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ABSTRACT

Marine industry requires continued development of new technologies in order
to produce oil. An essential requirement in design is to be able to compare
experimental data from prototype structures with predicted information from a
corresponding analytical finite element model. In this study, structural model
updating may be defined as the fit of an existing analytical model in the light
of measured vibration test. After fitting, the updated model is expected to
represent the dynamic behavior of the jacket structure more precisely. In this
way, current article presents a direct based updating study of a reduced scale
four-story spatial frame jacket structure fabricated and tested at mechanical
system and signal processing laboratory. Also, an efficient model updating
process is presented with limited modal data, which uses modal data in order
to improve the correlation between the experimental and analytical models.
The proposed technique is computationally efficient since it does not require
iterations. It updates the mass and stiffness matrix such that they are
compatible with the modal data of the observed modes.

1. Introduction

Jacket-type offshore platforms are by far the most
common kind of marine structures and they play an
important role in oil and gas industries in shallow and
intermediate water depth such as Persian Gulf region.
As offshore jacket structures require more critical and
complex designs, the need for accurate considerations
to determine uncertainty and variability in analytical
models, loads, geometry, and material properties has
increased significantly. In this context, one way to
verify the math model accuracy is by comparing the
experimental results provided through the conduction
of dynamic tests with those expected from a previous
analytical analysis [1-4]. Model updating is becoming
a usual technique to improve the correlation between
FEMs and measured data [5,6]. Based on the type of
parameters that are updated and the measured data
that is utilized, there are a number of procedures to the
problem. The model updating problem has also
applications in damage detection and integrity
monitoring of the structures, such as jacket structure,
bridges, highways, etc. [7-10]. The updating
techniques can be generally categorized into three
types: (a) direct matrix model updating techniques, (b)
iterative techniques, and (c) frequency response
techniques. The direct matrix updating approaches
solve for the updated matrices by forming a

constrained optimization problem. The excellence of
direct techniques is that they are computationally
straightway and efficient; since the result of the
computation is unique, it is not necessary addressing
the problem of whether the solution converges. For
instance, Baruch assumed the mass matrix to be
correct and updated the stiffness matrix [11,12].

An initially step estimated the mass normalized
eigenvectors closest to the measured eigenvectors.
Berman challenged whether the mass matrix should
be considered exact, and updated both the mass matrix
and the stiffness matrix [13,14]. Baruch explained
these techniques as reference basis techniques, since
one of three quantities (the measured modal data, the
analytical mass and stiffness matrices) is assumed to
be exact, or the reference and the other two are
updated [15]. Caesar developed this approach and
produced a range of techniques based on optimizing a
number of cost functions [16]. All the techniques
described so far, are similar in this aspect that only
one quantity is updated at a time. Applying the
measured modal data as a reference, Wei updated the
mass and stiffness matrices simultaneously [17-19].
The constraints imposed were mass orthogonality, the
equation of motion and the symmetry of the updated
matrices. All of the aforementioned techniques used
real mode shapes and natural frequencies. The
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measured mode shapes were processed to create the
equivalent real modes. This work focuses on
improvement of stiffness and mass matrices by using
Lagrange multiplier based techniques (direct
technique) along with empirical study, so that the
updated matrices reproduce the measured modal data.
The experimental and the numerical modal analysis
for obtaining the dynamic behavior of system have
been implemented during this work. One main scope
of the Experimental Modal Analysis (EMA) is
extraction of the frequency response functions
(FRF's). In the first step of an EMA, the elements of at
least one full raw or one full column of the FRF
matrix should be measured and then the natural
frequencies can be identified using a variety of
different methods such as Rational Fraction
Polynomial method. In present study, this method has
been applied using the ME’scope software. Another
very important aspect of modal testing is the
correlation and correction of a numerical model such
as a FEMs. In the numerical modal analysis the
governing equations are formed by obtaining mass
and stiffness matrices and by solving them, the modal
parameters can be estimated and finally the response
of system is calculated. This means that the standard
Eigen problem (|[K] — [M]w?| = 0) must be solved.
Based on the basic concept of the vibration analysis,
the natural frequency which resulted from the
mentioned equation is an undamped frequency and in
this problem the damping is not considered. Of
course, the damping parameters play individual role in
dynamic behavior of a real structure. But in most of
the damage detection problems, in order that the
methods would not be affected by damping, the
undamped natural frequencies are considered as the
desire extracted features via the FEM software. Of
course, both the experimental and numerical methods
can cause some errors in the measured frequencies,
but in a FEM updating for the damage detection
process, the experimental modal final results are far
more acceptable and considered as the objective.
Therefore the FEM is updated according to the
experiment, so that the numerical natural frequencies
approach to the experimental results. In addition, in
this research, we propose an improved procedure for
updating the stiffness and mass matrices. The direct
matrix model updating technique works exclusively
with only a small number mode shapes, and it is
capable of preserving the mode shapes that are
affected by updating. For example, if the model size is
small, then all the mode shapes of the updated model
can be computed explicitly using the existing
computational techniques. However, this is not
possible if the model size is large; because, the direct
verification techniques of matrix computations are
capable of computing only a few eigenvalues and
eigenvectors.

