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Gravity currents are very common in nature and may appear in rivers, lakes, 
oceans, and the atmosphere. They are produced by the buoyant forces 
interacting between fluids of different densities and may introduce sediments 
and pollutants into water bodies. In this study, the hydrodynamics and 
propagation of gravity currents are investigated using WISE (Width Integrated 
Stratified Environments), a 2DV hydrodynamic numerical model. An Explicit 
Algebraic Reynolds Stress Model (EARSM) has been deployed and 
implemented in the hydrodynamic model and the simulated results have been 
compared against the laboratory measured values and the results obtained 
from the k- buoyant turbulence model originally implemented in WISE. The 
numerical simulations focus on three types of gravity currents generated for 
laboratory experiments, namely: Lock-exchange gravity current, buoyant 
wall-jet flow and intrusive gravity current. The simulated evolution profiles 
and propagation velocities are compared with measured values. The numerical 
model shows good quantitative agreements for predicting the temporal and 
spatial evolution of the gravity currents. The simulation results show better 
agreements in case of EARSM compared to buoyant k- turbulence closure. A 
sensitivity study also has been conducted to investigate the influence of the 
values of spatial and temporal increments on the accuracy of the prediction for 
the turbulence closures.  
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1. Introduction 
Gravity currents are flows driven by difference in 
density between the current itself and its surroundings. 
The difference in density may be caused by variations 
in mixture composition or temperature. The 
occurrence of density‐driven gravity flows is 
widespread in nature. Sea breezes, snow avalanches, 
and thunderstorm microbursts are examples of density 
currents occurring in the atmosphere, while turbidity 
currents and saline density currents are examples that 
occur in the aquatic environment. The monograph of 
Simpson [1] contains many examples of natural and 
man-made gravity currents. Laboratory gravity 
currents may also be categorized as intrusion type or 
lock-exchange type. In the intrusion-type flows, the 
dense fluid enters the domain through an inlet 
underneath the ambient fluid, while in the lock-
exchange type two fluids are separated initially by a 
gate. As the gate is removed in the lock-exchange 
configuration, the fluids suddenly become in contact 
and the heavier fluid spreads horizontally underneath 

the lighter fluid. Several laboratory experiments have 
been performed to study gravity currents [2-6]. 
Numerical models are important tools which may be 
employed to investigate the evolution and impact of 
density currents. These models are not limited by the 
scale restrictions of experimental studies but may 
have limitation due to numerical solution. A number 
of Direct Numerical Simulations (DNS) and Large 
Eddy Simulations (LES) of gravity currents have been 
reported in the literature [7-11]. DNS and LES are 
powerful turbulence simulation tools but due to the 
strong dependence of the required spatial and 
temporal resolution to the Reynolds number, are 
inherently restricted to low Reynolds numbers and are 
not feasible for field-scale simulations. Reynolds-
Averaged Navier-Stokes (RANS) models are usually 
preferred for such investigations, as they are 
computationally less demanding than DNS or LES. 
Among various RANS approaches, the eddy viscosity 
models (EVM) like two-equation k- models, have 
received the most attention due to their simple form 
and affordable computational cost [12-15]. Such 
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models, however, lack the correct description of some 
important physical aspects, and may give poor results 
in more complex flow situations, e.g. in the presence 
of buoyancy effects [16]. Differential Reynolds-stress 
models (DRSM) incorporate more physics than the 
standard two-equation models and are more widely 
applicable, but these models require solving additional 
transport equations for the different stress 
components, which could result in numerical 
difficulties. Good alternatives to DRSMs are 
Algebraic Reynolds Stress Models (ARSMs) that are 
derived directly from the transport equations for the 
Reynolds stresses and the turbulent flux. Such models 
may be obtained by applying the weak-equilibrium 
assumption, first formulated by Rodi [17], which 
states that both the advection and diffusion terms of 
normalized stresses and fluxes may be neglected. This 
leads to algebraic equations for the different 
components of the Reynolds stresses and the scalar 
flux. Instabilities are a major problem of early ARSM 
models due to their implicit solution method [16]. 
Therefore, there has been a considerable renewed 
interest in developing explicit models, which are the 
so-called Explicit Algebraic Reynolds Stress Models 
(EARSM). Recent advances for this class of models 
are those of Gatski and Speziale [18], Girimaji [19], 
Jongen and Gatski [20] and Wallin and Johansson 
[21]. To a large extent, these models have the same 
advantages as DRSM while require less computational 
effort [16]. The objective of the present study is to 
explore the dynamics of gravity currents using WISE, 
a 2DV hydrodynamic numerical model [22], by two 
different turbulence closures, the standard k- model 
with buoyancy terms and an Explicit Algebraic 
Reynolds Stress Model (EARSM) developed herein. 
The ability of the numerical model to predict the 
behavior of various important hydrodynamic features 
of gravity currents, such as propagation profiles and 
velocity distribution is confirmed by comparing the 
numerical simulations with the laboratory measured 
values reported in literature. Lock-exchange, wall jet 
flow and intrusive gravity currents have been 
simulated and the numerical predictions employing 
buoyant k- and EARSM turbulence closures have 
been compared against measured values. 
 
