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Effect of air cushion layer right before impact of a rigid body onto water 

surface has been investigated in this paper. The study is mainly focused on 

evaluation of cushioning pressure and the resulting free surface elevation. The 

air flow is assumed to be an irrotational flow which is governed by Laplace 

equation. The air problem and the resulting response of the water free surface 

are supposed to be weakly coupled because of very low air pressure. Integral 

equation for each medium has been numerically solved separately using 

boundary element method. The problem is assumed to be unsteady with a 

constant body speed. The numerical results have been also compared with 

analytical method which shows a fair agreement. Results show that the 

geometry of impacting body and particularly its bluntness are the primary 

affecting parameter which can dramatically influence the free surface profile 

and air pressure. Such a behavior has been observed for two different 

geometries, ellipse and wedge section, having identical breadth.  
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1. Introduction 
Water impact has many practical applications in marine 

engineering such as evaluation of slamming forces, 

seaplane design, wave loads on offshore structures, 

design of surface piercing propeller, analysis of motion 

in waves, etc. Considerable studies have been made on 

this topic which are mainly concentrated on prediction 

of the impact force. A variety of methods have been 

employed to implement the problem, ranging from pure 

numerical to entirely experimental method, but most of 

them neglect the effect of air gap right before impact 

for simplicity. However, the cushioning problem 

should be essentially considered in particular problems 

such as droplets and blunt body impacts. Generally, the 

air cushion layer affect the entry problem at least in 

three ways. The first one is to reduce the impacting 

speed due to well-known air drag force particularly 

right before impact. So, the resulting impact pressure is 

also decreased. The second effect of the air gap or air 

cushioning layer is to disturb the free surface. 

Neglecting air cushion effects means that the free 

surface is remained extremely planar at the moment of 

impact. However, presence of air cushion causes an 

induced pressure over the free surface. The free surface 

responds to this pressure to balance the forces along the 

air-water interface and thus it is deformed. The 

elevated free surface causes a multi-points contact 

rather than a single point contact [1, 2, 3]. This is 

schematically illustrated in Figure 1. The induced air 

pressure may also deform the impacting body if it is 

liquid such as those happen in droplet impact on liquids 

or solids. The number of contact points changes the 

generated pattern of impact pressure in the water and 

its propagation [4,5]. 

 

 
 

Figure 1. Exaggerated schematic view of escaping air flow and 

resulting double point contact 

 

The third effect concerns entrapped air between the 

body and the elevated free surface. The contact area 

gradually increases between the body and the free 

surface profile as the body penetrates more into water. 

Therefore, the entrapped air is compressed at the initial 

stage of entry. Compressing the air can dissipate impact 

momentum. This dissipation reduces the slamming 

pressure which is experienced by the impacting body 

[3, 4, 5]. Depending on the volume of the entrapped air, 

the importance of this effect varies. 

Study of air cushion can be employed in several 

engineering applications. An interesting case is droplet 

impact on liquid or solid surface. This topic has a wide 

range of applications in coating process, cooling and 
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cleaning of surfaces, atomization, inkjet printing and 

raindrop dynamics. Cushioning effect is also important 

in marine vehicles such as air supported vehicles like 

SES and hovercrafts, lifting ultra-heavy buoyant 

structures, prediction of slamming force on the wet 

deck of catamarans, etc.  

Most of cushioning characteristics are dependent on the 

volume, shape and location of entrapped air beneath the 

body. These parameters themselves are highly affected 

by air flow properties. So, the cushioning may show a 

random behavior depending on the problem. It can be 

shown that as bluntness of the body increases, the 

presence of air gap becomes more pronounced. So, it is 

expected that cushioning effect has a significant 

influence on a flat plate entry. Figure 2 illustrates a 

typical CFD simulation which is figured out by the 

Authors to show air entrapment before and after entry 

of a flat plate. This numerical simulation is carried out 

using the commercial CFD code, FLUENT. The solver 

employs a RANS algorithm coupling with the VOF 

model to evaluate the disturbance of free surface 

profile. The well-known dynamic mesh techniques 

controls the motion of grid nodes based on the rigid 

body dynamics. It should be mentioned that in most of 

applications, the cushioning corresponds to initial stage 

of penetration, ranging from nanoseconds to 

milliseconds. 
 

 
 

Figure 2. CFD simulation of air entrapment before and after 

impact of a flat plate 

 

Air cushion problem is mostly studied for investigation 

of droplet impacts. Study of air cushion has a great 

impact on the drops and bubbles dynamics. Almost 

after a century past from pioneer study of droplet 

impact made by Worthington [6], the presence of air 

layer has been continuously investigating. Some of 

recent developments include Thoroddsen, et al. [7], 

Marston, et al. [8], Hicks and Purvis [4] and Tran, et al. 

