusive gravity currents
were simulated to investigate the effects of using two
different turbulence closures, a two equation standard
k-¢ model with buoyancy terms and an Explicit
Algebraic Reynolds Stress Model (EARSM) along
with an Explicit Algebraic Scalar Flux Model
(EASFM). Results show that, the EARSM provides
better predictions for velocity profiles especially in
the far zone from the bed. Also, EARSM provides
better predictions for the front head position.
However, using appropriate wall functions for
Reynolds stresses could augment accuracy of model
in boundary layers. Because the EARSM turbulence
model provides better predictions in most parts of the
stratified gravity currents, while its computational
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Figure 10. Velocity profiles of turbulence models and measured values at (a) x=1020mm,
(b) x1040mm, (¢) x=1060mm and (d) x=1080mm in experiments of Zhu et al. [36]

costs is not considerably greater than two-equation
models, it can be concluded that in these category of
flows, using EARSM model is reasonable and may be
suggested. It is also worth noting that a distinct
turbulence model cannot satisfactorily predict all
turbulent flow cases, and especial calibration for
constants and consideration for source terms are
needed.
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