2. Mathematical Modelling 
2.1. Governing Equations 
The governing equations deployed to describe the 
hydrodynamics of saline gravity currents are 2D width 
integrated continuity, momentum and scalar transport 
equations: 
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where x and z are the horizontal and vertical directions 
in Cartesian coordinate system respectively, u and w 
the  horizontal  and  vertical  mean velocity  
components  respectively, c the salinity, p the  
pressure, ߩ  and ߩ the  reference density  and density  
of  the  fluid  respectively, ߥ the kinematic viscosity, g 
the gravitational acceleration and ݓ the grid velocity. 
 ௧ is the turbulent Schmit number and the primeߪ
symbol shows the fluctuating quantities. Terms ݑ′iݑ′jതതതതതതത 
and ݑ′iܿ′തതതതതത are Reynolds stress and Reynolds flux 
tensors respectively.  
 
2.2. Turbulence Modelling 
In this study two different closures of turbulence 
models; the standard k- model with buoyancy terms 
and an Explicit Algebraic Reynolds Stress model 
(EARSM) with an Explicit Algebraic Scalar Flux 
(EASFM) model for Reynolds fluxes, have been 
implemented. 
The standard buoyancy-modified k- model [23] is 
based on the eddy-viscosity/diffusivity concept of 
Boussinesq, which uses an isotropic eddy-
viscosity/diffusivity to relate the Reynolds stresses 
 iܿ′തതതതതത of concentration to the′ݑ jതതതതതതത and turbulent fluxes′ݑi′ݑ
mean field [23]: 
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In equations (5) and (6) ݑ and ݑ′i are the mean and 
fluctuating velocity components in ݔ direction 
respectively, ܿ and ܿ′ are the mean and fluctuating 
concentration, ߥ௧  is the turbulent or eddy viscosity, Γ  [
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is turbulent diffusivity of concentration, and ߪ௧ is the 
turbulent Schmidt number which relates eddy 
viscosity to the eddy diffusivity and its value is an 
indication of the level of turbulent mixing. The 
production and dissipation of turbulent kinetic energy 
are subject to transport process. Thus, to describe the 
evolution of turbulence, two transport equations for 
turbulent kinetic energy, ݇, and the dissipation rate of 
energy, ߝ, in tensorial form are as follows [23]: 
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where P represents the production of ݇ by interaction 
of Reynolds stresses and mean velocity gradient, and 
G represents the production/destruction of turbulence 
by buoyancy [23] as described by equations (9) and 
(10). 
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In the k- model the eddy viscosity, ߥ௧ , relates to ݇ 
and ߝ via Eq. (11), which is obtained from 
dimensional analysis and eddy viscosity concept [24]: 
 

௧ߥ (11) = ܿఓ
݇ଶ

ߝ
 

 
In above equations ܿଵఌ, ܿଶఌ, ܿଷఌ, ߚ, and ܿఓ  are 
empirical constants, ݃ is the acceleration in ݔ 
direction, and ܴ is the flux  Richardson number. 
Empirical constants of standard k- model are 
tabulated in Table 1 [23]. 
 