The current paper (proposed methodology) for
applying the incomplete experimental data uses only
low-dimensional matrices, even though the FEM
might be very large. In this regard, improved
reduction algorithm is used. It is worth mentioning, in
the structural health monitoring process using the
characteristic parameters; the use of updated matrices
based on experimental results is useful. On the other
hand, in model updating of an offshore jacket
platforms using EMA, there are two major challenges
ahead: (a) the mismatching of measurement sensors
and degrees of freedoms (DoFs) of the analytical
model, namely the spatial incompleteness and (b) the
unavoidable corrupted measurements [20, 21]. In
dealing with spatially incomplete situations and the
effects of noise to overcome uncertainty problem, we
can use improved model reduction scheme and
implement of precise experimentation. Furthermore,
to overcome modeling uncertainty problem the FEM
updating process is applied by using results of the
experiment on physical model of the offshore jacket
platforms, when limited, spatially incomplete modal
data is available. In this study, the presented reduction
technique removes the bad effect of model reduction
process on the model updating procedure by adding a
correction term (inertial effects) to the formula of the
simplest reduction schemes. The FEM updated
provides a useful and less expensive way for studying
the fixed marine structures. Thus, experimental
programs are necessary to provide validation for the
results and reduce the uncertainty of the values of the
excitations for of fixed marine structures.

2. The Model Updating Methodology

2.1 Lagrange Multiplier: Updating of Stiffness
Matrices

The Lagrange multiplier based techniques (direct
technique) generally consider one parameter set,
either mass or stiffness to be correct, and the
remaining two that is either mass or stiffness, and the
modes, are updated by minimizing a cost function
with the appropriate constraints imposed through
Lagrange multipliers. Modes that are measured from
the structure will not necessarily be orthogonal to the
analytical mass matrix since there are likely fewer
transducers than DOF and because of imperfect
measurements. For the direct techniques that assume
that the mass matrix is correct, it is usually difficult to
enforce orthogonality.

In order to ensure the eigenvectors are orthogonal, the
measured eigenvectors must be corrected. Baruch has
derived a cost function, J, (1), in which the newly
updated eigenvector matrix ¢ is to be minimized [11]:
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Where N = Mal/Z, M, is the analytical mass matrix,
®m is the measured eigenvector , [N];;, [@];j, [om]i;
are the (i,j) elements of the matrices N, ¢, ¢,,, m is
the number of measured eigenvectors, n is the number
of DOF in the analytical model. Subjected to the
orthogonality condition:

"M, p=1 (2)

The Lagrange Multiplier technique uses the constraint
(2) to produce the augmented function to be
minimized as [6]:

