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Marine industry requires continued development of new technologies in order 

to produce oil. An essential requirement in design is to be able to compare 

experimental data from prototype structures with predicted information from a 

corresponding analytical finite element model. In this study, structural model 

updating may be defined as the fit of an existing analytical model in the light 

of measured vibration test. After fitting, the updated model is expected to 

represent the dynamic behavior of the jacket structure more precisely. In this 

way, current article presents a direct based updating study of a reduced scale 

four-story spatial frame jacket structure fabricated and tested at mechanical 

system and signal processing laboratory. Also, an efficient model updating 

process is presented with limited modal data, which uses modal data in order 

to improve the correlation between the experimental and analytical models.  

The proposed technique is computationally efficient since it does not require 

iterations. It updates the mass and stiffness matrix such that they are 

compatible with the modal data of the observed modes. 
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1. Introduction 
Jacket-type offshore platforms are by far the most 

common kind of marine structures and they play an 

important role in oil and gas industries in shallow and 

intermediate water depth such as Persian Gulf region. 

As offshore jacket structures require more critical and 

complex designs, the need for accurate considerations 

to determine uncertainty and variability in analytical 

models, loads, geometry, and material properties has 

increased significantly. In this context, one way to 

verify the math model accuracy is by comparing the 

experimental results provided through the conduction 

of dynamic tests with those expected from a previous 

analytical analysis [1-4]. Model updating is becoming 

a usual technique to improve the correlation between 

FEMs and measured data [5,6]. Based on the type of 

parameters that are updated and the measured data 

that is utilized, there are a number of procedures to the 

problem. The model updating problem has also 

applications in damage detection and integrity 

monitoring of the structures, such as jacket structure, 

bridges, highways, etc. [7-10]. The updating 

techniques can be generally categorized into three 

types: (a) direct matrix model updating techniques, (b) 

iterative techniques, and (c) frequency response 

techniques. The direct matrix updating approaches 

solve for the updated matrices by forming a 

constrained optimization problem. The excellence of 

direct techniques is that they are computationally 

straightway and efficient; since the result of the 

computation is unique, it is not necessary addressing 

the problem of whether the solution converges. For 

instance, Baruch assumed the mass matrix to be 

correct and updated the stiffness matrix [11,12].  

An initially step estimated the mass normalized 

eigenvectors closest to the measured eigenvectors. 

Berman challenged whether the mass matrix should 

be considered exact, and updated both the mass matrix 

and the stiffness matrix [13,14]. Baruch explained 

these techniques as reference basis techniques, since 

one of three quantities (the measured modal data, the 

analytical mass and stiffness matrices) is assumed to 

be exact, or the reference and the other two are 

updated [15]. Caesar developed this approach and 

produced a range of techniques based on optimizing a 

number of cost functions [16]. All the techniques 

described so far, are similar in this aspect that only 

one quantity is updated at a time. Applying the 

measured modal data as a reference, Wei updated the 

mass and stiffness matrices simultaneously [17-19].  

The constraints imposed were mass orthogonality, the 

equation of motion and the symmetry of the updated 

matrices. All of the aforementioned techniques used 

real mode shapes and natural frequencies. The 
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measured mode shapes were processed to create the 

equivalent real modes. This work focuses on 

improvement of stiffness and mass matrices by using 

Lagrange multiplier based techniques (direct 

technique) along with empirical study, so that the 

updated matrices reproduce the measured modal data. 

The experimental and the numerical modal analysis 

for obtaining the dynamic behavior of system have 

been implemented during this work. One main scope 

of the Experimental Modal Analysis (EMA) is 

extraction of the frequency response functions 

(FRF's). In the first step of an EMA, the elements of at 

least one full raw or one full column of the FRF 

matrix should be measured and then the natural 

frequencies can be identified using a variety of 

different methods such as Rational Fraction 

Polynomial method. In present study, this method has 

been applied using the ME’scope software. Another 

very important aspect of modal testing is the 

correlation and correction of a numerical model such 

as a FEMs. In the numerical modal analysis the 

governing equations are formed by obtaining mass 

and stiffness matrices and by solving them, the modal 

parameters can be estimated and finally the response 

of system is calculated.  This means that the standard 

Eigen problem (|         |   ) must be solved. 

