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ABSTRACT

The Minimum Cost Flow (MCF) problem is a well-known problem in the area
of network optimization. To tackle this problem, Network Simplex Algorithm
(NSA) is the fastest solution method. NSA has three extensions, namely
Network Simplex plus Algorithm (NSA*), Dynamic Network Simplex
Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA”).
The objectives of the research reported in this paper are to simulate and
investigate the advantages and disadvantages of NSA compared with those of
the three extensions in practical situations. To perform the evaluation, an
application of these algorithms to scheduling problem of automated guided
vehicles in container terminal is used. In the experiments, the number of
iterations, CPU-time required to solve problems, overheads and complexity are

considered.

1. Introduction

One of the most well-known problem in the area of
network optimization is the Minimum Cost Flow
(MCF) problem. The problem is to send flow from a set
of supply nodes, through the arcs of a network, to a set
of demand nodes, at minimum total cost, and without
violating the lower and upper bounds on flows through
the arcs (see [1, 2, 3]). The MCF problem has numerous
applications in scheduling, transportation, logistics,
and telecommunication.

One of the fastest algorithms to solve the MCF problem
is Network Simplex Algorithm (NSA). This algorithm
is an adaptation of the bounded variable of traditional
primal simplex algorithm in Linear Programming [2],
specifically for the MCF problem. In NSA, the basis is
represented as a rooted spanning tree of the network
graph, in which the arcs represent variables. The
algorithm iterates towards an optimal solution by
exchanging basic and non-basic arcs in the graph. NSA
has three extensions, namely network simplex plus
algorithm (see [4]), dynamic network simplex
algorithm and dynamic network simplex plus algorithm
(see [5]).

To compare the advantages and disadvantages of those
algorithms, we choose one of the challenging problems
in transportation area. The problem is to schedule a
number of Automated Guided Vehicles (AGVs) to
transport container jobs inside the terminal statically
and dynamically. In the static problem, where there is
no change in the situation whereas in dynamic ones, the

problem changes over time. The components that are
relevant to the problem include quay cranes, container
storage areas, and a road network [6]. The
transportation requirement in a port is described by a
set of jobs, where each job is characterized by the
source location of a container, the target location and
the time of its picking up or dropping-off on the quay-
side by the quay crane. Given a number of AGVs and
their availability, the task is to schedule the AGVs to
meet the transportation requirements.

In order to determine to what extent NSA and its
extensions can be applied in practice, this paper
followed the research done in [5]. The structure of the
remaining parts is as follows: Next section is a brief
description of the related works over algorithms and
problems. Section 3 is a description of the MCF
problem in container terminals. Section 4 presents the
experimental results in this research. The final section
is considered for the summary and conclusion.

2. Related Works

The network simplex algorithm maintains a feasible
spanning tree structure at each iteration and
successfully transforms it into an improved spanning
tree structure until it becomes optimal. Figure 1 shows
the pseudo code of Network Simplex Algorithm and its
extensions. At the beginning of the algorithm when the
software made a MCF model, an initial feasible
solution is generated by the procedure Generate-Initial
BFS in the Step 01°. The operation of this procedure
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was described in [2]. In fact, in this step an initial
feasible spanning tree solution (To, Lo, Uo) is created.
In dynamic problems, the Reconstruct New BFS, ’ Step
02’ is executed. When S (as the dynamic stage) is zero,
the procedure Generate Initial BFS is called.
Otherwise, the Reconstruct New BFS procedure repairs
the current solution and spanning tree at time t; (T, Ly,
Uy) is reconstructed (See [5] for more detail). The main
body of the algorithms, NSA and DNSA, are the same.
Sis Stage for the dynamic problem and is increased by
the dynamic algorithms for each problem. SODN is a
set of nodes that have to be removed from the model.
SOIN is a set of nodes that have to be put into the new
model. The ‘Step 1’ in the algorithm selects an entering
arc, which is appended to the spanning tree. The ‘Step
2’ determines the leaving arc, which must be removed
from the spanning tree. The ‘Step 3” makes pivoting
and exchanges the entering and leaving arc. The
operation of the main body was described in [4] and

[2].

