Volume 8 -                   ijmt 2017, 8 - : 35-45 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sayyaadi H, Motekallem A. A New Propulsion System for Microswimmer Robot and Optimizing Geometrical Parameters Using PSO Algorithm. ijmt. 2017; 8 :35-45
URL: http://ijmt.ir/article-1-575-en.html

1- Professor Sharif University of Technology
2- M.Sc. Student Sharif University of Technology
Abstract:   (38 Views)
Mini and micro robots, which can swim in an underwater environment, have drawn widespread research interests because of their potential applications to the clinical drug delivery, biotechnology, manufacturing, mobile sensor networks, etc. In this paper, a prototype of microrobot based on the motion principle of living microorganisms such as E. Coli Bacteria is presented. The properties of this propulsive mechanism are estimated by modeling the dynamics of the swimming methods. For dynamic modeling and analysis of a tiny microrobot, which composed of a spherical head and four helix tail, the resistance force theory (RFT) is used to calculate thrust force, required torque, linear and angular velocities and then these physical and geometrical parameters are used to optimize the microrobot. In addition, a novel design method for determining the optimal geometrical parameters of dynamic system using the particle swarm optimization (PSO) reinforcement evolutionary algorithm is presented. Finally, the dynamical behavior of the optimized microrobot are simulated and the results are presented.
Full-Text [PDF 1234 kb]   (7 Downloads)    
Type of Study: Research Paper | Subject: Submarine Hydrodynamic & Design
Received: 2016/12/26 | Accepted: 2017/11/25

