Write your message
Volume 11 - Winter and Spring 2019                   ijmt 2019, 11 - Winter and Spring 2019: 21-31 | Back to browse issues page

DOI: 10.29252/ijmt.11.21

XML Print

1- Graduated Ph.D. Student
2- Ph.D candidate
3- Associated Professor
4- Graduated MSc Student
Abstract:   (1708 Views)
A simple dynamic model of an offshore jacket platform is developed based on the scaled hydro-elastic model of the jacket to estimate the dynamic response of the system. The finite element model of the platform is updated numerically by using the experimental modal analysis (EMA) results. Dynamic characteristics of the improved simple dynamic model (SPM) and idealized model are specified based on updated model properties. The effects of the experimental test are studied to investigate the dynamic response of a scaled model of an offshore jacket platform through the SPM and idealized models. Seismic response of the jacket platform is studied by using the idealized model under an earthquake acceleration. The effects of marine growth and the corrosion are considered within the calculation process by considering the jacket mass and stiffness variation. The developed SPM and idealized model provide a feasible and effective approach for evaluating the dynamic response of the offshore jacket platform. The results indicate the importance of the experimental studies in validating the numerical results and reducing the uncertainties for the fixed marine structures.
Full-Text [PDF 1959 kb]   (315 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2018/07/5 | Accepted: 2019/03/6

1. Hokmabady, H., Mojtahedi, A., Lotfollahi Yaghin, M., Farajpour, I. 2019. Calibration and Bias-Correction of the Steel Offshore Jacket Platform Models Using Experimental Data. J Waterway Port Coast and Ocean Eng. 145(3):04019008-1-15. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000509 [DOI:10.1061/(ASCE)WW.1943-5460.0000509.]
2. Ewins D.J. 2000. Model testing: theory, practice and application. second ed. Research studies press.
3. Baruch M. and Wis M. 1978. Optimization procedure to correct stiffness and flexibility matrices using vibration tests. The Am. Ins. Aero. And Astro. 16(11):1208−1210. [DOI:10.2514/3.61032]
4. Denoyer K. K. and Peterson L. D. 1997. Method for structural model update using dynamically measured static flexibility matrices. The Am. Ins. Aero. And Astro. 35(2):362−368. [DOI:10.2514/2.102]
5. Lin, R. -M., Lim, M. -K. and Du, H.,"Improved inverse eigensensitivity method for structural analytical model updating," Trans. ASME, Vol. 117, pp.192−198, 1995. [DOI:10.1115/1.2873889]
6. Guyan, R.J. 1965. Reduction of stiffness and mass matrices. The Am. Ins. Aero. And Astro. 3:380-392. [DOI:10.2514/3.2874]
7. O'Callahan J. 1989. A procedure for improved reduced system (IRS) Model. 7th IMAC. Las Vegas. USA.
8. Zeinoddini, M., Matin Nikoo, H., Estekanchi, H., 2012. Endurance Wave Analysis (EWA) and its application for assessment of offshore structures under extreme waves. Applied Ocean Research 37(0): 98-110. [DOI:10.1016/j.apor.2012.04.003]
9. Najafian G. 2007. Application of system identification techniques in efficient modelling of offshore structural response. Part I: model development. J. App. Ocean Res. 29:1-16. [DOI:10.1016/j.apor.2007.08.002]
10. API-RP2A. 2000. Recommended practice for planning designing and constructing fixed offshore platform-working stress design. 21st ed. Washington, DC: American Petroleum Institute.
11. Zeinoddini M. 2006. Design and performance of fixed offshore platform. Iranian National Oceanology Institute. Persian.
12. Asgarian B, Lesani M. 2009. Pile-soil-structure interaction in pushover analysis of jacket offshore platforms using fiber elements. J. Cons. Steel Res. 6:209-18. [DOI:10.1016/j.jcsr.2008.03.013]
13. Gomathinayagam S, Vendhan CP, Shanmugasundaram J. Dynamic effects of wind loads on offshore deck structures - a critical evaluation of provisions and practices. J. Wind Eng. and Ind. Aerodyn. 84(3):345-67. [DOI:10.1016/S0167-6105(99)00113-0]
14. Winsor F. 2003. Evaluation of methods to remove inertial force from measured model wave impact force signals. Ocean Eng. 30(1):47-84. [DOI:10.1016/S0029-8018(02)00012-4]
15. Elshafey, A.A, Haddara, M.R, Marzouk, H. 2009. Dynamic response of offshore jacket structures under random loads, Marine Struc. 22:504-521. [DOI:10.1016/j.marstruc.2009.01.001]
16. Bargi, K., Hosseini, S., Tadayon, M., Sharifian, H., 2011. Seismic response of a typical fixed jacket-type offshore platform (SPD1) under sea waves. Open J. Mar. Sci. 1:36-42. [DOI:10.4236/ojms.2011.12004]
17. Park, M., Koo, W., Kawano, K. 2011. Dynamic response analysis of an offshore platform due to seismic motions. Eng. Struct. 33:1607-1616. [DOI:10.1016/j.engstruct.2011.01.030]
18. Hutton, D.V. 2004. Fundamentals of Finite Element Analysis. McGraw-Hill. New York.
19. Bea, R.G., Stear J.D., 1998. Simplified strength-level earthquake assessment of jacket-type platforms, Eighth Int. Offshore and Polar Engineering Conference, Montreal, Canada.
20. Zhou, B., Han, X., Tan, S.K, 2014. A simplified computational method for random seismic responses of a jacket platform. Ocean Eng. 82:85-90. [DOI:10.1016/j.oceaneng.2014.02.013]
21. Chakrabarti, S. K. 1994. Offshore structure modeling. World Scientific Publishing Co. Pte. Ltd. Singapore.
22. Hosseinlou, F., Mojtahedi, A. 2016. Developing a robust simplified method for structural integrity monitoring of offshore jacket-type platform using recorded dynamic responses. J. App. Ocean Res. 56:107-118. [DOI:10.1016/j.apor.2016.01.010]
23. Chopra, A., 2005. Dynamics of Structure: Theory and Application to Earthquake Engineering, second ed. Tsinghua University Press. Beijing. China.