Volume 8 -                   ijmt 2017, 8 - : 25-33 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmed D H, Haque M A, Rauf M A. Investigation of Drag Coefficient at Subcritical and Critical Reynolds Number Region for Circular Cylinder with Helical Grooves. ijmt. 2017; 8 :25-33
URL: http://ijmt.ir/article-1-622-en.html

1- PhD Mechanical and Production Engineering Department, Ahsanullah University of Science and Technology
2- B.Sc. Mechanical and Production Engineering Department, Ahsanullah University of Science and Technology
Abstract:   (65 Views)

Drag reduction of an object is the major concern in many engineering applications. Experimental studies have been carried out on circular cylinder with helical grooves in a subsonic wind tunnel. Different cases of helical grooves with different pitches, helical groove angles and number of starts of helical groove on circular cylinder are tested. Experimental results show the drag coefficient is sensitive with Reynolds number and decreases at critical Reynolds number and at subcritical and supercritical or transcritical Reynolds number the drag coefficient increases as compared with smooth cylinder. The longitudinal grooves over the cylinder surface are tested and showed that drag coefficient much decreases at the subcritical and critical Reynolds number region. The experimental results are validated with available literature and obtained good agreement.

Full-Text [PDF 762 kb]   (16 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2017/07/1 | Accepted: 2017/11/25