Based on the basic concept of the vibration analysis, 

the natural frequency which resulted from the 

mentioned equation is an undamped frequency and in 

this problem the damping is not considered. Of 

course, the damping parameters play individual role in 

dynamic behavior of a real structure. But in most of 

the damage detection problems, in order that the 

methods would not be affected by damping, the 

undamped natural frequencies are considered as the 

desire extracted features via the FEM software. Of 

course, both the experimental and numerical methods 

can cause some errors in the measured frequencies, 

but in a FEM updating for the damage detection 

process, the experimental modal final results are far 

more acceptable and considered as the objective. 

Therefore the FEM is updated according to the 

experiment, so that the numerical natural frequencies 

approach to the experimental results. In addition, in 

this research, we propose an improved procedure for 

updating the stiffness and mass matrices. The direct 

matrix model updating technique works exclusively 

with only a small number mode shapes, and it is 

capable of preserving the mode shapes that are 

affected by updating. For example, if the model size is 

small, then all the mode shapes of the updated model 

can be computed explicitly using the existing 

computational techniques. However, this is not 

possible if the model size is large; because, the direct 

verification techniques of matrix computations are 

capable of computing only a few eigenvalues and 

eigenvectors.  

The current paper (proposed methodology) for 

applying the incomplete experimental data uses only 

low-dimensional matrices, even though the FEM 

might be very large. In this regard, improved 

reduction algorithm is used. It is worth mentioning, in 

the structural health monitoring process using the 

characteristic parameters; the use of updated matrices 

based on experimental results is useful. On the other 

hand, in model updating of an offshore jacket 

platforms using EMA, there are two major challenges 

ahead: (a) the mismatching of measurement sensors 

and degrees of freedoms (DoFs) of the analytical 

model, namely the spatial incompleteness and (b) the 

unavoidable corrupted measurements [20, 21]. In 

dealing with spatially incomplete situations and the 

effects of noise to overcome uncertainty problem, we 

can use improved model reduction scheme and 

implement of precise experimentation. Furthermore, 

to overcome modeling uncertainty problem the FEM 

updating process is applied by using results of the 

experiment on physical model of the offshore jacket 

platforms, when limited, spatially incomplete modal 

data is available. In this study, the presented reduction 

technique removes the bad effect of model reduction 

process on the model updating procedure by adding a 

correction term (inertial effects) to the formula of the 

simplest reduction schemes. The FEM updated 

provides a useful and less expensive way for studying 

the fixed marine structures. Thus, experimental 

programs are necessary to provide validation for the 

results and reduce the uncertainty of the values of the 

excitations for of fixed marine structures. 
 

2. The Model Updating Methodology 
2.1 Lagrange Multiplier: Updating of Stiffness 

Matrices 

The Lagrange multiplier based techniques (direct 

technique) generally consider one parameter set, 

either mass or stiffness to be correct, and the 

remaining two that is either mass or stiffness, and the 

modes, are updated by minimizing a cost function 

with the appropriate constraints imposed through 

Lagrange multipliers. Modes that are measured from 

the structure will not necessarily be orthogonal to the 

analytical mass matrix since there are likely fewer 

transducers than DOF and because of imperfect 

measurements. For the direct techniques that assume 

that the mass matrix is correct, it is usually difficult to 

enforce orthogonality.  

