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ABSTRACT

Effect of air cushion layer right before impact of a rigid body onto water
surface has been investigated in this paper. The study is mainly focused on
evaluation of cushioning pressure and the resulting free surface elevation. The
air flow is assumed to be an irrotational flow which is governed by Laplace
equation. The air problem and the resulting response of the water free surface
are supposed to be weakly coupled because of very low air pressure. Integral
equation for each medium has been numerically solved separately using
boundary element method. The problem is assumed to be unsteady with a
constant body speed. The numerical results have been also compared with
analytical method which shows a fair agreement. Results show that the
geometry of impacting body and particularly its bluntness are the primary
affecting parameter which can dramatically influence the free surface profile
and air pressure. Such a behavior has been observed for two different

geometries, ellipse and wedge section, having identical breadth.

1. Introduction

Water impact has many practical applications in marine
engineering such as evaluation of slamming forces,
seaplane design, wave loads on offshore structures,
design of surface piercing propeller, analysis of motion
in waves, etc. Considerable studies have been made on
this topic which are mainly concentrated on prediction
of the impact force. A variety of methods have been
employed to implement the problem, ranging from pure
numerical to entirely experimental method, but most of
them neglect the effect of air gap right before impact
for simplicity. However, the cushioning problem
should be essentially considered in particular problems
such as droplets and blunt body impacts. Generally, the
air cushion layer affect the entry problem at least in
three ways. The first one is to reduce the impacting
speed due to well-known air drag force particularly
right before impact. So, the resulting impact pressure is
also decreased. The second effect of the air gap or air
cushioning layer is to disturb the free surface.
Neglecting air cushion effects means that the free
surface is remained extremely planar at the moment of
impact. However, presence of air cushion causes an
induced pressure over the free surface. The free surface
responds to this pressure to balance the forces along the
air-water interface and thus it is deformed. The
elevated free surface causes a multi-points contact
rather than a single point contact [1, 2, 3]. This is
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schematically illustrated in Figure 1. The induced air
pressure may also deform the impacting body if it is
liquid such as those happen in droplet impact on liquids
or solids. The number of contact points changes the
generated pattern of impact pressure in the water and
its propagation [4,5].

— S

Figure 1. Exaggerated schematic view of escaping air flow and
resulting double point contact

The third effect concerns entrapped air between the
body and the elevated free surface. The contact area
gradually increases between the body and the free
surface profile as the body penetrates more into water.
Therefore, the entrapped air is compressed at the initial
stage of entry. Compressing the air can dissipate impact
momentum. This dissipation reduces the slamming
pressure which is experienced by the impacting body
[3, 4, 5]. Depending on the volume of the entrapped air,
the importance of this effect varies.

Study of air cushion can be employed in several
engineering applications. An interesting case is droplet
impact on liquid or solid surface. This topic has a wide
range of applications in coating process, cooling and
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cleaning of surfaces, atomization, inkjet printing and
raindrop dynamics. Cushioning effect is also important
in marine vehicles such as air supported vehicles like
SES and hovercrafts, lifting ultra-heavy buoyant
structures, prediction of slamming force on the wet
deck of catamarans, etc.

Most of cushioning characteristics are dependent on the
volume, shape and location of entrapped air beneath the
body. These parameters themselves are highly affected
by air flow properties. So, the cushioning may show a
random behavior depending on the problem. It can be
shown that as bluntness of the body increases, the
presence of air gap becomes more pronounced. So, it is
expected that cushioning effect has a significant
influence on a flat plate entry. Figure 2 illustrates a
typical CFD simulation which is figured out by the
Authors to show air entrapment before and after entry
of a flat plate. This numerical simulation is carried out
using the commercial CFD code, FLUENT. The solver
employs a RANS algorithm coupling with the VOF
model to evaluate the disturbance of free surface
profile. The well-known dynamic mesh techniques
controls the motion of grid nodes based on the rigid
body dynamics. It should be mentioned that in most of
applications, the cushioning corresponds to initial stage
of penetration, ranging from nanoseconds to
milliseconds.