[5] which showed different characteristics of air bubble 

formation and its rapture in different impact problem. 

Particular interest of the present research is on the water 

impact of larger solid bodies onto water. The impact 

pressure may be roughly predicted by traditional 

theories presented by Von Karman [9] and Wagner 

[10]. These theories and almost all other water entry 

theories neglect presence of air cushion for the sake of 

simplicity. However, it should be considered in some 

particular problems.  

At the first investigation, Chuang [11] and Nethercote, 

et al. [12] experimentally showed that the pressure 

recorded at the apex of a roughly parabolic or small 

deadrise angle bodies has an oscillation behavior. They 

reported that this oscillation is not an electronic noise. 

They experimentally revealed that the presence of 

cushioning air layer is the source of this oscillation. 

Several later experimental researches such as those 

conducted by Okada and Sumi [13], Ermanyuk and 

Ohkusu [14] and also Huera-Huarte , et al. [15] studied 

dependency of the impact pressure to the cushioning 

layer by conducting different impact tests. The most 

important parameter of these research is geometry of 

impacting bodies and their bluntness. They generally 

confirmed that reducing deadrise angle of wedges and 

also increasing bluntness of bodies can dramatically 

affect the magnitude, pattern and spatial distribution of 

impact pressure due to presence of cushioning effect 

and resulting air entrapment.  

Different analytical researches investigated the 

cushioning problem mathematically. The first 

analytical model proposed by Verhagen [1]. He 

employed a simple one dimensional model for escaping 

air flow between a flat plate and elevated free surface. 

The gap layer was modeled by a channel flow in which 

the air flow governs by practical compressible gas 

dynamics formulation. He supposed that the air flow is 

choked at the air gap and therefore the air flow speed 

would be equal to local speed of sound. Cushioning 

pressure as well as escaping air speed were both 

reported in this study. Lewison and Maclean [16] and 

Lewison [17] developed the Verhagen model [1] by 

conducting series of experiments including flat plate 

impacts and showed that the Verhagen model [1] was 

in a good agreement with experimental results. In an 

independent research, Asryan [18] also recommended 

a mathematical model to investigate the problem based 

on a small perturbation analysis. He assumed that the 

free surface deformation is small in comparison with 

the characteristic length of the body, and presented the 

equation of viscous squeeze film and Reynolds 

equation for flow in a channel with moving walls. His 

theoretical model provided more details of the 

problems rather than Verhagen’s model. The presented 

model could not accurately capture the free surface 

profile and just available for initial stage of surface 

deformation. The model estimates pressure distribution 

in air flow. Wilson [2] employed non-dimensional form 

of two dimensional Navier-Stokes equations to propose 

a pair of coupled integral and differential equation for 

modeling of the problem. The results of this research 

included free surface profile and air cushioning 

pressure both in non-dimensional forms. He used 

different mathematical parameters to make the physical 

parameters non-dimensional. This made the proposed 

model impractical in engineering applications. Hicks 

and Purvis [3] further developed the Wilson’s model 

and presented a more accurate model for three 
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dimensional impact. They could remove drawbacks of 

the previous model. They employed a viscous 

lubrication equation to model the dynamics of air flow 

in cushioning layer. They first mathematically 

investigated the volume of air entrapment and 

presented a dimensional analysis for this volume and 

for different body geometries. Hicks, et al. [19] 

validated the proposed theory by conducting a set of 

experiments to study the effect of air-trapping by a rigid 

sphere impacting on a free surface of the liquid of 

infinite depth. Formation of entrapped air was captured 

by a high speed camera. They showed that the 

experimental and theoretical results are in a good 

agreement. Instantaneous air pressure and free surface 

profile are the main output of this research. 

The present study investigates the air cushion effect in 

water entry of blunt rigid bodies in which the 

cushioning pressure cannot be neglected. Both air and 

water flows are assumed to be irrotational and 

governed by Laplace equation. Solution of the 

governing equation is numerically carried out 

employing boundary element method with nonlinear 

boundary conditions. Instantaneous free surface profile 

as well as air pressure are evaluated. The coupling 

mechanism between air and water flow is figured out 

via an artificial boundary separation for the first time. 

This technique can significantly simplify the problem 

formulation and its numerical implementation. Since 

the BEM is used to solve the problem, the 

recommended model provides a rapid method to solve 

cushioning problem with any arbitrary impacting 

geometry. Additionally, this model may be employed 

to simulate droplet impact onto other droplets or onto 

liquid or solid surface. The numerical results are 

compared with other similar research.  
 