In order to ensure the eigenvectors are orthogonal, the 

measured eigenvectors must be corrected. Baruch has 

derived a cost function, J, (1), in which the newly 

updated eigenvector matrix   is to be minimized [11]: 
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Where     
 
 ⁄ ,    is the analytical mass matrix, 

   is the measured eigenvector ,             ,        

are the (i,j) elements of the matrices  ,  ,   , m is 

the number of measured eigenvectors, n is the number 

of DOF in the analytical model. Subjected to the 

orthogonality condition:  

 

IM a

T                                                                       (2)  

 

The Lagrange Multiplier technique uses the constraint 

(2) to produce the augmented function to be 

minimized as [6]: 
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Where the terms,    , are the Lagrange multipliers, 

which are cast into a matrix Г, and the terms      

represent errors. The Lagrange Multipliers may be 

forced to be unique by introducing the constraint of 

symmetry so that: 
 

T                                                                     (4)                                                                           
 

Differentiating the augmented function (3) with 

respect to each element of the corrected eigenvector 

matrix and the following expression is found: 
 

  1
 Im                                                       (5) 

 

When substituted back into the orthogonality 

condition, becomes: 
 

    IIMI ma

T

m 
 11

                                              (6) 

 

By pre and post multiplying by      and taking the 

square root, it becomes: 
 

   
5.0

ma

T

m MI                                                        (7)  

 

Finally, substituting Equation (7) into (5), the 

Equation for the corrected eigenvector matrix is:  
 

 
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T
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                                           (8) 

 

If it is assumed that the analytical mass matrix is 

already correct and the eigenvectors are corrected to 

ensure orthogonality, the stiffness matrix can now be 

updated. Baruch found that the updated stiffness 

matrix can be found to minimize the cost function 

[11]: 
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Where     
 
 ⁄ ,        ,      ,        are the (i,j) 

elements of the matrices    ,  ,   , and is subject to 

the two constraints:  
 

  aMK         

And  
 

KK T                                                                           (11) 
 

Λ represent the eigenvalue matrix. The cost function 

is then differentiated with respect to the updated 

stiffness matrix and results in the following Equation: 
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Where   and 
k  are Lagrange Multipliers. By 

calculating the values of the Lagrange Multipliers, 

substituting them into Equation (9), and then 

rearranging Equation, the updated stiffness matrix can 

be found using the following Equation: 
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2.2 Lagrange Multiplier: Updating of Stiffness and 

Mass Matrices 

Berman and Nagy used a similar approach to the one 

presented by Baruch, however, they used it to update 

both the mass and stiffness matrices by assuming that 

the measured eigenvector matrix is correct [14]. The 

advantage of this scheme is that it is not necessary to 

calculate the corrected eigenvectors because the mass 

matrix is updated in such a manner to ensure the 

orthogonality of the eigenvectors to the mass matrix. 

Given the analytical mass matrix,   , and the 

measured eigenvector matrix,   , the following cost 

function is created in which the updated mass matrix 

is found to minimize the function: 
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This function is also subject to the orthogonality 

constraint: 
 

IM m

T

m                                                           (15) 

 

The cost function J is minimized using the same steps 

as the cost function containing the corrected stiffness 

matrix. The result is: 
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  011   T

mmaaa MMMM                       (16) 

 

Combining this Equation with that of the 

orthogonality constraint and the Lagrange Multiplier, 

the updated mass matrix can be found by adding an 

updating term, the second term in Equation (16), to 

the analytical mass matrix as follows: 
 

  a

T
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                (17) 

 

Where,  ̅ 
     

     . 

The updated mass matrix can now be used to calculate 

the updated stiffness matrix. Since the eigenvector 

matrix is orthogonal to the newly updated mass 

matrix, the calculation for the updated stiffness matrix 

from the previous section can be used; however, the 

newly acquired updated mass matrix and the 

measured eigenvector matrix will appear in place of 

the analytical mass matrix and the corrected 

eigenvector matrix. So the Equation for the updated 

stiffness matrix becomes: 
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3. Improved Reduction Algorithm Due to 

Incomplete Modal Data 
One of the simplest reduction schemes is static 

reduction (Guyan). The full scale model may have 

certain nodal freedoms specified as master freedoms. 