Figure 2. CFD simulation of air entrapment before and after
impact of a flat plate

Air cushion problem is mostly studied for investigation
of droplet impacts. Study of air cushion has a great
impact on the drops and bubbles dynamics. Almost
after a century past from pioneer study of droplet
impact made by Worthington [6], the presence of air
layer has been continuously investigating. Some of
recent developments include Thoroddsen, et al. [7],
Marston, et al. [8], Hicks and Purvis [4] and Tran, et al.
[5] which showed different characteristics of air bubble
formation and its rapture in different impact problem.
Particular interest of the present research is on the water
impact of larger solid bodies onto water. The impact
pressure may be roughly predicted by traditional
theories presented by Von Karman [9] and Wagner
[10]. These theories and almost all other water entry
theories neglect presence of air cushion for the sake of
simplicity. However, it should be considered in some
particular problems.
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At the first investigation, Chuang [11] and Nethercote,
et al. [12] experimentally showed that the pressure
recorded at the apex of a roughly parabolic or small
deadrise angle bodies has an oscillation behavior. They
reported that this oscillation is not an electronic noise.
They experimentally revealed that the presence of
cushioning air layer is the source of this oscillation.
Several later experimental researches such as those
conducted by Okada and Sumi [13], Ermanyuk and
Ohkusu [14] and also Huera-Huarte , et al. [15] studied
dependency of the impact pressure to the cushioning
layer by conducting different impact tests. The most
important parameter of these research is geometry of
impacting bodies and their bluntness. They generally
confirmed that reducing deadrise angle of wedges and
also increasing bluntness of bodies can dramatically
affect the magnitude, pattern and spatial distribution of
impact pressure due to presence of cushioning effect
and resulting air entrapment.

Different analytical researches investigated the
cushioning problem mathematically. The first
analytical model proposed by Verhagen [1]. He
employed a simple one dimensional model for escaping
air flow between a flat plate and elevated free surface.
The gap layer was modeled by a channel flow in which
the air flow governs by practical compressible gas
dynamics formulation. He supposed that the air flow is
choked at the air gap and therefore the air flow speed
would be equal to local speed of sound. Cushioning
pressure as well as escaping air speed were both
reported in this study. Lewison and Maclean [16] and
Lewison [17] developed the Verhagen model [1] by
conducting series of experiments including flat plate
impacts and showed that the Verhagen model [1] was
in a good agreement with experimental results. In an
independent research, Asryan [18] also recommended
a mathematical model to investigate the problem based
on a small perturbation analysis. He assumed that the
free surface deformation is small in comparison with
the characteristic length of the body, and presented the
equation of viscous squeeze film and Reynolds
equation for flow in a channel with moving walls. His
theoretical model provided more details of the
problems rather than Verhagen’s model. The presented
model could not accurately capture the free surface
profile and just available for initial stage of surface
deformation. The model estimates pressure distribution
in air flow. Wilson [2] employed non-dimensional form
of two dimensional Navier-Stokes equations to propose
a pair of coupled integral and differential equation for
modeling of the problem. The results of this research
included free surface profile and air cushioning
pressure both in non-dimensional forms. He used
different mathematical parameters to make the physical
parameters non-dimensional. This made the proposed
model impractical in engineering applications. Hicks
and Purvis [3] further developed the Wilson’s model
and presented a more accurate model for three
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dimensional impact. They could remove drawbacks of
the previous model. They employed a viscous
lubrication equation to model the dynamics of air flow
in cushioning layer. They first mathematically
investigated the volume of air entrapment and
presented a dimensional analysis for this volume and
for different body geometries. Hicks, et al. [19]
validated the proposed theory by conducting a set of
experiments to study the effect of air-trapping by a rigid
sphere impacting on a free surface of the liquid of
infinite depth. Formation of entrapped air was captured
by a high speed camera. They showed that the
experimental and theoretical results are in a good
agreement. Instantaneous air pressure and free surface
profile are the main output of this research.

The present study investigates the air cushion effect in
water entry of blunt rigid bodies in which the
cushioning pressure cannot be neglected. Both air and
water flows are assumed to be irrotational and
governed by Laplace equation. Solution of the
governing equation is numerically carried out
employing boundary element method with nonlinear
boundary conditions. Instantaneous free surface profile
as well as air pressure are evaluated. The coupling
mechanism between air and water flow is figured out
via an artificial boundary separation for the first time.
This technique can significantly simplify the problem
formulation and its numerical implementation. Since
the BEM is used to solve the problem, the
recommended model provides a rapid method to solve
cushioning problem with any arbitrary impacting
geometry. Additionally, this model may be employed
to simulate droplet impact onto other droplets or onto
liquid or solid surface. The numerical results are
compared with other similar research.