Table 1. Parameters of standard k- model 
 

 ࢚࣌ ࢿࢉ ࢿࢉ ࢿ࣌ ࣌ ࣆࢉ
0.09 1.0 1.3 1.4 1.92 1.0 

 
The Explicit Algebraic Reynolds Stress Model 
(EARSM) has played a significant role in 
environmental hydraulics [25-26], especially in 
simulating anisotropic problems of stratified flows 
with different densities. Considering the buoyancy, 
streamline curvature and rotation effect, etc., the 
advantages of these models are particularly obvious 
compared with the two-equation turbulent models. In 

this study the EARSM turbulence closure proposed by 
Wallin and Johansson [21] has been deployed. 
Algebraic Reynolds Stress Models belong to the 
family of nonlinear models. However, they are 
derived from the full Reynolds stress transport 
equation. The equation may be presented as [21]: 
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where ܽ is the anisotropy tensor of Reynolds 
stresses, and  − ܶ  and − ܶ

() are the turbulent and 
molecular fluxes of the Reynolds stress and turbulent 
kinetic energy, respectively. The dissipation rate 
tensor, ߝ, and the pressure-strain rate tensor, ߶ , 
need to be modelled whereas the production terms, 
ܲ = ܲ ൯ andݔ߲/ݑ൫߲	jതതതതതതത′ݑi′ݑ− = ܲ/2, do not need 

any modelling since they are explicit in the Reynolds 
stress tensor.  
Many inhomogeneous flows of engineering interest 
are steady flows and satisfy the weak equilibrium 
assumption [17]. In this case it is possible to neglect 
the advection and diffusion terms.  The advection 
term is indeed exactly zero for all stationary parallel 
mean flows, such as fully developed channel and pipe 
flows [21]. For inhomogeneous flows the assumption 
of negligible effects of diffusion in the anisotropy 
tensor can cause some problems, particularly in 
regions where the production term is small or where 
the inhomogeneity is strong. However, this 
assumption has been found to be a reasonable 
approximation of the full differential Reynolds stress 
transport equations in a number of flow situations, and 
in many respects is superior to the eddy-viscosity 
hypothesis [21]. In the EARSM turbulence closure of 
Wallin and Johansson, invoking weak equilibrium 
condition results in [21]: 
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By using appropriate models for the dissipation rate 
tensor ߝ and the pressure-strain rate tensor ߶  [21] 
and substituting, the following implicit form may be 
then obtained: 
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of rate of strain and vorticity tensors: 
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Eq. (14) may be rewritten in a matrix notation: 
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where N is related to the production-dissipation ratio 
by ܰ = ଽ

ସ
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ఌ
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proposed by Pope [27], Wallin and Johansson [21] 
proposed a general relation for the Reynolds stress 
anisotropy tensor, a, by using a ten-tensor equation in 
terms of ܁ఛ and ܅ఛ for three-dimensional flows: 
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where the ߚ coeffcients may be functions of the five 
independent invariants in terms of ܁ఛ and ܅ఛ 
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ܸ ,{ఛଶ܅ఛ܁} =  By inserting Eq. (17) into .({ఛଶ܅ఛଶ܁}
Eq. (16) and using the Cayley-Hamilton theorem to 
reduce the higher-order tensor groups, ߚ coefficients 
are obtained. For two-dimensional flows, there are 
three independent groups: ܁ఛ, ቀ܁ఛଶ − ଵ
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coefficients. Then, the representation for a is formed 
as [21]: 
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Now, from Eq. (18), a cubic equation for the unknown 
N may be obtained: 
 