The remaining freedoms are slave freedoms. For 

dynamic analysis purposes the mass, stiffness and 

loading on the slave freedoms are condensed to these 

master freedoms. In matrix notation the overall 

matrices may be partitioned into master, slave and 

cross coupling terms. 
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Where, the subscripts m and s refer to the master and 

slave coordinates, respectively. The technique then 

ignores the inertia terms in the second set of 

Equations. Neglecting the inertia terms for the second 

set of equations we have: 
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By eliminating the slave DOF, we obtain: 
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sT  is Guyan transformation matrix and I is identify 

matrix. 

The reduced Guyan mass and stiffness matrices are 

then given by [22]: 
 

]][][[][ s

T

sR TMTM                                                (22) 

]][][[][ s

T

sR TKTK                                                 (23) 

 

For larger marine structures, where it is necessary to 

reduce many slave DOF, this technique will not be as 

accurate as some of the more advanced approaches. 

Accordingly, improved reduction skill is probably the 

best practical process for solving large dynamic 

problems. Only the smallest frequencies are usually 

excited and for a typical jacket no more than 30 would 

normally be required.  

The process known as the Improved Reduction 

System (IRS) was presented by O‟Callahan in 1989 

[5]. This technique is an improvement over the Guyan 

static reduction scheme via introducing a term that 

includes the inertial effects as pseudo static forces. A 

transformation matrix 
iT  is applied to reduce the mass 

and stiffness matrices. It is defined as: 
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RM  and RK  are the statically reduced mass and 

stiffness matrices.  

The new reduced mass and stiffness matrices can be 

obtained by: 
 

]][][[][ i

T

iIRS TMTM                                           (26) 

]][][[][ i

T

iIRS TKTK                                           (27) 

 

For this process, the rows and columns corresponding 

to the slave coordinates are eliminated from the mass 

and stiffness matrices one at a time; this allows the 

mass and stiffness matrices to adapt to the removal of 

a slave, and can possibly alter the DOF that will be 

removed. After each reduction, the DOF with the 

lowest    
   
⁄  term is the slave which will be 

eliminated next [23]. 

 

4. Feature Extraction of Structure 
4.1 Theoretical Modal Analysis 

Modal analysis is the procedure of identifying the 

intrinsic dynamic properties of a system in forms of 

natural frequencies, damping factors and mode 

shapes, and using them to formulate an analytical 
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model for its dynamic behavior. In this paper, the 

Block Lanczos method has been applied for solving the 

modal analysis.  
 

4.2 Modal Testing  

Modal testing is an experimental method utilized to 

derive the modal model of a linear time-invariant 

vibration system. The modal testing methods have 

been widely applied to assess the dynamic 

characteristics of the structures. The method's 

common applications include not only feature 

extraction but also structural integrity monitoring of 

structures. Modal testing processes are offered by 

three main procedures: Experimental Modal Analysis 

(EMA) and Operational Modal Analysis (OMA). In 

the EMA method, structures are excited by certain 

forces and the responses of the structures are 

recorded. The structural modal parameters are 

extracted from the identified modal models based on 

the recorded input/output. The OMA method requires 

only the outputs to be measured for the construction 

of a modal model for structures, so artificial 

excitations are not necessary.  

The theoretical basis of the method is secured upon 

establishing the relationship between the vibration 

response at one location and excitation at the same or 

another location as a function of excitation frequency.  

In the present article, Modal Assurance Criterion (MAC) 

method is applied for updating of the platform model. 

The modal assurance criterion, which is also known as 

mode shape correlation coefficient, between analytical 

mode 
i  and experimental mode 

j  is defined as: 
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2

,                                  (28) 

 

A MAC value close to 1 suggests that the two modes 

are well correlated and a value close to 0 indicates 

uncorrelated modes [24, 25]. 
 

5. Description of The Physical Model and Test 

Set Up 
5.1 Necessary Conditions to Select the Physical 

Model 

Most offshore platform topsides and jackets are 

transported to the final site by barge. Offshore 

platforms are commonly moved long distances to 

install in the site. The transportation phase can be 

critical for some permanent members and determines 

the design of the sea fastenings and other temporary 

attachments. Large forces can be generated, 

particularly by the roll and pitch rotations and 

accelerations and the heave acceleration of the barge. 