2. Formulation

It is assumed that the impacting body is rigid and water
depth is infinite. The rigid body approaches the water
surface with a constant vertical speed, V;. For high
speed impact of blunt bodies, one can neglect free
surface tension. This results in an inertial dominant
flow regime in the cushioning layer. Furthermore, air
and water flows are rapid strain flows which inertial
forces are dominant and the viscous effects are
neglected for high speed impact. Thus, both flows are
assumed to be irrotational which are governed by
Laplace equation.

% 0%¢

ax2 ' ay?
where ¢ is velocity potential. Although geometry of the
body can have any arbitrary shapes, it is supposed to be
symmetric for the sake of simplicity. This assumption
makes both air and water flows symmetric and
consequently simplifies the problem as a half domain
which significantly reduces computational time.

0 (1)
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Figure 3 illustrates the physical and computational
domains of the problem. The problem is divided into
two weakly coupled problem of the air flow and the
water flow. The air problem is bounded with surfaces
ofs,, S,, S5, S, S, and S, where S, and S, are external
surface of body and free surface profile, respectively.
Similarly, boundaries of the water problem includes S,
S,;, Sg and S,,. The free surface profile is artificially
divided into two different surfaces S, and S,, with the
same dynamics. This is the primary technique of the
simulation in this study. The air flow and the water are
coupled through the motion of their interface.

Figure 4 depicts typical response of these surfaces at
different time steps.

Boundary conditions of the problem should be
specified for solution of the boundary value problem in
both air and water flows. For the air far field boundary
condition is applied for boundaries S;and S, as follow:

¢a(°°' t)=0 (2)

@

‘Water S

Figure 3. Physical and computational domain of the problem

Figure 4. Schematic view of artificially divided surfaces in two
different time steps

Subscript a indicates air flow. No flux boundary
condition is also applied for external surface of the
body, S, and symmetric boundaries S, and S,as follows:

=A.V (3)

on

where 7 is the normal vector of the body geometry
pointing outward. The remaining boundary is free
surface boundary, namely S, in the air problem. The
specified boundary conditions on this surface consist of
well-known nonlinear kinematic and dynamic free
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surface boundary conditions. Kinematic free surface
boundary condition presented as follows.

0¢a _ Dn(x,t) _[on(x,t)  0¢adn
= _[ ot ' ox ox| (4)

dy Dt

heren(x, t)is free surface profile. Dynamic boundary
condition balances the applied forces on the interface.
a0l = gy - (x, 1) 2 5
o T2 IVeIt=agn— - o) - 2= (5)
where g, oandkare gravitational acceleration, surface
tension at the air-water interface and curvature of free
surface, respectively. This curvature is a function of
spatial derivatives of free surface profile.

. (1 + Z—Z)_E] (6)

Equation 6 includes both gravity effects and surface
tension. Considering these parameters increases the
accuracy of modeling particularly at initial stage of
surface deformation.

For the water problem, far field and symmetric
boundary conditions are applied for boundaries
Sgands,, respectively. Wall boundary condition is also
determined for the water bed.

2%n

k(x,t) = W

— =AY, = fu, +Ayw =0 (7)

Similar kinematic and dynamic boundary condition
should be applied for the boundary S, with substituting
appropriate properties of water instead of the air.Now
the governing equations of the problem and their
corresponding boundary conditions are known. Air and
water problems are coupled to each other by the
pressure at their interface.

Different researches showed that the following scaling
for the entrapped air bubble volume was found at this
condition.

§=V,V, ~ St™s (8)

where, ¢ is the air bubble volume normalized by the
drop volume and St is the Stokes number, which is
defined as

_ piRU (9
Hg

here pi is the liquid density, R is the droplet or body
radius, U is its impact velocity and g is the viscosity of
the surrounding gas, in this case air. In case of non-
circular body section, R is the equivalent curvature of
bottom section of the body. The Stokes number
represents the competing effects of the viscous force of
the draining air film and the inertial force of the liquid,
which ultimately determine the air bubble volume. The
same scaling was found experimentally for impact of a
sphere onto a pool [3] and a drop onto a pool [4,19].
When surface tension effects become important, the

St
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scaling must be modified to include the effect of the
Laplace pressure as moves towards the capillary
regime [20].