Algorithm Network Simplex Extensions (S: Stage, SODN: Set of DELETED Nodes,
SOIN: Set of INSERTED Nodes);
Begin

If(!8)//S is zero
||_:.-; B I M—— | Step 01
Else
0 DNSA and DNSA-
End If
|L 1) & Entering Arc € { L, ™ Uy - DAy} | Stepl
While (k. 1) # ’\m'!Do Step 02

Ste
R b2

A

Step 3 ‘

(k. ) & Entering Arc € { L U= DA; }
End while
S€8+1

End Algorithm

Figure 1. The pseudo code of the Network Simplex Algorithm
and its extensions

2.1. The Algorithms NSA and NSA*

The “Step 1’of the algorithms (see Figure 1) is certainly
an important step in the Network Simplex Algorithm
(NSA) since the total computational effort to solve a
problem heavily depends on its choice. This step is
called pricing scheme which does two things. It checks
whether the optimality conditions for the non-basic
arcs are satisfied, and if not it selects a violated arc to
enter the spanning tree structure. The selected arc has a
potential of improving the current solution. According
to the theory [7], NSA terminates in a finite number of
iterations regardless of which profitable candidate is
chosen if degeneracy is treated properly. The most
well-known schemes in NSA are the steepest edge
scheme [8], the Mulvey’s list [9], the block pricing
scheme [1], the BBG Queue pricing scheme [10], the
clustering technique [11], the multiple pricing schemes
[12], the general pricing scheme [13]. In this paper we
present a new pricing scheme, which significantly
reduces the CPU-time required to tackle MCF model.
Rashidi and Tsang (2012) develop an extension for
network simplex algorithm, namely NSA* [4].

Compared with the standard version of NSA by
Grigoriadis’s blocking scheme [1] and maintaining the
strongly feasible spanning tree [14], NSA* has three
new features. These features are concerned with the
starting point/block for scanning violated arcs, the
memory technique and the scanning method. The
pricing scheme of NSA™ is designed based on these
features. There are two options to choose the first block
to be scanned; Randomly and Heuristically. Hence,
NSA* has two extensions: (a) NSA*R: The entering arc
function chooses the first block by Random selection;
(b) NSA*: The entering arc function chooses the first
block by a Heuristic method and the location of the
largest cost in the graph model.

2.2. The Algorithms DNSA and DNSA*

In many applications of graph algorithms, including
communication  networks,  graphics, assembly
planning, and scheduling, graphs are subject to discrete
changes, such as additions or deletions of edges or
vertices. In the last decade, there has been a growing
interest in such dynamically changing graphs, and a
whole body of algorithms and data structures for
dynamic graphs have been discovered. In a typical
dynamic graph problem one would like to response to
the changes in the graph that are under-going a
sequence of updates, for instance, insertions and
deletions of edges and vertices. Given their powerful
versatility, it is not surprising that dynamic algorithms
and dynamic data structures are often more difficult to
design and analyze than their static counterparts. The
goal of DNSA is to update efficiently the solution of a
problem after dynamic changes, rather than having to
resolve it from scratch-line each time. The Dynamic
Network Simplex Algorithm is based on the Network
Simplex Algorithm. DNSA and DNSA* are the
dynamic version of NSA and NSA*, respectively.

The dynamic flows networks over time and their
variations are very challenging problems. These types
of problems are arising in various real applications such
as communication networks, air/road traffic control,
and production systems. Some major examples and
further applications of the problems are found in the
references (see [15,16,17,18,19]). Below we survey the
results most closely related to the dynamic network
flows and problems.

Rauch (1992) classified dynamic graph problems
according to the types of updates allowed [20]. A graph
is said to be fully dynamic if the update operations
include unrestricted insertions as well as deletions of
arcs and nodes. A graph is called partially dynamic if
only one type of update, either insertions or deletions,
is allowed. If only insertions are allowed, the graph is
called incremental; if only deletions are allowed it is
called detrimental. DNSA and DNSA* are fully
dynamic.