 
(19) ܰଷ − ଵᇱܰଶܥ − ൬

27
10

ௌܫܫ + ௐ൰ܰܫܫ2 + ௐܫܫଵᇱܥ2
= 0 

where ܥଵᇱ =
ଽ
ସ
ଵܥ) − 1). The above equation may be 

solved in a closed form with the solution for the 
positive root being: 
for ଶܲ ≥ 0: 
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In the model of Wallin and Johansson, the buoyancy 
effect was not considered. For anisotropic buoyant 
turbulent flows like saline gravity currents, the 
buoyancy effect should not be neglected in general, 
so, linear hypothesis was assumed in this study and 
Reynolds stresses are considered as the sum of ݑ′iݑ′jതതതതതതത|௦ 
by strain and ݑ′iݑ′jതതതതതതത| by buoyancy: 
 

jതതതതതതത′ݑi′ݑ (23) = jതതതതതതത|௦′ݑi′ݑ +  jതതതതതതത|′ݑi′ݑ
 
where ݑ′iݑ′jതതതതതതത|௦ is the same as that in the EARSM 
proposed by Wallin and Johansson [21]. The algebraic 
expression proposed by Rodi [28] was adopted to 
express the last term in Eq. (23): 
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where ܩ = ߚ− ݃ݑ′jܿതതതതത − ߚ ݃ݑ′iܿതതതതത ; ܩ = ߚ− ݃ݑ′jܿതതതതത ; ݇ 
is the turbulent kinetic energy; ߝ is the turbulent 
dissipation rate. ݑ′iݑ′jതതതതതതത in P is simplified as ݑ′iݑ′jതതതതതതത|௦ 
here, and c1=0.22 and c3=0.55 are the constant 
parameters [28]. 
In order to model the Reynolds scalar flux accurately, 
the Explicit Algebraic Scalar Flux model of Hua et al. 
[29] has been deployed. This model is based on 
EASFM of Wikström et al. [30] and includes the 
buoyancy effects in the algebraic relation. The model 
may be written as: 

(25) 

iܿ′തതതതതത′ݑ

= −(1 − ܿఏସ)ܣିଵ
݇
ߝ
kതതതതതതത′ݑj′ݑ ߲ܿ

ݔ߲

− (
ܿఏ − 1
ܿఏ

ିଵܣ(
݇ଶ

ଶߝ
kܿ′തതതതതത′ݑ݃ߚ ߲ܿ

ݔ߲
 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

5-
06

-0
5 

] 

                             4 / 12

http://ijmt.ir/article-1-246-en.html


Mohammad Kazem Sharifian, Kourosh Hejazi / IJMT 2014, Vol.2; p.43-54 
 

47 

Details may be found in [29]. 
 
2.3. Numerical Method 
WISE (Width Integrated Stratified Environments) is 
an Arbitrary Lagrangian-Eulerian (ALE) 2D vertical 
hydrodynamic numerical model [22], based on time 
dependent Reynolds-Averaged Navier-Stokes 
(RANS) equations. The model is further refined and 
developed herein for EARSM turbulence closure. A 
structured non-orthogonal curvilinear staggered mesh 
is used for computational domain. Finite volume 
method has been utilized to discretize flow and 
momentum equations as well as transport equations of 
scalar quantities like salinity, concentration, k, ε, and 
also Reynolds stresses and fluxes. Finite volume 
method provides flexibility for defining control 
volumes in a staggered grid system, especially near 
bed and water surface, where rapid changes of 
bathymetry and free surface may have significant 
effect on the prediction of the flow flied. Moreover, 
the finite volume method, if accurately implemented, 
provides the assurance of global conservation.  
In the ALE method the mesh motion may be chosen 
arbitrarily; the newly updated free surface is 
determined purely by Lagrangian method, by the 
velocity of fluid particles at the free surface, while in 
horizontal direction the grids are fixed. The grid 
geometry is computed and redistributed after 
completion of each time step. With this consideration, 
an additional grid velocity wg, appears in the the 
Navier-Stokes and scalar transport equations.  
The projection (fractional-step) method, proposed by 
Chorin [31] and Temam [32], has been adopted. The 
method generally is accomplished in two steps [22]; 
the pressure gradient terms are omitted from the 
momentum equations in the first step and the transport 
part of Navier-Stokes equations including advection 
and diffusion are advanced in time to obtain a 
provisional velocity field ܷ∗. In the second step, the 
provisional velocity is corrected by accounting for the 
pressure gradient and continuity constraint as follows:   
 