S QLR AR EARE
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Where the terms, yjj, are the Lagrange multipliers,
which are cast into a matrix T, and the terms &;;
represent errors. The Lagrange Multipliers may be
forced to be unique by introducing the constraint of
symmetry so that:

r=r" (4)

3)

Differentiating the augmented function (3) with
respect to each element of the corrected eigenvector
matrix and the following expression is found:

o=p,[1+T]" (5)

When substituted back into the orthogonality
condition, becomes:

[14T] "gIM, g, [1+T] =1 (6)

By pre and post multiplying by [I + I'land taking the
square root, it becomes:

[+1]=[pIM, 0, ] )

Finally, substituting Equation (7) into (5), the
Equation for the corrected eigenvector matrix is:

e

(8)

If it is assumed that the analytical mass matrix is
already correct and the eigenvectors are corrected to
ensure orthogonality, the stiffness matrix can now be
updated. Baruch found that the updated stiffhess
matrix can be found to minimize the cost function
[11]:

0, = 0ul0IM, 0,

JziN‘l(K ~K N7 (9)

Z [N ] [K]hk K ]hk [N ” (10)

IJ—l hk=1

Where N = M, /2, [N"1];, [K];;, [Kq];; are the (i)
elements of the matrices N~1, K, K, and is subject to
the two constraints:

Kp=M,p A
And
K" =K (11)

A represent the eigenvalue matrix. The cost function
is then differentiated with respect to the updated
stiffness matrix and results in the following Equation:

M YK -K, M +2[, " +2I, =0 (12)

Where I', and [, are Lagrange Multipliers. By

calculating the values of the Lagrange Multipliers,
substituting them into Equation (9), and then
rearranging Equation, the updated stiffness matrix can
be found using the following Equation:

Ku = Ka - Ka%(PJ Ma - Ma(puwl— Ka +

M., 0; K@@ M, + M0, A i M, 13)
2.2 Lagrange Multiplier: Updating of Stiffness and
Mass Matrices

Berman and Nagy used a similar approach to the one
presented by Baruch, however, they used it to update
both the mass and stiffness matrices by assuming that
the measured eigenvector matrix is correct [14]. The
advantage of this scheme is that it is not necessary to
calculate the corrected eigenvectors because the mass
matrix is updated in such a manner to ensure the
orthogonality of the eigenvectors to the mass matrix.
Given the analytical mass matrix, M,, and the
measured eigenvector matrix, ¢,,, the following cost
function is created in which the updated mass matrix
is found to minimize the function:

1 1

M2 (M =M )M, 2 (14)

J:z‘
2

This function is also subject to the orthogonality
constraint:

oMo, = (15)

The cost function J is minimized using the same steps
as the cost function containing the corrected stiffness
matrix. The result is:
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MH(M =M M +¢,T ¢ =0 (16)

Combining this Equation with that of the
orthogonality constraint and the Lagrange Multiplier,
the updated mass matrix can be found by adding an
updating term, the second term in Equation (16), to
the analytical mass matrix as follows:

M, =M, + M0, M (I -Ma M2 o] M, (17)

Where, M1 = T M, q,,.

The updated mass matrix can now be used to calculate
the updated stiffness matrix. Since the eigenvector
matrix is orthogonal to the newly updated mass
matriX, the calculation for the updated stiffness matrix
from the previous section can be used; however, the
newly acquired updated mass matrix and the
measured eigenvector matrix will appear in place of
the analytical mass matrix and the corrected
eigenvector matrix. So the Equation for the updated
stiffness matrix becomes:

Ku = Ka - KagomerMu - Mu¢m¢; Ka +

T T T (18)
M, 20 0n KoM, + M, 0, A 0 M,
3. Improved Reduction Algorithm Due to
Incomplete Modal Data
One of the simplest reduction schemes is static
reduction (Guyan). The full scale model may have
certain nodal freedoms specified as master freedoms.
The remaining freedoms are slave freedoms. For
dynamic analysis purposes the mass, stiffness and
loading on the slave freedoms are condensed to these
master freedoms. In matrix notation the overall
matrices may be partitioned into master, slave and
cross coupling terms.