Afshari and Taghizadeh (2013) present a dynamic
version of the maximum flow network in the simplest
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kinds of interdiction problem [21]. In the problem, they
assume that a positive number is assigned to each arc
in the graph model, which indicates the traversal time
of the flow through the arcs. Moreover, they assume
that an intruder uses a single resource with limited
supply to interrupt the flow of a single commodity
through the arcs in the network graph within a given
limited time period. So the arcs in the graph model is
either vital or non-vital. To formulate the problem, a
mixed integer mathematical programming model is
presented, based on the concept of Temporally
Repeated Flow (TRF). The model is then tackled by a
couple of algorithms [22]: (a) an algorithm based on the
Benders’ decomposition and (b) another based on the
algorithm of Ratliff et al. (1975) for the most vital arcs
[22]. Although they consider a dynamic problem of the
network flow model, the algorithms are not dynamic;
i.e. without having any exploitation the current solution
to respond to the dynamic changes.

Geranis et al. (2012) develop a new Dual Network
Exterior-Point Simplex Algorithm (DNEPSA) for the
Minimum Cost Network Flow Problem (MCNFP) [23].
The algorithm starts from an initial dual feasible tree-
solution and, after a number of iterations, it reaches an
optimal solution by producing a sequence of tree
solutions that can be both dual and primal infeasible. In
following the work, Geranis and Sifaleras (2013)
utilize the dynamic trees data structure in the DNEPSA
algorithm, in order to achieve an improvement of the
amortized complexity per pivot [24]. In extensive
computational studies, DNEPSA performed better than
the classical dual network simplex algorithm. Although
the authors consider a dynamic tree data structure, the
problem does not change over time and the algorithm
is not dynamic.

Shen et al. (2007) [24] and Zheng and Chiu (2011) [25]
worked on a dynamic problem and made simplified
System Optimal Dynamic Traffic Assignment (SO-
DTA) model. The model is based on the concept of
Cell-Transmission Model (CTM), which requires the
links in the graph model to be decomposed into cells in
space and time. Both works gave definitions on traffic
holding in CTM-based on single commodity and single
destination problem. Shen et al. (2007) utilized a
network flow structure and solved a simplified SO-
DTA, thus losing the ability to capture wave
propagation and queue spillback effects. They
suggested a post-processing algorithm to remove traffic
holding from a solution generated by the Linear
Programming, but this algorithm depends on the fact
that the traffic holding does not improve the objective
function value. Zheng and Chiu observed that the
definition on diverge node may lead to a suboptimal
solution [25] and for the diverge links, it may be better
to hold instead of discharge all flow early. So they only
applied the definition of holding-free solution to merge
and ordinary links. Then, they proved that an
augmenting path algorithm produces holding-free

solutions at non-diverge links. Therefore, the
definitions of holding-free in [24] and [25] are too strict
for diverge nodes, the algorithms may lead to
suboptimal and are not appropriate for most dynamic
problems.

Parpalea (2011) presents an approach for solving bi-
criteria. minimum cost dynamic flow problem with
continuous flow variables [26]. The approach is to
transform a bi-criteria problem into a parametric one by
making a single parametric linear cost out of the two
initial cost functions. The approach iteratively finds
efficient extreme points in the decision space by
solving a series of minimum parametric cost flow
problems with different objective functions. On each of
the iterations, the flow is augmented along a minimum
path from the supply node to the demand node in the
time-space network avoiding the explicit time
expansion of the network.

Based on the previous research, Parpalea and Ciurea
(2011) represent a generalization of the maximum flow
of minimum cost problem for the case of minimizing
the travelling cost (minimum cost flow) and travelling
time (quickest flow) [27]. On this generalization, the
research states a multi-criteria maximum flow problem
in discrete dynamic networks with two objective
functions. Then a solution method is based on
generating efficient extreme points in the search space
by iteratively solving a series of maximum flow
problems with different single objective functions.
Each time, the dynamic flow is augmented along a
minimum cost path from the supply nodes to the
demand nodes in the time-space network while
avoiding the explicit time expansion of the network.
Parpalea and Ciurea (2011) also study the
generalization of the maximum flow of minimum cost
problem for the case of maximum discrete dynamic
flow of minimum travelling cost and time [27]. Their
approach is very similar to the one used in [26].
Hosseini (2011) introduces a class of dynamic network
flows in which the flow commodity is dynamically
generated at supply nodes and dynamically consumed
at demand nodes [28]. As a basic assumption in this
research, the supply nodes produce the flow according
to time generative functions and the demand nodes
absorb the flow according to time consumption
functions. In the general form and some special cases,
the dynamic problems arise when the capacities and
costs are time varying. This research formulates the
problem as the minimum cost dynamic flow problem
for a pre-specified time horizon. To solve the problems,
some simple and efficient approaches based on the
minimum cost static flow models are developed.
Nasrabadi and Hashemi (2007) present a general
minimum cost dynamic flow problem in a discrete time
model with time-varying transit times, transit costs,
transit capacities, storage costs, and storage capacities
[29]. For this problem, the authors develop an
algorithm, which is a discrete-time version of the
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successive shortest path. The time complexity of the
algorithm is O(V nT(n+T)) where V is an upper bound
on the total supply, n is the number of nodes, and T
denotes the given time horizon of the dynamic flow
problem.