2. Formulation 
It is assumed that the impacting body is rigid and water 

depth is infinite. The rigid body approaches the water 

surface with a constant vertical speed, 𝑉𝑖. For high 

speed impact of blunt bodies, one can neglect free 

surface tension. This results in an inertial dominant 

flow regime in the cushioning layer. Furthermore, air 

and water flows are rapid strain flows which inertial 

forces are dominant and the viscous effects are 

neglected for high speed impact. Thus, both flows are 

assumed to be irrotational which are governed by 

Laplace equation.  
 

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= 0  (1)  

 

where 𝜙 is velocity potential. Although geometry of the 

body can have any arbitrary shapes, it is supposed to be 

symmetric for the sake of simplicity. This assumption 

makes both air and water flows symmetric and 

consequently simplifies the problem as a half domain 

which significantly reduces computational time.  

Figure 3 illustrates the physical and computational 

domains of the problem. The problem is divided into 

two weakly coupled problem of the air flow and the 

water flow. The air problem is bounded with surfaces 

of𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆𝑏 and 𝑆𝑎 where 𝑆𝑏 and 𝑆𝑎 are external 

surface of body and free surface profile, respectively. 

Similarly, boundaries of the water problem includes 𝑆6, 

𝑆7, 𝑆8 and 𝑆𝑤. The free surface profile is artificially 

divided into two different surfaces 𝑆𝑎 and 𝑆𝑤 with the 

same dynamics. This is the primary technique of the 

simulation in this study. The air flow and the water are 

coupled through the motion of their interface.  

Figure 4 depicts typical response of these surfaces at 

different time steps. 

Boundary conditions of the problem should be 

specified for solution of the boundary value problem in 

both air and water flows. For the air far field boundary 

condition is applied for boundaries 𝑆3and 𝑆4 as follow: 

 

𝜙𝑎(∞, 𝑡) = 0  (2)  
 

 
 

Figure 3. Physical and computational domain of the problem 

 

 
 

Figure 4. Schematic view of artificially divided surfaces in two 

different time steps 

 

Subscript 𝑎 indicates air flow. No flux boundary 

condition is also applied for external surface of the 

body, 𝑆𝑏 and symmetric boundaries 𝑆1 and 𝑆2as follows: 
 

𝜕𝜙𝑎

𝜕𝑛
= 𝑛̂. 𝑉⃗  (3)  

 

where 𝑛̂ is the normal vector of the body geometry 

pointing outward. The remaining boundary is free 

surface boundary, namely 𝑆𝑎 in the air problem. The 

specified boundary conditions on this surface consist of 

well-known nonlinear kinematic and dynamic free 
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surface boundary conditions. Kinematic free surface 

boundary condition presented as follows. 
 

𝜕𝜙𝑎

𝜕𝑦
=

𝐷𝜂(𝑥, 𝑡)

𝐷𝑡
= [

𝜕𝜂(𝑥, 𝑡)

𝜕𝑡
+

𝜕𝜙𝑎

𝜕𝑥

𝜕𝜂

𝜕𝑥
]
𝑦=𝜂

 (4)  

 

here𝜂(𝑥, 𝑡)is free surface profile. Dynamic boundary 

condition balances the applied forces on the interface. 
 

𝜕𝜙𝑎

𝜕𝑡
+

1

2
|∇𝜙|2 = 𝑔𝜂 −

𝜎

𝜌𝑎

 𝜅(𝑥, 𝑡) −
𝑃𝑎

𝜌𝑎

 (5)  
 

where 𝑔, 𝜎and𝜅are gravitational acceleration, surface 

tension at the air-water interface and curvature of free 

surface, respectively. This curvature is a function of 

spatial derivatives of free surface profile. 
 

𝜅(𝑥, 𝑡) = [|
𝜕2𝜂

𝜕𝑥2
| . (1 +

𝜕𝜂

𝜕𝑥
)
−

3

2

]

𝑦=𝜂

 (6)  

 

Equation 6 includes both gravity effects and surface 

tension. Considering these parameters increases the 

accuracy of modeling particularly at initial stage of 

surface deformation.  

For the water problem, far field and symmetric 

boundary conditions are applied for boundaries 

𝑆8and𝑆6, respectively. Wall boundary condition is also 

determined for the water bed. 
 

𝜕𝜙𝑤

𝜕𝑛
= 𝑛̂. 𝑉⃗ 𝑤 = 𝑛̂𝑥𝑢𝑤 + 𝑛̂𝑦𝑣 = 0  (7)  

 

Similar kinematic and dynamic boundary condition 

should be applied for the boundary 𝑆𝑤with substituting 

appropriate properties of water instead of the air.Now 

the governing equations of the problem and their 

corresponding boundary conditions are known. Air and 

water problems are coupled to each other by the 

pressure at their interface.  

Different researches showed that the following scaling 

for the entrapped air bubble volume was found at this 

condition. 
 