3. Numerical implementation

Dynamics of the problem in air and water flows are
governed by Laplace equation. This elliptic partial
differential equation is well suited to be numerically
solved using boundary element method. This method is
widely employed for solution of the Laplace equation
especially in water entry and related problems such as
employed by Yousefnezhad and Zeraatgar [21].
Numerical solution is started by mesh generation on the
desired boundaries. Special cares should be taken for
discretization. The BEM is very sensitive to element
size in area close to sources distributed on the
boundaries such as intersection of free surface and
body surface, S, (see Figure3). This sensitivity is highly
dependent on the length of the boundary s,. Once the
body gets very close to the free surface, the length of
the boundary S, is very small and the body as the source
of potential perturbation is very close to the sources
distributed on the free surface. Thus the element size is
necessarily very small on both the body and free
surface to adequately capture the potential gradient.
Figure 5 illustrates the boundaries for an ellipse entry
when it is close to the free surface. To obtain a
reasonable mesh density at the interface, spatial
discretization on the free surface boundary is carried
out using geometric progression. This provides finer
elements on the origin and coarse elements at the
physical infinity to control the computational time and
performance of the solver, simultaneously.

The numerical simulation is carried out in different
time steps. At each time step, the problem is first solved
for the air flow. Then the obtained results are employed
to solve the water flow. The primary air flow
characteristic which is used for water problem is the
pressure distribution on the free surface. Since, the
flows are not solved simultaneously, the modeling may
be called as a weakly coupled problem. Boundary
conditions of the problem remain unchanged during all
time steps. However, the boundary conditions on S,
and S,, are not the same in all time steps.

It can be shown that the elevation of free surface due to
presence of cushioning pressure is important when the
body is very close to the free surface. Therefore, the
elevation at initial stage of the body motion may be
neglected, say the first time step t,. So, it can be
formulated by substituting the free surface, S,, with a
rigid wall.

0ba _ _ (10)
=0 @ t=t
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Figure 5. Mesh density on different boundary for an ellipse for
with ¢ = 3 and vy = 1 m/s, (a) half domain of the problem, (b)
magnification of the mesh density at the intersection point of
the body and the symmetry line, (c) magnification of the mesh
density at the intersection point of the symmetry line and the

free surface.

The air problem can now be solved using boundary
element method at time ¢, with pre-defined boundary
conditions. According to these conditions, this problem
is classified as a mixed Dirichlet-Neumann problem. It
can be shown that applying second Green identity for a
distributed source, F, on the boundary yields [22]:

a9 (q) 9A(F,q)
on, on,

¢(P) = —L[A(F.q) - ¢(a) dsg  (11)

where, g is an arbitrary integration point on the
boundary and A is the fundamental solution of Laplace
equation as follows [22].

1
A= %lnr(F,q)

Z" cos(angle(r,n))
on, 2m r

(12)

and r = |q — F] is the distance vector. The potential
integral equation can be discretized in following format
assuming constant distribution of potential on each
element [22]:

N N ;
2¢) ij¢ _. ijan
=1 Jj=1

j=

(13)

where, H and G are influence coefficients and N is the
total number of elements. Once the problem at time
step t, is solved using BEM, the potential on the free

19

surface, ¢, IS known on S,. At the next time step,
increased by At, the new position of the body is
updated and the problem is again solved with previous
boundary conditions but with new position of the body.
The new potentials on S, say ¢,4, is obtained at time
step t; =ty + At. So, air pressure due to vertical
motion of the body can be evaluated using unsteady
Bernoulli equation on S,,.

(o} 1
P = _pa[ ata +E|V¢a|2 + gna]

(14)

where, n, is instantaneous profile of S, which is
vanished in the unsteady Bernoulli equation because of
rigid wall assumption. Furthermore, since the free
surface is not permitted to be deformed, the surface
tension is also disappeared. The only unknown variable
is d¢/at. For reasonably small enough At in all time
steps, the following approximation is readily available
using Taylor expansion.

Dd)a - Ad)a _ ¢a1 - ¢a0

Dt At t;—t, (15)
And

a¢a_D¢a 2~A¢a_ 2

ot - Dt _|V¢a| ~ At |V¢a| (16)

It is worth noting that the derivatives of the potential
are evaluated using a forward time differencing
scheme. Thus, the obtained air pressure corresponds to
the first time step.

Now, solution of the air problem at the first time step is
figured out. Using known values of potential and its
derivatives on the free surface as well as the obtained
air pressure, numerical solution of water problem is
started. The water problem can be also solved using
BEM by considering pre-defined boundary conditions.
From the kinematic free surface boundary condition the
normal derivative of water potential is vanished at time
steps t, and ty0n S,,.