References
1. Sakamoto, H., Tan, K. and Haniu, H., (1991), An Optimum Suppression of Fluid Forces by Controlling a Shear Layer Separated From a Square Prism, Journal of Fluids Engineering, Vol.113(2), p.183-189. [DOI: 10.1115/1.2909478]
2. Fujisawa, N. and Takeda, G., (2003), Flow control around a circular cylinder by internal acoustic excitation, Journal of Fluids and Structures, Vol.17(7), p.903–913. [DOI: 10.1016/S0889-9746(03)00043-4]
3. Igarashi, T. and Tsutsui, T., (1989), Flow Control Around a Circular Cylinder by a New Method : 2nd Report, Fluid Forces Acting on the Cylinder, Transactions of the Japan Society of Mechanical Engineers Series B, Vol.55(511), p.708-714. [DOI: 10.1299/kikaib.55.708]
4. Igarashi, T. and Tsutsui, T., (1991), Flow Control around a Circular Cylinder by a New Method : 3rd Report, Properties of the Reattachment Jet, Transactions of the Japan Society of Mechanical Engineers Series B, Vol.57(533), p.8-13. [DOI: 10.1299/kikaib.57.8]
5. Raayai-Ardakani, S. and McKinley, GH., (2017), Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows, Physics of Fluids, Vol.29(093605), p.093605-1-16. [DOI: 10.1063/1.4995566]
6. Matsumoto, H., Kubota, Y., Ohishi, M., and Mochizuki, O., (2016), Drag on a Cylinder with an Apple-Shaped Cross Section, World Journal of Mechanics, Vol.6, p.323-339. [DOI: 10.4236/wjm.2016.69024]
7. Yunqing, G., Tao, L., Jiegang, M., Zhengzan, S., and Peijian, Z., (2017), Analysis of Drag Reduction Methods and Mechanisms of Turbulent, Applied Bionics and Biomechanics, Article ID 6858720, 8 pages. [DOI: 10.1155/2017/6858720]
8. Zdravkovich, MM., (1977), Review of Flow Interference Between Two Circular Cylinders in Various Arrangements, Journal of Fluids Engineering, Vol.99(4), p.618-633.
9. Sakamoto, H. and Haniu, H., (1994), Optimum Suppression of Fluid Forces Acting on a Circular Cylinder, Journal of Fluids Engineering, Vol.116(2), p.221-227. [DOI: 10.1115/1.3448871]
10. Bai, Q., Bai, J., Meng, X., Ji, C., and Liang, Y., (2016), Drag reduction characteristics and flow field analysis of textured Surface, Friction, Vol.4(2), p.165–175. [DOI: 10.1007/s40544-016-0113-y]
11. Coustols, E., (2001), Effect of grooved surfaces on the structure of a turbulent boundary layer, Mec. Ind 2.421-234. Edition scientifique et médicale Elsevier SAS. S1296-2139(01)01125-3/FLA. [DOI: 10.1590/S0100-73862000000100001]
12. Talley, S. and Mungal, G., (2002), Flow around cactus-shaped cylinders, Center for Turbulence Research Annual Research Briefs, p.363-376.
13. Yokoi, Y., Igarashi, T. and Hirao, K., (2011), The Study about Drag Reduction of a Circular Cylinder with Grooves, Journal of Fluid Science and Technology, 6(4), p.637. [DOI: 10.1299/jfst.6.637]
14. Yamagishi, Y. and Oki, M., (2004), Effect of Groove Shape on Flow Characteristics around a Circular Cylinder with Grooves, Journal of Visualization, Vol.7(3), p.209-216. [DOI: 10.1007/BF03181635]
15. Takayama, S. and Aoki, K., (2005), Flow Characteristics around a Rotating Grooved Circular Cylinder with Grooved of Different Depths, Journal of Visualization, Vol.8(4), p.295-303. [DOI: 10.1007/BF03181548]
16. Dey, P. and Das, AK., (2015), Numerical analysis of drag and lift reduction of square cylinder, Engineering Science and Technology, an International Journal, Vol.18(4), p.758–768. [DOI: 10.1016/j.jestch.2015.05.007]
17. Ranjith, ER., Sunil, AS. and Pauly, L., (2016), Analysis of flow over a circular cylinder fitted with helical strakes, International Conference on Emerging Trends in Engineering, Science and Technology (ICETEST-2015), Procedia Technology 24, p.452 – 460. [DOI: 10.1016/j.protcy.2016.05.062]
18. Quen, LK., Abu, A., Kato, N., Muhamad, P., Sahekhaini, A. and Abdullah, H., (2014), Investigation on the effectiveness of helical strakes in suppressing VIV of flexible riser, Applied Ocean Research, 44, p.82–91. [DOI: 10.1016/j.apor.2013.11.006]
19. Huang, S., (2011), VIV suppression of a two-degree-of-freedom circular cylinder and drag reduction of a fixed circular cylinder by the use of helical grooves, Journal of Fluids and Structures, 27, p.1124–1133. [DOI: 10.1016/j.jfluidstructs.2011.07.005]
20. Fage, A. and Warsap, JH., (1930), ARC R&M1283, (also §191, Modern Developments in Fluid Dynamics. 1965, ed.S. Goldstein).
21. Achenbach, E., (1971), Influence of surface roughness on the cross-flow around a cylinder, Journal of Fluid Mechanics, Vol.46(2), p.321-335. [DOI:10.1017/S0022112071000569]
22. Adachi, T., (1995), The Effect of Surface Roughness of a Body in the High Reynolds Number Flow, International Journal of Rotating Machinery, Vol.1(3-4), p.187-197 [DOI: 10.1155/S1023621X95000170]
23. Hojo, T., (2015), Control of flow around a circular cylinder using a patterned surface, Computational Methods and Experimental Measurements XVII, WIT Transactions on Modelling and Simulation, Vol.59, p.245-256. [DOI: 10.2495/CMEM150221]
24. Rodríguez, I., Lehmkuhl, O., Chiva, J., Borrell, R. and Oliva, A., (2015), On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding, International Journal of Heat and Fluid Flow, Vol.55, p.91–103. [DOI: 10.1016/j.ijheatfluidflow.2015.05.009]
25. Cengel, YA. and Cimbala, JM., Fluid Mechanics Fundamentals and Applications. McGraw Hill Publishers.
26. Kimura, T. and Tsutahara, M., (1991), Fluid dynamic effects of grooves on circular cylinder surface, AIAA Journal, Vol.29 (12), p.2062-2068. [DOI: 10.2514/3.10842]
27. Sumer, BM. and Fredose, J., (1997), Hydrodynamics around circular cylinder, Vol.12, World Scientific publishing Co. Pte. Ltd.
28. Alonzo-García,A., Gutiérrez-Torres, C.del C. and Jiménez-Bernal, JA., (2014), Large Eddy Simulation of the Subcritical Flow over a U-Grooved Circular Cylinder, Advances in Mechanical Engineering, Vol.2014, Article ID 418398, 14 pages [DOI: 10.1155/2014/418398]
29. Nakamura, Y. and Tomonari, Y., (1982), The effects of surface roughness on the flow past circular cylinders at high Reynolds numbers, Journal of Fluid Mechanics, Vol.123, p.363–378. [DOI: 10.1017/S0022112082003103]
30. Ko, N.W.M., Leung, YC. and Chen, JJJ., (1987), Flow past V-groove circular cylinders, AIAA journal, Vol.25(6), p.806–811. [DOI: 10.2514/3.9704]
31. Zhou, B., Wang, X., Guo, W., Zheng, J., Tan, SK., (2015), Experimental measurements of the drag force and the near-wake flow patterns of a longitudinally grooved cylinder, Journal of Wind Engineering and Industrial Aerodynamics [DOI: 10.1016/j.jweia.2015.05.013]

Send email to the article author


Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.