𝛿 = 𝑉𝑒/𝑉𝑏 ≈ 𝑆𝑡−
4

3  (8)  
 

where, δ is the air bubble volume normalized by the 

drop volume and St is the Stokes number, which is 

defined as 
 

𝑆𝑡 =
𝜌𝑙𝑅𝑈

𝜇𝑔

 
(9)  

 

here ρl is the liquid density, R is the droplet or body 

radius, U is its impact velocity and μg is the viscosity of 

the surrounding gas, in this case air. In case of non-

circular body section, R is the equivalent curvature of 

bottom section of the body. The Stokes number 

represents the competing effects of the viscous force of 

the draining air film and the inertial force of the liquid, 

which ultimately determine the air bubble volume. The 

same scaling was found experimentally for impact of a 

sphere onto a pool [3] and a drop onto a pool [4,19]. 

When surface tension effects become important, the 

scaling must be modified to include the effect of the 

Laplace pressure as moves towards the capillary 

regime [20].  
 

3. Numerical implementation 
Dynamics of the problem in air and water flows are 

governed by Laplace equation. This elliptic partial 

differential equation is well suited to be numerically 

solved using boundary element method. This method is 

widely employed for solution of the Laplace equation 

especially in water entry and related problems such as 

employed by Yousefnezhad and Zeraatgar [21]. 

Numerical solution is started by mesh generation on the 

desired boundaries. Special cares should be taken for 

discretization. The BEM is very sensitive to element 

size in area close to sources distributed on the 

boundaries such as intersection of free surface and 

body surface, 𝑆2 (see Figure3). This sensitivity is highly 

dependent on the length of the boundary 𝑆2. Once the 

body gets very close to the free surface, the length of 

the boundary 𝑆2 is very small and the body as the source 

of potential perturbation is very close to the sources 

distributed on the free surface. Thus the element size is 

necessarily very small on both the body and free 

surface to adequately capture the potential gradient. 

Figure 5 illustrates the boundaries for an ellipse entry 

when it is close to the free surface. To obtain a 

reasonable mesh density at the interface, spatial 

discretization on the free surface boundary is carried 

out using geometric progression. This provides finer 

elements on the origin and coarse elements at the 

physical infinity to control the computational time and 

performance of the solver, simultaneously.  

The numerical simulation is carried out in different 

time steps. At each time step, the problem is first solved 

for the air flow. Then the obtained results are employed 

to solve the water flow. The primary air flow 

characteristic which is used for water problem is the 

pressure distribution on the free surface. Since, the 

flows are not solved simultaneously, the modeling may 

be called as a weakly coupled problem. Boundary 

conditions of the problem remain unchanged during all 

time steps. However, the boundary conditions on 𝑆𝑎 

and 𝑆𝑤 are not the same in all time steps. 

It can be shown that the elevation of free surface due to 

presence of cushioning pressure is important when the 

body is very close to the free surface. Therefore, the 

elevation at initial stage of the body motion may be 

neglected, say the first time step 𝑡0. So, it can be 

formulated by substituting the free surface, 𝑆𝑎, with a 

rigid wall.  
 

𝜕𝜙𝑎

𝜕𝑛
= 0    @   𝑡 = 𝑡0 

(10)  
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(a) 

 
(b) (c) 

 
Figure 5. Mesh density on different boundary for an ellipse for 

with 𝜻 = 𝟑 and 𝑽𝟎 = 𝟏 m/s, (a) half domain of the problem, (b) 

magnification of the mesh density at the intersection point of 

the body and the symmetry line, (c) magnification of the mesh 

density at the intersection point of the symmetry line and the 

free surface. 

 

The air problem can now be solved using boundary 

element method at time 𝑡0 with pre-defined boundary 

conditions. According to these conditions, this problem 

is classified as a mixed Dirichlet-Neumann problem. It 

can be shown that applying second Green identity for a 

distributed source, 𝐹, on the boundary yields [22]: 
 

𝜙(𝑃) = −∫ [𝜆(𝐹, 𝑞)
𝜕𝜙(𝑞)

𝜕𝑛𝑞

− 𝜙(𝑞)
𝜕𝜆(𝐹, 𝑞)

𝜕𝑛𝑞

] 𝑑𝑠𝑞
Γ

 (11)  

 

where, 𝑞 is an arbitrary integration point on the 

boundary and 𝜆 is the fundamental solution of Laplace 

equation as follows [22]. 
 