Ciurea and Parpalea (2010) present a dynamic solution
method for dynamic minimum flow networks [30]. The
solution method solves the problem for a special
parametric bipartite network [30]. Instead directly
work on the original network, the method uses the
parametric residual network and finds a particular state
of the residual network from which the minimum flow
and the maximum cut for any of the parameter values
are obtained. The research implements a round-robin
algorithm looping over a list of nodes until an entire
pass ends without any change of the flow.

Fonoberova (2010) presents other class of dynamic
flow networks with the cases of nonlinear cost
functions on arcs, multi-commodity flows, and time-
and flow-dependent transactions on arcs of the network
[31]. All parameters of the networks are assumed to be
dependent on time. To formulate the problems, the
classical optimal flow problems on networks are
extended and generalized. The algorithms for solving
such kind of problems are developed by using special
dynamic programming techniques based on the time-
expanded network method together with classical
optimization methods. To solve the problem, the author
proposes an approach based on the reduction of the
dynamic problem to a static problem. This approach is
employed for solving some power systems problems by
using optimal dynamic flow problems.

Sherbenym (2012) propose a new version of the
minimum cost flow problem on a time varying and time
windows [32]. For each vertex in the network, three
integer parameters are considered. These parameters
are waiting cost, vertex capacity and time windows. In
order to obtain dynamic networks, all these parameters
are functions of the time. The objective is to find an
optimal schedule to send a flow from the supply nodes
to its demand nodes so that satisfies a time window
constraint with minimum cost and minimum waiting
times at nodes, subject to the constraint that the flow
must arrive at the demand node before a deadline. In
this paper, the algorithm to be developed will search,
successively, shortest paths from the supply node, s, to
the demand node in a dynamic residual network and
then transmit as much as possible flow along the paths
so that satisfies the time window constraint.

Fathabadi (2011) proposes a minimum flow problem
on network flows in which the lower arc capacities in
the graph model vary with time [33]. For a set of time
points, this problem is solved by at most n minimum
flow computations. The solution method is based on
combining of pre-flow-pull algorithm and re-
optimization techniques. The complexity of the
presented algorithm is O(n?m) where m is the number
of arcs in the graph model.

3. Description of the MCF Problem in
Container Terminals

The problem, here, is the same as the problem defined
in [34]. The most important reason for choosing this
problem is that the efficiency of a container terminal is
directly related to the use of the AGVs with full
efficiency (see [7, 35, 36, 37, 38, 39, 40]). The
assumptions used are also the same as the assumptions
in [34]. The MCF associated with the problem is
presented as MCF-AGV model [41]. The MCF-AGV
model was established on a directed graph. Figure 2
demonstrates an example of the problem for two AGVs
and four container jobs. As in the paper mentioned, the
problem was formalized with four different types of
node: a supply node for each AGV (nodes 1 and 2 in
Figure 2), a couple of nodes for each container job
(nodes 3-10 in Figure 2) as transshipment nodes and a
demand node (the node 11 in Figure 2).

The following four types of arc, namely Inward Arcs,
Intermediate Arcs, Outward Arcs and Auxiliary Arcs
with their properties connect the nodes in the graph
model. The Inward Arcs are directed arcs from the each
AGV node to the each Job-Input node. The
Intermediate Arcs are directed arcs from the each Job-
Output node to the others Job-Input node. The Outward
Arcs are directed arcs from the each Job-Output node
and the each AGV node to the SINK. The Auxiliary
Arcs are directed arcs from every Job-Input node to its
Job-Output node. For more details on the nodes and
arcs refer to [41].