Idw

on
Once the numerical solution is carried out, water
velocity potentials are known on S,,, which may be zero
at these time steps. At the next time step, ¢t,, there is no
need to assume the free surface is rigid any more. Using
dynamic free surface boundary condition, Bernoulli
equation can be written on free surface for water
problem at time step t; where the free surface elevation
is yet zero. The only unknown parameter, d¢/dt, is
evaluated as follows.
0y (P 1 ,
rrale _<E+§|V¢W| )
Again using a forward time differencing scheme, the
new values of potentials at the next time step, t,, can
be computed.

—0 (17)

(18)
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bz = 86 (220 1179, 12) + g1

: (19)

The potential on S, is now known at time step, t,. The
normal derivative of this potential is evaluated using
boundary element method. The free surface profile, n,,,
can be updated using the known values of normal and
tangential derivatives of the potential at time step, t,
based on kinematic and dynamic free surface boundary
conditions.Velocity components can be estimated
using differencing formula. However, for more precise
results, they are obtained using following boundary
integrals [22]. A typical result of evaluated components
of fluid particles on the air-water interface is depicted
in Figure 6.

7= J a0z G 20
d¢ 01 0¢ a (01
o= Loyan 05, Gall e (21)
x10°
i _— =
—/
o 7\\ E—
N . /
4 /
o 0.2 0.4 0.6 0.8 1

x/L
Figure 6. Typical non-dimensional horizontal and
vertical velocity of the fluid particles on the free surface

At the current time step, the water problem is solved
but the air problem is not solved, yet. The air flow can
be solved after updating the new position of the body
with the known values of ¢,, = ¢nw and n, = n,,.
After solving the problem, the new values of the air
pressure over free surface are obtained and solution of
the problem can be continued for next time step.
Coupling of the air and water problem at the second
time step is very sensitive to specified boundary
conditions on boundaries S, and S, which are
artificially separated. Since the flows are irrotational,
the boundary condition on the free surface is set to free
slip condition. In other words, tangential derivatives of
the air and water potentials, ¢, are not necessarily the
same on the free surface. Therefore, the following
kinematic free surface boundary condition readily
concluded which must be satisfied on the free surface
at each time step.

Prna = Onw (2 2)

where, ¢,, and ¢, are normal derivatives of the
potentials in the air and water flows, respectively.
Additionally, the dynamic free surface boundary
condition implies that pressures on both sides of the
free surface are equal. Including the surface tension for
Capillary regime, the pressure balance yields:
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d2%n
~0o
where, P, is the pressure on the free surface and
subscripts a and w indicate air and water flows,
respectively. So, the numerical solution is fully
accomplished.
All numerical methods have different limitation such as
instability issues, truncation errors, computational
time, etc. The most important issue in the boundary
element method is its sensitivity to the boundary
positions and their discretization. First, due to induced
imaginary damping potential in BEM, the position of
far filed boundaries must set adequately to remove this
drawback. Additionally, the BEM solvers are very
sensitive when the source of disturbance is very close
to the boundaries. Such a condition arises in the present
cushioning problem when the body is very close to the
free surface. Thus, special attention should be paid on
choosing the size of elements. Finally, the time step
intervals are usually determined in a try and error
algorithm. This is mainly due to sensitivity of the
problem configuration to the temporal derivative of the
potential. Thus, there is some limitation on simulation
of the problem. Minimum air gap thickness which can
be solved and simulated by the present code is about
(5 x 10~ b where b is the body breadth.
Although, the water depth is assumed to be physically
infinite, it can be controlled by surface Sg for shallow
water simulation.The present modeling can be easily
employed for simulation of symmetric or fully three
dimensional cushioning effects without any numerical
difficulties.

By =Py (23)

4. Results and discussions

4.1 Validation

Let starts with a circle instead of an ellipse for the sake
of simplicity. The circle is approaching the free surface
with constant and pure vertical speed. The solver
evaluates the pressure distribution upon the free surface
and elevation of the air-water interface at diameter of

L

Figure 7. Geometry of the rigid bodies including an ellipse and
its inscribed wedge.

Hicks and Purvis [19] had conducted a research on
cylinder air cushion by analytical and experimental
methods. The present numerical method is compared
with Hicks and Purvis results for a circle having
vertical velocity of V; = 0.1 m/s shown in

Figure 8 and

Figure 9. Generally, the comparison shows a reasonable
agreement. The comparison shows that the present
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numerical method predicts a slightly higher peak
pressure and faster pressure drop.