𝜆 =
1

2𝜋
ln 𝑟 (𝐹, 𝑞) 

𝜕𝜆

𝜕𝑛𝑞

=
1

2𝜋

cos(𝑎𝑛𝑔𝑙𝑒(𝑟, 𝑛))

𝑟
 

(12)  

 

and 𝑟 = |𝑞 − 𝐹| is the distance vector. The potential 

integral equation can be discretized in following format 

assuming constant distribution of potential on each 

element [22]:  
 

−
1

2
𝜙𝑖 + ∑𝐻̂𝑖𝑗𝜙

𝑗

𝑁

𝑗=1

= ∑𝐺̂𝑖𝑗

𝜕𝜙

𝜕𝑛

𝑗𝑁

𝑗=1

 (13)  

 

where, 𝐻 and 𝐺 are influence coefficients and 𝑁 is the 

total number of elements. Once the problem at time 

step 𝑡0 is solved using BEM, the potential on the free 

surface, 𝜙𝑎0, is known on 𝑆𝑎. At the next time step, 

increased by 𝛥𝑡, the new position of the body is 

updated and the problem is again solved with previous 

boundary conditions but with new position of the body. 

The new potentials on 𝑆𝑎, say 𝜙𝑎1, is obtained at time 

step 𝑡1 = 𝑡0 + 𝛥𝑡. So, air pressure due to vertical 

motion of the body can be evaluated using unsteady 

Bernoulli equation on 𝑆𝑎. 
 

𝑃𝑎 = −𝜌𝑎 [
𝜕𝜙𝑎

𝜕𝑡
+

1

2
|𝛻𝜙𝑎|

2 + 𝑔𝜂𝑎] (14)  
 

where, 𝜂𝑎 is instantaneous profile of 𝑆𝑎 which is 

vanished in the unsteady Bernoulli equation because of 

rigid wall assumption. Furthermore, since the free 

surface is not permitted to be deformed, the surface 

tension is also disappeared. The only unknown variable 

is 𝜕𝜙/𝜕𝑡. For reasonably small enough 𝛥𝑡 in all time 

steps, the following approximation is readily available 

using Taylor expansion.  
 

𝐷𝜙𝑎

𝐷𝑡
≈

𝛥𝜙𝑎

𝛥𝑡
=

𝜙𝑎1 − 𝜙𝑎0

𝑡1 − 𝑡0
 (15)  

 

And 
 

𝜕𝜙𝑎

𝜕𝑡
=

𝐷𝜙𝑎

𝐷𝑡
− |𝛻𝜙𝑎|

2 ≈
𝛥𝜙𝑎

𝛥𝑡
− |𝛻𝜙𝑎|

2
 (16)  

 

It is worth noting that the derivatives of the potential 

are evaluated using a forward time differencing 

scheme. Thus, the obtained air pressure corresponds to 

the first time step.  

Now, solution of the air problem at the first time step is 

figured out. Using known values of potential and its 

derivatives on the free surface as well as the obtained 

air pressure, numerical solution of water problem is 

started. The water problem can be also solved using 

BEM by considering pre-defined boundary conditions. 

From the kinematic free surface boundary condition the 

normal derivative of water potential is vanished at time 

steps 𝑡0 and 𝑡1on 𝑆𝑤. 
 

𝜕𝜙𝑤

𝜕𝑛
= 0    (17)  

 

Once the numerical solution is carried out, water 

velocity potentials are known on 𝑆𝑤 which may be zero 

at these time steps. At the next time step, 𝑡2, there is no 

need to assume the free surface is rigid any more. Using 

dynamic free surface boundary condition, Bernoulli 

equation can be written on free surface for water 

problem at time step 𝑡1 where the free surface elevation 

is yet zero. The only unknown parameter, 𝜕𝜙/𝜕𝑡, is 

evaluated as follows. 
  

𝜕𝜙𝑤

𝜕𝑡
= − (

𝑃𝑎

𝜌𝑤

+
1

2
|𝛻𝜙𝑤|2) (18)  

 

Again using a forward time differencing scheme, the 

new values of potentials at the next time step, 𝑡2, can 

be computed.  
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𝜙𝑤2 = 𝛥𝑡 (
𝜕𝜙𝑤

𝜕𝑡
+ |𝛻𝜙𝑤|2) + 𝜙𝑤1 (19)  

 

The potential on 𝑆𝑤 is now known at time step, 𝑡2. The 

normal derivative of this potential is evaluated using 

boundary element method. The free surface profile, 𝜂𝑤, 

can be updated using the known values of normal and 

tangential derivatives of the potential at time step, 𝑡2 

based on kinematic and dynamic free surface boundary 

conditions.Velocity components can be estimated 

using differencing formula. However, for more precise 

results, they are obtained using following boundary 

integrals [22]. A typical result of evaluated components 

of fluid particles on the air-water interface is depicted 

in Figure 6. 
 