Arctype=Inward Arc type=Intermediate
APS(1,3)=[0,1,C1 5] APS(4,5)=[0,1,C45]

Arc type=Auxiliary Arctype=Outward
APS(3,4)=[1.1,0] APS(1,11)=[0.1,0]
APS(4,11)=[0.1,0]

AGV 1

Job-Input and Job-
~-{ Outputnodes for Job 4;
NPS(9)=NPS(10)=0

Figure 2. An example of the MCF-AGV model of two AGVs
and four container jobs

Suppose that for some values of the arc costs in the
model, the solution paths are 1 -3—4—9—10—11
and 2—5—6—7—8—11. This states that AGV 1 is
assigned to serve container jobs 1 and 4, and AGV 2
is assigned to serve container jobs 2 and 3
respectively.

4. Simulation Results and Comparisons

We implemented the simulation software in Borland
C++Builder, running on Genuine Intel 3.081Ghz
Processor. Figure 3 shows the main screenshot of the
software. It shows a single vessel, four Quay Cranes
(QCs), one Rubber Tyred Gantry Crane (RTGC) in
each block of the Storage Area and several AGVs. The
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figure also shows the main menu as well as several
buttons including ‘Port’, ‘Route’, ‘Containers’,
‘Vehicles’ and ‘Process’. These buttons have been
shown under the main menu and designed as hotkeys
to facilitate the software execution. Some important
features of the software are described briefly as follows
(for more detail see [42]):
o The user can define a few ports, a
number of blocks in the yard, a number of
working positions or cranes in the berth and a
number of Automated Guided Vehicles in each
port. The “port’ button activates this feature.
o A facility to generate a random
distance between every two points in the yard
or berth has been considered. The user can
change the distance. The ‘route’ button
activates this feature.
o At the beginning of the process, the
start location of each vehicle may be any point
of the port. The user can define or change the
ready time of the vehicles at the start location
and the location as well.
o A Job Generator was designed and
implemented in the software. For static and
dynamic fashion, a few container jobs are
generated to transport from their source to their
destination. Either the source or destination of
each job is the quayside, which can be chosen
randomly by the Job Generator. The initial
time of the operation and the time window for
the cranes and vehicles are defined by the user.
The user can monitor some indices to measure
the efficiency of the model and algorithm. The
waiting or delay time for every job, the number
of jobs and the total travelling and waiting
times for every vehicle, are calculated in the
static and dynamic problems.

Figure 3. The main screenshot of the simulation software

4.1 Memory Management of the Simulation
Software

Given N jobs and M AGVs in the problem, there are
M+2xN+1 nodes and M+MxN+Nx(N-1)+2xN arcs in
the MCF-AGV model [41]. The challenge, here, is to
control them correctly. The memory management
routine allocates the memory based on the Maximum
Number of Jobs. This parameter is determined by the

user and here is represented as MNJ. Table-1 shows a
memory map of the allocated space. As shown in the
table, there were four different types of arc in the MCF-
AGV model: Inward Arcs, Outward Arcs, Auxiliary
Arcs, and Intermediate Arcs (see Figure 2).
Additionally, the Artificial Arcs are needed to generate
an initial Basic Feasible Solution [2]. Two blocks of the
memory are allocated for these arcs and two pointers
are used to access them; the first one is for arcs in the
MCF-AGV model and the second one is for the
Acrtificial Arcs. In order to address a certain type of arc,
it is necessary to have an offset. The offset is the
difference in the address from the beginning of the
block.

Table 1. Memory allocation for the arcs of the MCF-AGV
model and its algorithm

— (%) = N m
©
o = %) g %2 [ < 3
= o = N o °
> 2 &3° Fo®
3 3 8 >3
17, =} - o =
>
Py, Arcs from every
50 vehicle node to MxMNJ  (1,3);(1,5);(2,3);(2,5)
5 Job-Input nodes
Arcs from every
vehicle node to the M ,7);(2,7)
> Sink
Py
o
£
3 Arcs from every
Job-Output node to MNJ (4,7);(6,7)
the Sink
:5 Arcs from every
@) Job-Input node to .
£ its Job-Output MNJ (3.4).(5.6)
= node
<
%
©  opouputnosers M
g other Job-Input (MNJ - (4.5),(6.3)
3 1)
g node
% Artificial A (1,0);(2,0)
rtificial Arcs to 0):(2,0);
£ generate initial 2’;AM+Nf+ (0,3):(4.0):(0.5):
= feasible solution (6,0);(0,7)
g