[M mm] [M ms] Xm 4+
Ma] IMLLX,
[Kmm] [Kms ><m _ 0

[Ksm] [KSS] XS B O
Where, the subscripts M and S refer to the master and
slave coordinates, respectively. The technique then
ignores the inertia terms in the second set of

Equations. Neglecting the inertia terms for the second
set of equations we have:

K I+ (K JX =T (20)

By eliminating the slave DOF, we obtain:

D, et e

(19)

T. is Guyan transformation matrix and | is identify

S
matrix.
The reduced Guyan mass and stiffness matrices are
then given by [22]:

[Me]=[T, IIMI[T,] (22)
[Ke]=[T, 1KI[T,] (23)

For larger marine structures, where it is necessary to
reduce many slave DOF, this technique will not be as
accurate as some of the more advanced approaches.
Accordingly, improved reduction skill is probably the
best practical process for solving large dynamic
problems. Only the smallest frequencies are usually
excited and for a typical jacket no more than 30 would
normally be required.

The process known as the Improved Reduction
System (IRS) was presented by O“Callahan in 1989
[5]. This technique is an improvement over the Guyan
static reduction scheme via introducing a term that
includes the inertial effects as pseudo static forces. A
transformation matrix T, is applied to reduce the mass

and stiffness matrices. It is defined as:

[m =[]+ [SIM]T. IMZIIK, ] (24)
where

; Hﬁ} [E]ﬂ (25)

My and K, are the statically reduced mass and

stiffness matrices.
The new reduced mass and stiffness matrices can be
obtained by:

[MIRS]:[TiT][M][Ti] (26)
[Kle]:[TiT][K][Ti] (27)

For this process, the rows and columns corresponding
to the slave coordinates are eliminated from the mass
and stiffness matrices one at a time; this allows the
mass and stiffness matrices to adapt to the removal of
a slave, and can possibly alter the DOF that will be
removed. After each reduction, the DOF with the
lowest it/ ~term is the slave which will be

eliminated next [23].

4. Feature Extraction of Structure

4.1 Theoretical Modal Analysis

Modal analysis is the procedure of identifying the
intrinsic dynamic properties of a system in forms of
natural frequencies, damping factors and mode
shapes, and using them to formulate an analytical
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model for its dynamic behavior. In this paper, the
Block Lanczos method has been applied for solving the
modal analysis.

4.2 Modal Testing
Modal testing is an experimental method utilized to
derive the modal model of a linear time-invariant
vibration system. The modal testing methods have
been widely applied to assess the dynamic
characteristics of the structures. The method's
common applications include not only feature
extraction but also structural integrity monitoring of
structures. Modal testing processes are offered by
three main procedures: Experimental Modal Analysis
(EMA) and Operational Modal Analysis (OMA). In
the EMA method, structures are excited by certain
forces and the responses of the structures are
recorded. The structural modal parameters are
extracted from the identified modal models based on
the recorded input/output. The OMA method requires
only the outputs to be measured for the construction
of a modal model for structures, so artificial
excitations are not necessary.
The theoretical basis of the method is secured upon
establishing the relationship between the vibration
response at one location and excitation at the same or
another location as a function of excitation frequency.
In the present article, Modal Assurance Criterion (MAC)
method is applied for updating of the platform model.
The modal assurance criterion, which is also known as
mode shape correlation coefficient, between analytical
mode ¢, and experimental mode g, is defined as:

2
ool

(28)
(0o Jolo,)

MAC((pi,goj)z

A MAC value close to 1 suggests that the two modes
are well correlated and a value close to 0 indicates
uncorrelated modes [24, 25].