𝜕𝜙

𝜕𝑥
= −∫ [

𝜕𝜆

𝜕𝑥

𝜕𝜙

𝜕𝑛
− 𝜙

𝜕

𝜕𝑥
(
𝜕𝜆

𝜕𝑛
)] 𝑑𝑠 

𝛤

 (20)  

𝜕𝜙

𝜕𝑦
= −∫ [

𝜕𝜆

𝜕𝑦

𝜕𝜙

𝜕𝑛
− 𝜙

𝜕

𝜕𝑦
(
𝜕𝜆

𝜕𝑛
)] 𝑑𝑠 

𝛤

 (21)  

 
Figure 6. Typical non-dimensional horizontal and 

vertical velocity of the fluid particles on the free surface 

 

At the current time step, the water problem is solved 

but the air problem is not solved, yet. The air flow can 

be solved after updating the new position of the body 

with the known values of 𝜙𝑛𝑎 = 𝜙𝑛𝑤  and 𝜂𝑎 = 𝜂𝑤. 

After solving the problem, the new values of the air 

pressure over free surface are obtained and solution of 

the problem can be continued for next time step. 

Coupling of the air and water problem at the second 

time step is very sensitive to specified boundary 

conditions on boundaries 𝑆𝑎 and 𝑆𝑤 which are 

artificially separated. Since the flows are irrotational, 

the boundary condition on the free surface is set to free 

slip condition. In other words, tangential derivatives of 

the air and water potentials, 𝜙𝑠, are not necessarily the 

same on the free surface. Therefore, the following 

kinematic free surface boundary condition readily 

concluded which must be satisfied on the free surface 

at each time step.  
 

𝜙𝑛𝑎 = 𝜙𝑛𝑤  (22)  
 

where, 𝜙𝑛𝑎 and 𝜙𝑛𝑤 are normal derivatives of the 

potentials in the air and water flows, respectively. 

Additionally, the dynamic free surface boundary 

condition implies that pressures on both sides of the 

free surface are equal. Including the surface tension for 

Capillary regime, the pressure balance yields:   
 

𝑃𝑠𝑤 = 𝑃𝑠𝑎 − 𝜎
𝜕2𝜂

𝜕𝑥2
 (23)  

 

where, 𝑃𝑠 is the pressure on the free surface and 

subscripts 𝑎 and 𝑤 indicate air and water flows, 

respectively. So, the numerical solution is fully 

accomplished. 

All numerical methods have different limitation such as 

instability issues, truncation errors, computational 

time, etc.  The most important issue in the boundary 

element method is its sensitivity to the boundary 

positions and their discretization. First, due to induced 

imaginary damping potential in BEM, the position of 

far filed boundaries must set adequately to remove this 

drawback. Additionally, the BEM solvers are very 

sensitive when the source of disturbance is very close 

to the boundaries. Such a condition arises in the present 

cushioning problem when the body is very close to the 

free surface. Thus, special attention should be paid on 

choosing the size of elements. Finally, the time step 

intervals are usually determined in a try and error 

algorithm. This is mainly due to sensitivity of the 

problem configuration to the temporal derivative of the 

potential. Thus, there is some limitation on simulation 

of the problem. Minimum air gap thickness which can 

be solved and simulated by the present code is about 

(5 × 10−4)𝑏 where b is the body breadth.  

Although, the water depth is assumed to be physically 

infinite, it can be controlled by surface 𝑆6 for shallow 

water simulation.The present modeling can be easily 

employed for simulation of symmetric or fully three 

dimensional cushioning effects without any numerical 

difficulties. 
 

4. Results and discussions  
4.1 Validation 

Let starts with a circle instead of an ellipse for the sake 

of simplicity. The circle is approaching the free surface 

with constant and pure vertical speed. The solver 

evaluates the pressure distribution upon the free surface 

and elevation of the air-water interface at diameter of 

unity. 

 

 
 

Figure 7. Geometry of the rigid bodies including an ellipse and 

its inscribed wedge. 

 

Hicks and Purvis [19] had conducted a research on 

cylinder air cushion by analytical and experimental 

methods. The present numerical method is compared 

with Hicks and Purvis results for a circle having 

vertical velocity of 𝑉0 = 0.1 m/s shown in  

Figure 8 and  

Figure 9. Generally, the comparison shows a reasonable 

agreement. The comparison shows that the present 
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numerical method predicts a slightly higher peak 

pressure and faster pressure drop.  

 

Figure 9 shows a comparison of the free surface profile 

calculated by present method with Hicks and Purvis 

method. The tendency as well as the profile is similar. 

The maximum deformation of free surface due to 

induced air pressure occurs at 𝑥 = 0 as expected. 

Interestingly, this deformation is very low for the circle 

under investigation.  

 

 
 

Figure 8. Comparison of air pressure on the free surface for a 

circle with 𝒃 = 𝟎. 𝟓 and 𝑽𝟎 = 𝟎. 𝟏 𝒎/𝒔 with Hick’s method. 