This is especially the case for jacket platforms where 

the length of the legs results in large bending 

moments from roll and pitch motions. These effects 

can cause significant fatigue damage as well as 

possibly overstressing the legs. Parts of the structure 

which overhang the barge deck may experience 

buoyancy, drag and inertia loading and also, possibly 

more seriously, slam loading if the member penetrates 

the water surface. The sea area, barge size, season and 

duration of the tow should be taken into account when 

selecting the environmental conditions to be used for 

the analysis. As a result, the step of loading is very 

important and it has a significant effect on the design 

of jacket platforms. Thus, the physical model is 

constructed according to this loading condition. 

Accordingly, the model tests were performed in dry. 
 

5.2 Physical Model and Laboratory Work  
The case study is a fixed jacket-type offshore platform 

model and the geometric dimensions of the structural 

members are similar to those in the model first used 

by Huajun et al. [26]. The general shape of the model 

represents a space frame with four main legs that are 

connected to the top deck. The frame of the model has 

horizontal and diagonal bracing members at all 

stories. The space steel frame jacket structure, 

consisting of 46 steel tubular members with outer 

diameter 18 mm, wall thickness 2.5 mm for leg 

members and outer diameter 12mm, wall thickness 

1.5 mm for other members, is fixed at the ground. 

A physical model was constructed of stainless steel 

pipes that were welded together using argon arc 

welding to ensure proper load transfer. The mass 

density of the members is 7850 kg/m3 and the 

Young’s modulus of steel is 207 GPa. There are 16 

nodal points in the FEM, three translational DoFs   at 

each node, thus total 48 translational DoFs. The 

physical model and FEM of the laboratory tested 

space steel frame jacket structure adopted for model 

updating is shown in Figure 1. The white noise signals 

were used as the input exciting signal. The 

instrumentation included two light uniaxial 

accelerometers (4508 B&K) in both the X and Y 

directions on each joint for response measurement and 

a load cell for measuring the excitation force.  

The frequency sampling of the test setup was chosen 

to be 10 kHz, and the frequency range was 0-200 Hz. 

The recorded data were sent to the PULSE [27] 

software package for processing. The data required for 

calculating the FRFs were recorded by sensors that 

were fixed on the physical model joints. Because there 

were more desired points for measurement (i.e., the 16 

joints of the model) than the number of available 

channels and accelerometers, the measurements were 

performed in 16 steps. The test rig and instruments are 

illustrated in Figure 2.  
 

6. Results and Discussion 
6.1 Improvement of Stiffness Matrix 

The jacket platform was modeled using 3D FE 

software, ANSYS and modal analysis was performed.  
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Figure 1.  (a) The physical model and (b) finite element model 

 of the jacket 

 

 

For the implementation of the proposed technique, 

initially the mass and stiffness matrices were extracted 

by ANSYS software under SUBSTRUCTURE analysis 

(see Figure 3). 

With limited transducers, it is only possible to 

estimate the lower modes. Mode shapes of the 

numerical and EMA are shown in Figure 4; also 

frequencies of numerical, experimental and updated 

model along with MAC value are listed in Table 1. In 

this case the corrected stiffness matrix becomes 

similar to Figure 5. It is apparent that the updated 

stiffness matrix is now filled and no longer physically 

represents the model. Finally, it can be concluded that 

there is perfect correlation between the numerical and 

experimental modal vectors. This means that, MAC 

value is close to 1 and the numerical and experimental 

models have appropriate correspondence. 
 

6.2 Improvement of Stiffness and Mass Matrices 

Using Equations (17) and (18), the updated mass and 

stiffness matrices will be similar to Figure 6. Again, 

the updated matrices become completely filled for the 

second case. However, since both the mass and 

stiffness matrices are allowed to be perturbed, they are 

closer to physically representing the system. The 

results for the first 4 modes are presented in Table 2. 