(26) ܷାଵ − ܷ∗

ݐ∆
+ ∇ܲାଵ = 0 

 
subject to the continuity constraint: 
 

ାଵܷݒ݅݀ (27) = 0 
 
By taking the divergence of (26), the continuity 
equation will be exerted and the Poisson equation is 
obtained:  
 

(28) ∇ଶܲାଵ =
∗ܷݒ݅݀

ݐ∆
 

 
From the above equations the pressure distribution is 
obtained and the velocity quantities are then updated. 
Advection and diffusion parts of transport equations 

were computed in a locally one-dimensional manner 
in sub-fractional-steps in two directions. A fifth 
degree accurate scheme for advection and the Crank-
Nicolson method for diffusion computations were 
utilized [22]. 
 
2.4. Boundary Conditions 
2.4.1. Spatial Boundary Conditions 
Spatial boundary conditions have been determined for 
free surface, rigid surfaces including bed and walls, 
and inlet and outlet boundaries for flow, transport of 
species and turbulence parameters. The kinematic 
boundary condition at the impermeable bottom gives: 
 

ݑ (29)
ݖ߲
ݔ߲

+ ݓ = 0 
 
where ݖ is the bed elevation above datum. Similarly, 
the kinematic boundary condition at the moving free 
surface is: 
 

ߟ߲ (30)
ݐ߲

+ ݑ
ߟ߲
ݐ߲

=  ݓ
 
where ݔ)ߟ,  is the free surface elevation. To keep the (ݐ
consistency, the free surface equation is obtained by 
integrating the continuity equation over depth and by 
the application of the kinematic conditions at bed (Eq. 
29) and free surface (Eq. 30) as follows: 
 

 
ߟ߲ (30)

ݐ߲
+
߲
ݔ߲

න ݖ݀ݑ

ఎ

௭್

= 0 

 
At inlet and outlet boundaries the velocity, pressure or 
water elevation may be regarded as known values 
depending on circumstances. In the case of the known 
velocity or pressure values, the corresponding 
distribution is applied at the boundary. For the outlet 
boundary a constant pressure was imposed. It was 
further assumed that the flow was fully developed at 
the outlet and the vertical derivative of the velocity 
components was set to zero [22]. At wall boundaries 
zero normal velocity and no-slip boundary conditions 
were considered. On the free surface, Neumann 
boundary for k and Dirichlet boundary for ε were used 
and set to zero. Neumann boundary values for k and ε 
were set to zero at the outlet. At the inlet boundary, it 
is assumed that the flow is smooth, and k and ε are set 
to small values different from zero. 
 
2.4.2 Temporal Boundary Conditions 
The initial velocity and pressure values are set equal 
to zero. k and ε are set to suitable values to give an 
appropriate kinematic value for viscosity. 
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3. Results and Discussion  
In order to validate the new EARSM turbulence 
model and to investigate the predicted results and 
compare them with the simulated values obtained 
from k- turbulence closure, the predicted values for 
hydrodynamic parameters have been compared with 
the measured values of four experimental studies of 
lock-exchange and intrusive type and wall jet flows. 
These types of flows may represent gravity currents in 
estuaries. 
The first test is based on the experimental data 
reported by Kneller et al. [33]. The experimental 
apparatus consisted of a simple rectangular lock-
exchange tank, 0.2m wide and 2.15m long, and a 
0.34m long lock compartment at one end.  The flume 
was filled with ambient fluid to a depth of 0.1m. The 
lock compartment was filled to equal depth, and the 
density difference between saline and fresh water was 
41 kg/m3. For simulation, 20 layers with 100 grids of 
dimension 0.025m in x-direction have been used to 
construct the domain. The simulation time was 40s 
and a time step of 0.05s has been used. Figure 1 
shows the velocity profile comparison of two models 
with measured values at x=800mm and t=14s. y is the 
depth of the flow from bottom and d is the total depth 
of the flow. Velocities have been normalized for the 
maximum velocity. Better agreement has been 
obtained for EARSM; however at the boundaries 
buoyant k- closure, shows closer results. 
The second test is a buoyant wall-jet flow, studied 
experimentally by Gerber [34]. The experiment was 
carried out in a Perspex flume with an inlet for the salt 
current with an excess density of 2 kg/m3 with respect 
to water, and discharge of 0.59 l/s. The gravity current 
was planned to travel along the flume bottom and exit 
it to a damping tank to prevent creation of a reverse 
flow to the upstream. The general characteristics of 
flow and inlet conditions utilized in laboratory 