Figure 9 shows a comparison of the free surface profile
calculated by present method with Hicks and Purvis
method. The tendency as well as the profile is similar.
The maximum deformation of free surface due to
induced air pressure occurs at x =0 as expected.
Interestingly, this deformation is very low for the circle
under investigation.

1000
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4 \
N

Pressure [Pa]
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Figure 8. Comparison of air pressure on the free surface for a
circle with b = 0.5 and V, = 0.1 m/s with Hick’s method.
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Figure 9. Comparison of elevated free surface profile for a
circle with b = 0.5andv, = 0.1 m/s with Hick’s method.

4.2 Case studies

The induced potential due to motion of a body on
surrounding flow is highly affected by several
parameters such as acceleration, geometry, speed and
bluntness of the body. The two latter parameters are
investigated in this study. Effects of bluntness are
studied for an ellipse with different { = a/b from 1 to
10, where a and b are the minor and major axes of the
ellipse as illustrates in

Figure 7. The ellipse result is compared with the result
of some corresponding inscribed wedge to study the
effect of curvature of the body as well. The wedge
breadth coincides with the major axis of the ellipses.
This yields to an identical projected area in vertical
direction. Thus, the projected area is fixed and the
results are simply independent of this parameter.
Clearly, the deadrise angle of the wedge is defined by
B =tan'(1/¢). Major axis of the ellipse remains
constant and equals to unity for all { ratios to retain the
projected area unchanged. So, different body curvature
is obtained by variation of minor axis.

The chosen geometry for study is { = 3 both for ellipse
and wedge. The downward speed is 1 m/s. Time history
of generated pressure are illustrated in

21

Figure 10 and

Figure 11 at five consecutive time steps. Although both
geometries have the same width and the same speed,
the magnitude of generated air pressures are totally
different. This is mainly due to different bluntness of
the bodies. In both cases, as the bodies get closer to the
free surface, the peak pressure increases. So, the
maximum pressure happens exactly at the horizontal
origin. This is highly dependent on the capability of the
solver to implement the thinner air gap. Thinner gaps
results in different pressure distribution in which the
maximum pressure is not placed at the origin. Due to
different bluntness of the bodies, the rate of pressure
drops is not the same.

F2000 ‘\\\
F N
NN
NN
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00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

x[m]

Figure 10. Air pressure over free surface for an ellipse and a
wedge with ¢ = 3 and v, = 1 m/s at different time steps with
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y /&
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v
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Figure 11. Air pressure over free surface for a wedge with ¢ =
3 and v, = 1 m/s at different time steps with At=0.4 ms.

Figure 12 depicts the elevated free surface profile for
both bodies at last time. The profiles are different in
both magnitudes and tendencies. The wedge induced
free surface profile is extremely contracted region in
comparison with the ellipse induced profile. This
suggests that the cushioning pressure for the wedge is
localized into a small region which may be neglected
in comparison with the ellipse section. This may
describe that why the cushioning effect is neglected for
wedge section in real practice.
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Figure 12. Elevated free surface profile for a wedge (left) and
an ellipse (right) corresponding to the last time steps which
are shown in figures 9 and 10.

Another interesting non-dimensional parameter is
pressure coefficient which is here defined as follows.

Pmax

= 0.5p,V2

Cp (24)
where, P,,... and V, are maximum air pressure over the
free surface and vertical downward speed, respectively.
This parameter can roughly compare the variation of
pressure for different geometries. The pressure
coefficient for the ellipse and the wedge sections at ¢ =
3 are 5000 and 300, respectively. This comparison
expeditiously shows the importance of the body
bluntness on induced air pressure.

The disturbed free surface profiles due to cushioning
pressure which are depicted in figures 8 and 11, show
that the body would touch the free surface at two points.
Therefore, the contact geometry would be a curve not
a single point. Similarly, the contact area in three-
dimensional problem would be a surface similar to a
donut. This multi-points contact can change the pattern
of impact pressure of water and its propagation in the
water which is usually neglected in most of water entry
theories.