Also, the Changes of those matrices are shown in 

Figure 6. The results are similar to the initial direct 

technique (stiffness), which is to be expected, since 

they are both based on similar optimization 

procedures, the only difference is in the matrices 

being updated. However, it is noted that the mass 

matrix is no longer diagonal; since the stiffness matrix 

is already not a physical representation it is more 

beneficial to update only the stiffness matrix. 

 

7. Conclusions 
FE matrix updating has attracted a notable amount of 

attention by the engineering community and 

consequently, there now exist a voluminous work on 

this problem. In this research the ability of empirical 

investigation of the jacket platform model updating 

are considered. Also, an efficient model updating 

technique was presented with incomplete modal data, 

which uses modal data in order to improve the 

correlation between the experimental and analytical 

models. An example with incomplete modal data of a 

typical reduced scale four-story spatial frame of the 

jacket platform was carried out showing that the 

methodology was able to correct update both mass 

and stiffness matrices and reproduce correctly the 

tested data. The mode shapes are not required to be 

measured at all DOF. The proposed technique 

removes the bad effect of model reduction process on 

the model updating procedure. 
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(a) (b) 

 

 

 
 

(c) 
 

 

Figure 2. (a): modal testing and tested three-dimensional structure, (b): Installed accelerometers and sensor position 

and (c): The experimental test rig and instruments. 
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(a) 

 
 

(b) 

 
Figure 3. (a) Initial stiffness matrix (b) Initial mass matrix of platform model 
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Table 1: The first four natural frequencies (Updated Stiffness Matrix) 
 

Mode 

no. 

 Natural frequencies (Hz) Differences 

(%) 

MAC 

Numerical 

Analysis 

Experimental 

Result 

Updated 

model 

1 67.29 58.34 58.83 0.85 0.994 

2 91.46 94.13 93.61 0.50 0.992 

3 100.8 106.21 106.85 0.60 0.990 

4 125.1 130.28 131.04 0.58 0.992 
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(a)  (b) 
  

 

 

Figure 4. The first mode shape using (a) numerical modal analysis, (b) experimental modal analysis. 
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Figure 5. Stiffness perturbation: (Lagrange Multiplier method - updating the stiffness matrix). 
 

Table 2: The first four natural frequencies (Updated Stiffness and Mass Matrices) 

Mode 

no. 

Natural frequencies (Hz) Differences 

(%) 

MAC 

Numerical 

analysis 

Experimental 

result 

Updated 

model 

1 67.29 58.34 58.59 0.4 0.995 

2 91.46 94.13 93.84 0.3 0.992 

3 100.8 106.21 106.6 0.4 0.994 

4 125.1 130.28 129.87 0.4 0.991 
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The proposed technique is computationally efficient 

since it does not require iterations. It updates the mass 

and stiffness matrix such that they are compatible with 

the modal data of the observed modes. The Lagrange 

multiplier techniques reproduce the measured eigen-

system, however, the results are not physically 

meaningful, or in other words cause the updated 

system to lose its physical representation. This is a 

potential problem for situations where the stiffness 

and/or mass of a specific DOF are needed, such as in 

damage detection. In the structural health monitoring 

process using the characteristic parameters, In other 

words, the use of updated matrices based on 

experimental results is useful. These techniques are 

advantageous for systems that contain measured 

eigenvalue and eigenvectors for every DOF, 

especially if the physical representation of the mass 

and stiffness matrices is not of importance. The FEM 

updating provides a practical and less expensive way 

for studying the behavior of fixed offshore platforms. 

However, an experimental program can be used to 

validate a FEM. Through experimentations one can 

reduce the uncertainty of the fixed offshore platforms. 
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Figure 6. (a) Stiffness perturbation and (b) Mass perturbation:  

(Lagrange Multiplier method - updating the stiffness and mass Matrices). 
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   Statically reduced stiffness matrix 
 

     Updated stiffness matrix 

     Measured eigenvector 

    Corrected eigenvector matrix 

       Lagrange Multipliers 

     Errors 

     Lagrange multipliers 
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