References
1. Abbott, J.J., Nagy, Z., Beyeler, F. and Nelson, B.J., (2007), Robotics in the small, part I: Microbotics, Robotics & Automation Magazine, IEEE, 14(2), p.92-103. [DOI: 10.1109/MRA.2007.380641]
2. Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K. and Nelson, B.J., (2009), How should microrobots swim? The International Journal of Robotics Research, 28(11-12), p.1434-1447. [DOI: 10.1177/0278364909341658]
3. Nelson, B.J., Kaliakatsos, I.K. and Abbott, J.J., (2010), Microrobots for minimally invasive medicine, Annual Review of Biomedical Engineering, 12(1), p.55-85. [DOI: 10.1146/annurev-bioeng-010510-103409]
4. Purcell, E.M., (1977), Life at low Reynolds number, American Journal of Physics, 45(1), p.3-11. [DOI: 10.1119/1.10903]
5. Tottori, S., Zhang, L., Qiu, F., Krawczyk, K.K., Franco Obregon, A. and Nelson, B.J., (2012), Magnetic helical micro machines: Fabrication, controlled swimming and cargo transport, Advanced Materials, 24(6), p.811-816. [DOI: 10.1002/adma.201103818]
6. Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D. and Nelson, B.J, (2009), Artificial bacterial flagella: Fabrication and magnetic control. Applied Physics Letters, 94(6), p. 064107-3 [DOI: 10.1063/1.3079655]
7. Fukuda, T., Kawamoto, A., Arai, F. and Matsuura, H., (1994), Mechanism and Swimming Experiment of Micro Mobile Robot in Water, Proc. of IEEE International Workshop on Micro Electro Mechanical Systems (MEMS’94), IEEE, New York, p. 273–278. [DOI: 10.1109/ROBOT.1994.351388]
8. Guo, S., Hasegaw, Y., Fukuda, T. and Asaka, K., (2001), Fish Like Underwater Microrobot with Multi DOF, Proceedings of 200 International Symposium on Micro mechatronics and Human Science, IEEE, Nahoya, Japan, p. 63–68. [DOI: 10.1109/MHS.2001.965223]
9. Jung, J., Kim, B., Tak, Y. and Park, J., (2003), Undulatory Tadpole Robot (Tad Rob) Using Ionic Polymer Metal Composite IMPC Actuator, Proceedings of 2003 IEEE International Conference on Intelligent Robots and Systems, IEEE, New York, p. 2133–2138. [DOI: 10.1109/IROS.2003.1249186]
10. 10- Zhang, Y., Wang, Q., Zhang, P., Wang, X. and Mei, T., (2004), Dynamic Analysis and Experiment of a 3 mm Swimming Microrobot, Proceedings of 2004 IEEE International Conference on Intelligent Robots and Systems, IEEE, New York, p. 1746–1750. [DOI: 10.1109/IROS.2004.1389648]
11. Honda, T., Arai, K. and Ishiyama, K., (1999), Effect of Micro Machine Shape on Swimming Properties of the Spiral Type Magnetic Micro Machine, IEEE Trans. Magn., 35, p. 3688–3690. [DOI: 10.1109/20.800632]
12. Solovev, A. A., Mei, Y., Bermudez Urena, E., Huang, G. and Schmidt, O. G., (2009), Catalytic microtubular jet engines self propelled by accumulated gas bubbles, Small, 5 (14), p. 1688–92. [DOI: 10.1002/smll.200900021]
13. Hwang, G., Braive, R., Couraud, L., Cavanna, A., Abdelkarim, O., Robert Philip, I., Beveratos, A., Sagnes, I., Haliyo, S. and Regnier, S., (2011), Electroosmotic propulsion of helical nanobelt swimmers, The International Journal of Robotics Research, 30(7), p. 806–819. [DOI: 10.1177/0278364911407231]
14. Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A. and J. Bibette, (2005), Microscopic artificial swimmers, Nature, 437(7060), p. 862–865. [DOI: 10.1038/nature04090]
15. Yamazaki, A., Sendoh, M., Ishiyama, K., Ichi Arai, K., Kato, R., Nakano, M. and Fukunaga, H., (2004), Wireless micro swimming machine with magnetic thin film, Journal of Magnetism and Magnetic Materials, vol. 272, p. E1741–E1742. [DOI: 10.1016/j.jmmm.2003.12.337]
16. Ghosh, A. and Fischer, P., (2009), Controlled propulsion of artificial magnetic nanostructured propellers, Nano Letters, 9(6), p. 2243–5. [DOI: 10.1021/nl900186w]
17. Tottori, S., Zhang, L., Qiu, F., Krawczyk, K. K., Franco Obregon, A. and Nelson, B. J., (2012), Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport, Advanced materials, 24(6), p. 811–816. [DOI: 10.1002/adma.201103818]
18. Zhang, L., Abbott, J. J., Dong, L., Peyer, K. E., Kratochvil, B. E., Zhang, H., Bergeles, C. and Nelson, B. J., (2009), Characterizing the swimming properties of artificial bacterial flagella, Nano Letters, 9(10), p. 3663–7. [DOI: 10.1021/nl901869j]
19. Kummer, M. P., Abbott, J. J., Kratochvil, B., Borer, R., Sengul, A. and Nelson, B. J., (2010), OctoMag: An electromagnetic system for 5 DOF wireless micromanipulation, IEEE Transactions on Robotics, 26(6), p. 1006–1017. [DOI: 10.1109/TRO.2010.2073030]
20. Martel, S., Felfoul, O., Mathieu, J.-B., Chanu, A., Tamaz, S., Mohammadi, M., Mankiewicz, M. and Tabatabaei, N., (2009), MRI based medical nanorobotics platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries, The International Journal of Robotics Research, 28(9), p. 1169–1182. [DOI: 10.1177/0278364908104855]
21. Hyung Kim, D., Seung Soo Kim, P., Agung Julius, A. and Jun Kim, M., (2012 ), Three dimensional control of Tetrahymena pyriformis using artificial magnetotaxis, Applied Physics Letters, 100(5), p. 053702. [DOI: 10.1063/1.3678340]
22. Kim, D. H., Liu, A., Diller, E. and Sitti, M., (2012), Chemotactic steering of bacteria propelled microbeads, Biomedical Micro devices, 14(6), p. 1009–1017. [DOI: 10.1007/s10544-012-9701-4]
23. Martel, S., and Mohammadi, M., (2010), Using a swarm of self propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks, in International Conference on Robotics and Automation, p. 500–505. [DOI: 10.1109/ROBOT.2010.5509752]
24. Behkam, B. and Sitti, M., (2006), Design methodology for biomimetic propulsion of miniature swimming robots, Journal of Dynamic Systems Measurement and Control, Vol. 128, p. 36-43. [DOI: 10.1115/1.2171439]
25. Behkam, B. and Sitti, M., (2005), Modeling and testing of a biomimetic flagellar propulsion method for micro scale biomedical swimming robots. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, USA, p. 37-42. [DOI: 10.1109/AIM.2005.1500962]
26. Brennen, C. and Winet, H., (1977), Fluid Mechanics of Propulsion by Cilia and Flagella. Annual Review of Fluid Mechanics, Vol. 9, p.339-398. [DOI: 10.1146/annurev.fl.09.010177.002011]
27. Gray, J. and Hancock, G., (1955), The propulsion of sea urchin spermatozoa, Journal of Experimental Biology, Vol. 32, p. 802-814.
28. Lighthill, J., (1976 ), Flagellar hydrodynamics, SIAM Review, vol. 18, p. 161–230. [DOI: 10.1137/1018040]
29. Chwang, T., and Wu, T., (1971), A Note on the Helical Movement of Microorganisms, Proc. R. Soc. London, Ser. B, 178, p. 327–346. [DOI: 10.1098/rspb.1971.0068]
30. Kennedy, J. and Eberhart, R.C., (1995), Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks IV, p. 1942–1948. [DOI: 10.1109/ICNN.1995.488968]
31. Eberhart, R.C., Dobbins, R. and Simpson, P.K., (1996), Computational intelligence PC tools, Morgan Kaufmann Publishers, Boston.
32. Engelbrecht, A.P., (2002), Computational Intelligence: An Introduction, John Wiley & Sons, Chichester.
33. Engelbrecht, A.P., (2005), Fundamentals of Computational Swarm Intelligence, John Wiley & Sons, Chichester.
34. Eberhart, R.C. and Kennedy, J., (1995), a new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, p. 39–43. [DOI: 10.1109/MHS.1995.494215]
35. Ratnaweera, A. and Halgamuge, S.K., (2004), Self organizing hierarchical particle swarm optimizer with time varying acceleration coefficient computation, IEEE Transactions on Evolutionary Computation 8 p. 240–255. [DOI: 10.1109/TEVC.2004.826071]

Send email to the article author


Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.