experiment by Gerber [34] and in the simulations are 
summarized in Table 2. 
 

Table 2. Summary of general characteristics and inlet flow 
conditions in experiment of Gerber [34] 

 

Parameter Units Value 
water depth in flume ݉ 0.30 

depth of inlet current ݉ 0.03 
ambient density ݇݃/݉ଷ 998.2 
excess  
fractional density ݇݃/݉ଷ 2.0 

inlet velocity ݉/0.079 ݏ 
k0 ݉ଶ.  ଶ 6.875×10−5ିݏ
ε0 ݉ଶ.  ଷ 1.38×10−5ିݏ

 
For simulation, 30 layers with grids of dimension of 
0.05m in x-direction have been used to construct the 
domain. The simulation time was 300s and a time step 
of 0.05s has been used. Figure 2 presents the 
measured and simulated velocity profiles at x=0.9m 
and x=2.4m. These profiles have been normalized 
using their own outer flow scales umax and y0.5. The 
outer length scale y0.5 is defined as the height at which 
the velocity u is equal to half the maximum velocity 
umax. Acceptable agreement has been obtained for both 
models; away from the boundary, EARSM shows 
closer values to measured data. 

u/umax

-1.0 -0.5 0.0 0.5 1.0 1.5

y/
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0.2
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Figure 1. Velocity profiles of turbulence models and 
measured values in experiment of Kneller et al. [33] 
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Figure 2. Velocity profiles of turbulence models and 
measured values at (a) x=0.9m and (b) x=2.4m in 

experiment of Gerber [34] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

5-
06

-0
5 

] 

                             6 / 12

http://ijmt.ir/article-1-246-en.html


Mohammad Kazem Sharifian, Kourosh Hejazi / IJMT 2014, Vol.2; p.43-54 
 

49 

Table 3. Summary of simulation setup in experiments of 
Sutherland et al. [35] 

 

Case 
# 

H 
(cm) 

ho 
(cm) 

h1 
(cm) 

ρo 

(kg/m3
) 

ρ1 
(kg/m3

) 
1 20 10 10 1000 1020 
2 20 17.5 2.5 1000 1020 

 
The third series of simulation cases are performed to 
identify the propagation dynamics of intrusive gravity 
currents. The simulations are compared with the 
experimental measurements of Sutherland et al. [35]. 
The experiments have been conducted in a flume with 
197.1cm length, 17.6cm width and 48.5cm height. 
The lock-length (l) behind the gate is fixed at 18.6cm 
and the total water depth (H) is set equal to 20cm 
(Figure 3). Two tests have been selected for 
simulation. In both simulation cases, the density of the 
lock fluid (ߩௗ) is equal to the depth-weighted average 
of the upper and lower layers. In the first case, the 
depth of the two layers in the ambient fluids is also 
equal (ho=h1). In the second case however, the depth 
of the two layers in the ambient fluids is not equal. 
Table 3 shows the initial conditions for the 
simulations. The computational grid size in the x and z 
directions are set to 5.0mm. 