5. Description of The Physical Model and Test
Set Up

5.1 Necessary Conditions to Select the Physical
Model

Most offshore platform topsides and jackets are
transported to the final site by barge. Offshore
platforms are commonly moved long distances to
install in the site. The transportation phase can be
critical for some permanent members and determines
the design of the sea fastenings and other temporary
attachments. Large forces can be generated,
particularly by the roll and pitch rotations and
accelerations and the heave acceleration of the barge.
This is especially the case for jacket platforms where
the length of the legs results in large bending
moments from roll and pitch motions. These effects
can cause significant fatigue damage as well as

possibly overstressing the legs. Parts of the structure
which overhang the barge deck may experience
buoyancy, drag and inertia loading and also, possibly
more seriously, slam loading if the member penetrates
the water surface. The sea area, barge size, season and
duration of the tow should be taken into account when
selecting the environmental conditions to be used for
the analysis. As a result, the step of loading is very
important and it has a significant effect on the design
of jacket platforms. Thus, the physical model is
constructed according to this loading condition.
Accordingly, the model tests were performed in dry.

5.2 Physical Model and Laboratory Work

The case study is a fixed jacket-type offshore platform
model and the geometric dimensions of the structural
members are similar to those in the model first used
by Huajun et al. [26]. The general shape of the model
represents a space frame with four main legs that are
connected to the top deck. The frame of the model has
horizontal and diagonal bracing members at all
stories. The space steel frame jacket structure,
consisting of 46 steel tubular members with outer
diameter 18 mm, wall thickness 2.5 mm for leg
members and outer diameter 12mm, wall thickness
1.5 mm for other members, is fixed at the ground.

A physical model was constructed of stainless steel
pipes that were welded together using argon arc
welding to ensure proper load transfer. The mass
density of the members is 7850 kg/m3 and the
Young’s modulus of steel is 207 GPa. There are 16
nodal points in the FEM, three translational DoFs at
each node, thus total 48 translational DoFs. The
physical model and FEM of the laboratory tested
space steel frame jacket structure adopted for model
updating is shown in Figure 1. The white noise signals
were used as the input exciting signal. The
instrumentation  included two light uniaxial
accelerometers (4508 B&K) in both the X and Y
directions on each joint for response measurement and
a load cell for measuring the excitation force.

The frequency sampling of the test setup was chosen
to be 10 kHz, and the frequency range was 0-200 Hz.
The recorded data were sent to the PULSE [27]
software package for processing. The data required for
calculating the FRFs were recorded by sensors that
were fixed on the physical model joints. Because there
were more desired points for measurement (i.e., the 16
joints of the model) than the number of available
channels and accelerometers, the measurements were
performed in 16 steps. The test rig and instruments are
illustrated in Figure 2.

6. Results and Discussion

6.1 Improvement of Stiffness Matrix

The jacket platform was modeled using 3D FE
software, ANSYS and modal analysis was performed.
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Figure 1. (a) The physical model and (b) finite element model
of the jacket

For the implementation of the proposed technique,
initially the mass and stiffness matrices were extracted
by ANSYS software under SUBSTRUCTURE analysis
(see Figure 3).

With limited transducers, it is only possible to
estimate the lower modes. Mode shapes of the
numerical and EMA are shown in Figure 4; also
frequencies of numerical, experimental and updated
model along with MAC value are listed in Table 1. In
this case the corrected stiffness matrix becomes
similar to Figure 5. It is apparent that the updated
stiffness matrix is now filled and no longer physically
represents the model. Finally, it can be concluded that
there is perfect correlation between the numerical and
experimental modal vectors. This means that, MAC
value is close to 1 and the numerical and experimental
models have appropriate correspondence.

6.2 Improvement of Stiffness and Mass Matrices
Using Equations (17) and (18), the updated mass and
stiffness matrices will be similar to Figure 6. Again,
the updated matrices become completely filled for the
second case. However, since both the mass and
stiffness matrices are allowed to be perturbed, they are
closer to physically representing the system. The
results for the first 4 modes are presented in Table 2.
Also, the Changes of those matrices are shown in
Figure 6. The results are similar to the initial direct
technique (stiffness), which is to be expected, since
they are both based on similar optimization
procedures, the only difference is in the matrices
being updated. However, it is noted that the mass
matrix is no longer diagonal; since the stiffness matrix
is already not a physical representation it is more
beneficial to update only the stiffness matrix.