 

 
 

Figure 9. Comparison of elevated free surface profile for a 

circle with 𝒃 = 𝟎. 𝟓and𝑽𝟎 = 𝟎. 𝟏 𝒎/𝒔  with Hick’s method.  

 

4.2 Case studies 

The induced potential due to motion of a body on 

surrounding flow is highly affected by several 

parameters such as acceleration, geometry, speed and 

bluntness of the body. The two latter parameters are 

investigated in this study. Effects of bluntness are 

studied for an ellipse with different 𝜁 = 𝑎/𝑏 from 1 to 

10, where 𝑎 and 𝑏 are the minor and major axes of the 

ellipse as illustrates in  

Figure 7. The ellipse result is compared with the result 

of some corresponding inscribed wedge to study the 

effect of curvature of the body as well. The wedge 

breadth coincides with the major axis of the ellipses. 

This yields to an identical projected area in vertical 

direction. Thus, the projected area is fixed and the 

results are simply independent of this parameter. 

Clearly, the deadrise angle of the wedge is defined by 

𝛽 = tan−1(1/𝜁). Major axis of the ellipse remains 

constant and equals to unity for all 𝜁 ratios to retain the 

projected area unchanged. So, different body curvature 

is obtained by variation of minor axis.  

The chosen geometry for study is 𝜁 = 3 both for ellipse 

and wedge. The downward speed is 1 m/s. Time history 

of generated pressure are illustrated in  

Figure 10 and  

Figure 11 at five consecutive time steps. Although both 

geometries have the same width and the same speed, 

the magnitude of generated air pressures are totally 

different. This is mainly due to different bluntness of 

the bodies. In both cases, as the bodies get closer to the 

free surface, the peak pressure increases. So, the 

maximum pressure happens exactly at the horizontal 

origin. This is highly dependent on the capability of the 

solver to implement the thinner air gap. Thinner gaps 

results in different pressure distribution in which the 

maximum pressure is not placed at the origin. Due to 

different bluntness of the bodies, the rate of pressure 

drops is not the same. 
 

 
 

Figure 10. Air pressure over free surface for an ellipse and a 

wedge with 𝜻 = 𝟑 and 𝑽𝟎 = 𝟏 m/s at different time steps with 

Δt=0.15 ms. 

 

 
 

Figure 11. Air pressure over free surface for a wedge with 𝜻 =

𝟑 and 𝑽𝟎 = 𝟏 m/s at different time steps with Δt=0.4 ms. 

 

Figure 12 depicts the elevated free surface profile for 

both bodies at last time. The profiles are different in 

both magnitudes and tendencies. The wedge induced 

free surface profile is extremely contracted region in 

comparison with the ellipse induced profile. This 

suggests that the cushioning pressure for the wedge is 

localized into a small region which may be neglected 

in comparison with the ellipse section. This may 

describe that why the cushioning effect is neglected for 

wedge section in real practice.  
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Figure 12. Elevated free surface profile for a wedge (left) and 

an ellipse (right) corresponding to the last time steps which 

are shown in figures 9 and 10. 

 

Another interesting non-dimensional parameter is 

pressure coefficient which is here defined as follows. 
  

𝐶𝑃 =
𝑃𝑚𝑎𝑥

0.5𝜌𝑎𝑉0
2 (24)  

 

where, 𝑃𝑚𝑎𝑥 and 𝑉0 are maximum air pressure over the 

free surface and vertical downward speed, respectively. 

This parameter can roughly compare the variation of 

pressure for different geometries. The pressure 

coefficient for the ellipse and the wedge sections at 𝜁 =

3 are 5000 and 300, respectively. This comparison 

expeditiously shows the importance of the body 

bluntness on induced air pressure.  

The disturbed free surface profiles due to cushioning 

pressure which are depicted in figures 8 and 11, show 

that the body would touch the free surface at two points. 

Therefore, the contact geometry would be a curve not 

a single point. Similarly, the contact area in three-

dimensional problem would be a surface similar to a 

donut. This multi-points contact can change the pattern 

of impact pressure of water and its propagation in the 

water which is usually neglected in most of water entry 

theories.  

Since the bluntness of geometries significantly changes 

the air pressure, a parametric study is carried out on 

geometry bluntness, say  𝜁 .The air peak pressure is 

taken as a measure of merit. The breadth of the bodies 

is kept unchanged and 𝜁 is increased incrementally. 

Then the problem is numerically solved for a set of 

geometries. Figure 13 compares the obtained peak 

pressure for both wedge and ellipse at the same value 

of  𝜁.   
 

 
Figure 13. Variation of maximum cushioning pressure versus 

different 𝜻with the same values of 𝒃. 