In the first symmetrical case, the simulation snapshots 
are created to visualize the temporal evolutions of the 
intrusive gravity current. Figure 4 shows that the fluid 
contained behind the lock gate collapses 
symmetrically and propagates along the interface after 
the removal of lock gate, and the head is visible after 
2s. The initial collapse begins with rapid acceleration 
and the current head becomes uniform in shape after 
26s. As it propagates to the right end of the wall, the 
head of the gravity current causes strong mixing, 
resulting in mass loss and dilution in the head. The 
temporal evolution of the gravity current is illustrated 
with images taken from the experiments and the 
graphics obtained from numerical simulations as 
shown in Figure 4. It shows that the numerical model 
prediction with either buoyant k-ε or EARSM 
turbulence closures describe the dynamics of intrusive 
gravity current with a symmetrical condition. It is also 
evident that the numerical model resolves the fine 
scales associated with the mixing that occur in the 
vicinity of the gravity current head. The formation of 
Kelvin-Helmholtz billows that show the vertical 
structure behind the head of intrusive gravity current, 
is reproduced well by both closure schemes. However, 
overall shape of the current is closer to experimental 
results in case of EARSM, especially in the head 
region. The traveling distance calculated from both 
buoyant k-ε and EARSM closures are plotted as a 
function of time in Figure 5, which show very good 
agreements with experimental measurements. In the 
second case (Figure 6), a different dynamics 
compared to the symmetrical case (case 1) has been  

Figure 3. Sketch of lock-exchange experiment of 
Sutherland et al. [35] 

Figure 4. Temporal evolutions of an intrusive gravity current for case 1, where experimental results of Sutherland et al. 
[35] are compared with simulated density contours based on buoyant k-ε and EARSM turbulence closures. 
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structured. In this case, the propagation speed is 
observed to be slower than that of the case 1, in 
particular, the gravity current does not form a 
symmetrical head as it propagates. This is because the 
return flows in the upper layer and lower layer of the 
ambient fluid move at different speeds and they 
interact with the end wall differently. Sutherland et al. 
[35] also mentioned that due to the small density 
difference between lock and ambient upper-layer 
fluid, the top return flow takes longer to be 
established, resulting in mixing between the lock and 
ambient fluid behind lock-gate, whereas the return  
flow in the lower layer of the ambient fluid intrudes  

into the lock fluid rapidly with weak vorticity. After 
the collapse phase, the lock fluid forms the head and 
tail of the gravity current. Shear instability occurs 
only across the interface between the gravity current 
and the upper layer. The shape of the gravity current 
seems similar to a gravity current propagating over a 
no-slip bottom.  
By comparing the experimental and simulation results 
at t=14s, the predictions show less mixing, whilst 
some initial mixing is introduced by vorticity in the 
upper lighter layer behind lock gate. After the collapse 
phase, the numerical simulations also show weaker 
shear instabilities in the rear part of the tail region 
(Fig. 6c). Sutherland et al. [35] note that the mixing 
between lock fluid and the upper-later ambient fluid is 
promoted by the vorticity created by the gate removal. 
In both cases of buoyant   k-ε and EARSM models, 
the vorticity developed by the lock-gate removal 
cannot be simulated. However, the propagation speed 
of the intrusive current is still correctly reproduced by 
the numerical simulations. 
The last test is based on the experimental study 
accomplished by Zhu et al. [36] as a lock-exchange 
type of gravitational flow. The experiments were 
carried out in a rectangular Perspex flume, 200mm 
wide, 400mm deep and 2590mm long. The flume was 
filled with fresh water to a depth of H0=100mm and a 
Perspex gate was positioned vertically at a distance  
x0=200mm away from the left end of the channel to 
form a lock. Salt was dissolved into the water behind 

Time (sec)

0 5 10 15 20 25 30 35 40

D
ist

an
ce

 (c
m

)

0

50

100

150

200

buoyant k-
EARSM
Experimental

Figure 5. Traveling distance of intrusive gravity current as a 
function of time in case 1, for simulated values of buoyant k-

ε and EARSM closures and measured values [35] 