7. Conclusions

FE matrix updating has attracted a notable amount of
attention by the engineering community and
consequently, there now exist a voluminous work on
this problem. In this research the ability of empirical
investigation of the jacket platform model updating
are considered. Also, an efficient model updating
technique was presented with incomplete modal data,
which uses modal data in order to improve the
correlation between the experimental and analytical
models. An example with incomplete modal data of a
typical reduced scale four-story spatial frame of the
jacket platform was carried out showing that the
methodology was able to correct update both mass
and stiffness matrices and reproduce correctly the
tested data. The mode shapes are not required to be
measured at all DOF. The proposed technique
removes the bad effect of model reduction process on
the model updating procedure.
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Figure 2. (a): modal testing and tested three-dimensional structure, (b): Installed accelerometers and sensor position
and (c): The experimental test rig and instruments.
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Figure 3. (a) Initial stiffness matrix (b) Initial mass matrix of platform model

Table 1: The first four natural frequencies (Updated Stiffness Matrix)

Mode Natural frequencies (Hz) Differences MAC
no. (%)
Numerical Experimental  Updated
Analysis Result model
1 67.29 58.34 58.83 0.85 0.994
2 91.46 94.13 93.61 0.50 0.992
3 100.8 106.21 106.85 0.60 0.990
4 125.1 130.28 131.04 0.58 0.992

7
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1

X direction

Y direction

Z direction

Figure 4. The first mode shape using (a) numerical modal analysis, (b) experimental modal analysis.

Table 2: The first four natural frequencies (Updated Stiffness and Mass Matrices)

Mode Natural frequencies (Hz) Differences MAC

no. (%)
Numerical Experimental Updated
analysis result model

1 67.29 58.34 58.59 0.4 0.995

2 91.46 94.13 93.84 0.3 0.992

3 100.8 106.21 106.6 0.4 0.994

4 125.1 130.28 129.87 0.4 0.991

E !25
2 4 6 8 10 12 14 16 18 20 22 24
DOF

Values x 10"

S
Figure 5. Stiffness perturbation: (Lagrange Multiplier method - updating the stiffness matrix).
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Figure 6. (a) Stiffness perturbation and (b) Mass perturbation:
(Lagrange Multiplier method - updating the stiffness and mass Matrices).

The proposed technique is computationally efficient
since it does not require iterations. It updates the mass
and stiffness matrix such that they are compatible with
the modal data of the observed modes. The Lagrange
multiplier techniques reproduce the measured eigen-
system, however, the results are not physically
meaningful, or in other words cause the updated
system to lose its physical representation. This is a
potential problem for situations where the stiffness
and/or mass of a specific DOF are needed, such as in
damage detection. In the structural health monitoring
process using the characteristic parameters, In other
words, the use of updated matrices based on
experimental results is useful. These techniques are
advantageous for systems that contain measured

eigenvalue and eigenvectors for every DOF,
especially if the physical representation of the mass
and stiffness matrices is not of importance. The FEM
updating provides a practical and less expensive way
for studying the behavior of fixed offshore platforms.
However, an experimental program can be used to
validate a FEM. Through experimentations one can
reduce the uncertainty of the fixed offshore platforms.

List of Symbols
EMA  Experimental modal analysis
IRS Improved reduction system

M,  Analytical mass matrix
My  Statically reduced mass matrix
K,  Analytical stiffness matrix
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Kp  Statically reduced stiffness matrix
K, Updated stiffness matrix

¢,  Measured eigenvector

¢,  Corrected eigenvector matrix
I, I, Lagrange Multipliers

6;,  Errors

Yjn  Lagrange multipliers
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