Since the bluntness of geometries significantly changes
the air pressure, a parametric study is carried out on
geometry bluntness, say ¢ .The air peak pressure is
taken as a measure of merit. The breadth of the bodies
is kept unchanged and ¢ is increased incrementally.
Then the problem is numerically solved for a set of
geometries. Figure 13 compares the obtained peak
pressure for both wedge and ellipse at the same value
of ¢.
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Figure 13. Variation of maximum cushioning pressure versus
different {with the same values of b.
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The calculated pressures exponentially increase as the
bluntness increases. However, different physical
phenomena prevent rising of air pressure to the
estimated values in real practice. One of the most
important one may be collapsing of the free surface
profile. This results in a rapid pressure drop due to
expansion of volume of air entrapment. Velocity
reduction due dynamic of rigid body is another
phenomenon which reduces air pressure.

Variation of peak pressures of both geometries shows
an identical tendency. One can define a non-
dimensional pressure ratio as ¥ = P,/PB,, where P, and
B, are the maxim peak pressure for the ellipse and the
wedge sections, respectively.

Figure 14 illustrates variation of non-dimensional
pressure ratio versus bluntness ¢. This figure simply
states that the non-dimensional pressure ratio, 1, tends
to a pre-specified value such as unity as the bluntness
of the body goes to infinity. However, for { = 10
which both geometries seems to yield a flat plate, the
wedge pressure is yet much less than that of the ellipse
section. It is concluded that the cushioning pressure
particularly for the very blunt body is very sensitive to
the bluntness of the body.
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Figure 14. Variation of non-dimensional pressure ratio versus
bluntness of the bodies

The bluntness of the body can also change distribution
of the cushioning pressure especially location of the
peak pressure. Error! Reference source not found. ShOWS
pressure distribution for an ellipse with { = 6 at two
different time steps. As it is seen, the location of peak
pressure gradually moves to the right side.
Additionally, the pressure at the origin of horizontal
axis decreases. This is primarily due to geometry of
free surface profile where generates a high pressure
necking section in cushioning layer. Furthermore, this
behavior suggests that even a small perturbation in
water surface can results in a totally different free
surface profile. This is always the case in real practice.
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Figure 15. Pressure distribution for an ellipse with { = 6 at
two consecutive time steps.

It should be noted that the air pressure are highly
dependent on the width of the body and the air gap
thickness. Additionally, the vertical speed of the body
is assumed to be constant. Different speed changes the
air pressure and resulting free surface profile in
cushioning layer. Moreover, it is common in most of
numerical studies to represent the results by non-
dimensional parameters. However, the results are
intentionally stated in corresponding dimensions to
provide a better physical understanding of the problem.
Results of all numerical methods including BEM which
employ discretization techniques are dependent on
element size and mesh grid structure. Thus, mesh
dependency analysis should be carried out for such
methods. Element size in BEM method is generally
determined by gradient of distributed potential. Figure
16 depicts a typical mesh dependency analysis for an
ellipse section. The error is defined by (Pp,+1 — B,) /Py,
where P is the maximum air pressure and n indicates
different mesh densities. The error value converges to
less than % 0.3 for the ellipse section. Similar mesh
dependency analysis is also figured out for all case
studies with different geometries and downward speed.
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Figure 16. Typical mesh dependency analysis for an
ellipse section

5. Conclusions

The cushioning problem is numerically investigated in
this study using a weakly coupled modeling between
the air and water flows. The solver employs a boundary
element method to implement the problem. Generated
cushioning air pressure as well as instantaneous free
surface profile is evaluated. The obtained results show
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a fair agreement with analytical method. It is shown
that characteristics of cushioning layer are dramatically
affected by the bluntness of the body. The peak
pressure is also evaluated for an inscribed wedge in the
ellipse. The comparison of obtained results show that
the effect of body curvature is vanished for large values
of ¢. Additionally, the numerical results prove that the
single point contact never occurs in water entry
problem especially for blunt bodies. Finally, the
present study confirms that the cushioning effect can be
neglected for wedges with relatively large deadrise
angles while it must be considered for blunt bodies.
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List of Symbols

Below is the list of symbols which are employed in the
present text.

Pa Air density

Pw Water density

o Air-Water surface tension

P Pressure

¢ Velocity potential

A Fundamental solution

n Free surface profile

K Curvature

fl Norma vector

Hyj, Gij Influence coefficients

g Gravitational acceleration

ds Length differential

r Boundary identity

a,b Dimensions of an ellipse

B Deadrise angle

{ Ellipse dimensional ratio
61,0, Non-dimensional length scales
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