Figure 6. Temporal evolutions of an intrusive gravity current for case 2, where experimental results of Sutherland et al. 
[35] are compared with simulated density contours based on buoyant k-ε and EARSM turbulence closures. 
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the Perspex gate to create a density difference 
between the two parts of the flume. A densimeter was 
used to measure the densities of saline and fresh 
waters. Densities of ߩ=1009.5 and ߩ=999.5 kg/m3 
were used for saline and fresh waters, respectively, 
corresponding to a density difference of ∆ߩ = ߩ −
ߩ =10 kg/m3. Zero velocity boundary conditions 
were implemented at solid walls. In order to 
accurately simulate the hydrodynamic parameters of 
the gravity current flow and the salinity concentration 
within the water, a grid dependency study should be 
carried out. For a coarse gridding, the solution will be 
sensitive to the grid resolution. With the grid 
refinement, the computational cost increases but the 
solution becomes insensitive to the grid resolution. 
The aim is, therefore to find the coarsest possible grid, 
requiring the lowest computational effort, while 
remaining insensitive to the grid resolution. A grid 

independent solution was found by simulating the 
same gravity current on successively refined grids. 
The reference mesh was 10×150 (10 layers and 150 
cells in x-direction). Different number of layers and 
grids in x-direction were utilized for both turbulence 
closures, respectively. The time step in each case was 
adjusted according to the cell size characteristics, and 
the simulation time was 62s. Figure 7 shows that, for 
both turbulence models, grid independent profiles are 
obtained for grids 12×150 and finer (time and front 
position values are in non-dimensional form ݔ∗ =
௫
௫బ
	 , ∗ݐ = ௧

௧బ
	 , ݐ =

௫బ
(ᇲுబ)భ మ⁄ 	 , ݃ᇱ =

∆ఘ
ఘೌ

). 
  
Figure 8 shows the gravity current profiles for 
buoyancy-modified k- and EARSM turbulence 
closures. The front position at successive times after  
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Figure 7. Simulated front position profiles for different grid resolutions with buoyant k-ε (a and b) and 
EARSM (c and d) turbulence closures in experiment of Zhu et al. [36] 
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the release has been reported [36].  Also, Figure 9 
shows the front position of the gravitational current 
versus time for simulated results and measured values 
of Zhu et al. in non-dimensional form. During an 
initial slumping phase, the front head position ݔ, 
increases linearly with time. Two distinct phases of 
lock-exchange front propagation were observed and at 

about 10 lock lengths, the transition from the first to 
the second phase occurs [36]. While in the first phase 
of the gravitational flow extent, both models predict 
the front head position well, the k- model shows a 
little more underestimation in the second phase. 
Figure 10 shows the velocity profiles of EARSM and 
k- turbulence models in comparison with measured 
values at x=1020, 1040, 1060 and 1080mm 
respectively, and at t=12.28s. It is evident that 
EARSM turbulence closure predicts the velocities 
more accurately, with the exception of near bed 
values. This may justify the need for further research 
for improvement of appropriate wall functions for 
Reynolds stresses. 
 
4. Conclusion 
Lock-exchange, wall jet and intrusive gravity currents 
were simulated to investigate the effects of using two 
different turbulence closures, a two equation standard 
k-ε model with buoyancy terms and an Explicit 
Algebraic Reynolds Stress Model (EARSM) along 
with an Explicit Algebraic Scalar Flux Model 
(EASFM). Results show that, the EARSM provides 
better predictions for velocity profiles especially in 
the far zone from the bed. Also, EARSM provides 
better predictions for the front head position. 
However, using appropriate wall functions for 
Reynolds stresses could augment accuracy of model 
in boundary layers. Because the EARSM turbulence 
model provides better predictions in most parts of the 
stratified gravity currents, while its computational 
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Figure 9. Comparison of front head position for EARSM and 
buoyant k-ε turbulence closures with measured values of Zhu 

et al. [36] 

Figure 8. Results of simulated salinity distribution for EARSM and buoyant k-ε turbulence closures at 0, 23, 36, 52 and 62s in 
experiments of Zhu et al. [36]. The dotted line in the frames is the experimentally reported location of the nose of the gravity 
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costs is not considerably greater than two-equation 
models, it can be concluded that in these category of 
flows, using EARSM model is reasonable and may be 
suggested. It is also worth noting that a distinct 
turbulence model cannot satisfactorily predict all 
turbulent flow cases, and especial calibration for 
constants and consideration for source terms are 
needed. 
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