The calculated pressures exponentially increase as the 

bluntness increases. However, different physical 

phenomena prevent rising of air pressure to the 

estimated values in real practice. One of the most 

important one may be collapsing of the free surface 

profile. This results in a rapid pressure drop due to 

expansion of volume of air entrapment. Velocity 

reduction due dynamic of rigid body is another 

phenomenon which reduces air pressure. 

Variation of peak pressures of both geometries shows 

an identical tendency. One can define a non-

dimensional pressure ratio as 𝜓 = 𝑃𝑒/𝑃𝑤 where 𝑃𝑒 and 

𝑃𝑤 are the maxim peak pressure for the ellipse and the 

wedge sections, respectively.  

Figure 14 illustrates variation of non-dimensional 

pressure ratio versus bluntness 𝜁. This figure simply 

states that the non-dimensional pressure ratio, 𝜓, tends 

to a pre-specified value such as unity as the bluntness 

of the body goes to infinity. However, for 𝜁 = 10 

which both geometries seems to yield a flat plate, the 

wedge pressure is yet much less than that of the ellipse 

section. It is concluded that the cushioning pressure 

particularly for the very blunt body is very sensitive to 

the bluntness of the body. 
 

 
 

Figure 14. Variation of non-dimensional pressure ratio versus 

bluntness of the bodies 

 

The bluntness of the body can also change distribution 

of the cushioning pressure especially location of the 

peak pressure. Error! Reference source not found. shows 

pressure distribution for an ellipse with 𝜁 = 6 at two 

different time steps. As it is seen, the location of peak 

pressure gradually moves to the right side. 

Additionally, the pressure at the origin of horizontal 

axis decreases. This is primarily due to geometry of 

free surface profile where generates a high pressure 

necking section in cushioning layer. Furthermore, this 

behavior suggests that even a small perturbation in 

water surface can results in a totally different free 

surface profile. This is always the case in real practice.  
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Figure 15. Pressure distribution for an ellipse with 𝜻 = 𝟔 at 

two consecutive time steps. 
 

It should be noted that the air pressure are highly 

dependent on the width of the body and the air gap 

thickness. Additionally, the vertical speed of the body 

is assumed to be constant. Different speed changes the 

air pressure and resulting free surface profile in 

cushioning layer. Moreover, it is common in most of 

numerical studies to represent the results by non-

dimensional parameters. However, the results are 

intentionally stated in corresponding dimensions to 

provide a better physical understanding of the problem. 

Results of all numerical methods including BEM which 

employ discretization techniques are dependent on 

element size and mesh grid structure. Thus, mesh 

dependency analysis should be carried out for such 

methods. Element size in BEM method is generally 

determined by gradient of distributed potential. Figure 

16 depicts a typical mesh dependency analysis for an 

ellipse section. The error is defined by (𝑃𝑛+1 − 𝑃𝑛)/𝑃𝑛, 

where P is the maximum air pressure and n indicates 

different mesh densities. The error value converges to 

less than % 0.3 for the ellipse section. Similar mesh 

dependency analysis is also figured out for all case 

studies with different geometries and downward speed. 

 

 
 

Figure 16. Typical mesh dependency analysis for an 

ellipse section 

 

5. Conclusions 
The cushioning problem is numerically investigated in 

this study using a weakly coupled modeling between 

the air and water flows. The solver employs a boundary 

element method to implement the problem. Generated 

cushioning air pressure as well as instantaneous free 

surface profile is evaluated. The obtained results show 

a fair agreement with analytical method. It is shown 

that characteristics of cushioning layer are dramatically 

affected by the bluntness of the body. The peak 

pressure is also evaluated for an inscribed wedge in the 

ellipse. The comparison of obtained results show that 

the effect of body curvature is vanished for large values 

of 𝜁. Additionally, the numerical results prove that the 

single point contact never occurs in water entry 

problem especially for blunt bodies. Finally, the 

present study confirms that the cushioning effect can be 

neglected for wedges with relatively large deadrise 

angles while it must be considered for blunt bodies.  
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List of Symbols  
Below is the list of symbols which are employed in the 

present text. 
𝜌𝑎 Air density 

𝜌𝑤 Water density 

𝜎 Air-Water surface tension 

𝑃 Pressure  

𝜙 Velocity potential 

𝜆 Fundamental solution 

𝜂 Free surface profile 

𝜅 Curvature  

𝑛̂ Norma vector 

𝐻𝑖𝑗 , 𝐺𝑖𝑗 Influence coefficients 

𝑔 Gravitational acceleration 

𝑑𝑠 Length differential 

Γ Boundary identity 

𝑎, 𝑏 Dimensions of an ellipse 

𝛽 Deadrise angle 

𝜁 Ellipse dimensional ratio 

𝛿1, 𝛿2 Non-dimensional length scales 
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