In the software, a small memory management facility
has been designed, implemented and embedded in the
software. The objectives of this facility are to make
independent software, to get a higher performance and
prevent any missing job (when the Job Generator
generates a job and the memory cannot be allocated).
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In fact, there are two aspects of memory management
in the software. The first one is relevant to the jobs
whereas the second one refers to the graph model.
There is a buffer for the jobs, which is allocated at the
start of operation. Once a job is fulfilled, a hole will be
created in the buffer and when the Job Generator
generates a job, it puts the job into the first hole. For
the arcs and nodes in the graph model, an Identification
flag has been considered. The Identification flag
associated with each arc identifies whether the arc is in
the Ty set, L. set, U; set, or Dy set (see [5]) at time t.
There is the one-to-one mapping between every
location in the Job Buffer and the nodes associated with
the job in the graph model. When a job is fulfilled, the
nodes associated with this job are marked for deletion.
For each node belonging to the fulfilled jobs, the node
and the relevant arcs are removed from the spanning
tree of the graph. In order to make a new spanning tree,
a Remove-Node procedure is used [5]. When a new job
arrives, the relevant nodes (which have been deleted
from the graph model) will be marked for insertion.
The insertion nodes and the arcs associated with the
new jobs are inserted into the spanning tree
consistently. This task is performed by an Insert-Node
procedure, which is presented in [5].

4.2. Simulation and Evaluation in Static Problems
To simulate and evaluate the performance of the
algorithms, many jobs in static and dynamic fashion
have been generated. In our experiment, it was assumed
that there were fifty AGVs and seven cranes in the port.
Other experimental parameters are the same as in [41].
Their sources, destinations and the distance between
every two points in the port have been chosen
randomly.

Solve the

Job Buffer Making the Model Generate New

B MCE-AGY mmp (NSAand Y Schedule bascd

Model NSAY) on the solution

1 I_l_l_l-l
List for List for List for List for
; 0 Vehicle Vehicle

Tob Generator Vehicle o Velicle2 [ ™ B

Figure 4. Block diagram of the software executed for solving
static problems [43]

We generated 32 static random problems by which
must be solved by the algorithms. Figure 5 shows the
CPU-Time required to solve the problems by NSA,
NSA* and NSA*®, based on the number of container
jobs in the static problem.

Although NSA?* is faster than NSA [41], it has some
overhead as a cost. In ‘Step 1’ of the algorithm (see
Figure 1), NSA'R chooses an entering arc from the first

block randomly. NSA* chooses an entering arc from
the first block by a Heuristic method. This heuristic is
based on the location of the largest cost in the graph
model into which must be searched. In fact, it chooses
the arc with the largest cost. Hence it has some
overheads due to the search needed. Figure 5 shows the
overhead of the algorithms NSA*™M and NSA*R
compared with zero for NSA, based on the number of
container jobs in the static problem. The overhead is
determined in the number of high level instructions
needed to solve the problem.

CPU-Time of the Algorithms

/1]
Iadl|
N N
/[

a3 o e

—
A4

500 1000 1500 2000 2500 3000
MNumber of Johs
—— CPU-Time of HsA™®

——CPU-Time of NSA CPU-Time of NSATH

Figure 5. The overhead of NSA*H and NSA*R compared with
that of NSA

Overhead of the Algorithms

25,000 A

/

- -
r

n o -—’/_'_‘__‘

s o PR

500 1000 1500 2000 2500 3000
Number of Jobs

+R
——overHead of isATH  ——overHead of NSA

Figure 6. A comparison of CPU-Time required solving the
same problems by NSA, NSA*H and NSA*R

In order to calculate the average CPU-Time required to
solve the problems and to compare performance of the
algorithms in this experiment, we introduce the
following terms:

CPU — TN54: The CPU-Time required to solve the
problem i by NSA.

CPU — TV¥$A™":The CPU-Time required to solve the
problem i by NSA*,

CPU — TV4™: The CPU-Time required to solve the
problem i by NSA'R,

PIHi: The Percentage of Improvement in CPU-time
required to solve the problem i by NSA* compared
with that of NSA.

PIR;: The Percentage of Improvement in CPU-time
required to solve the problem i by NSA*R compared
with that of NSA.
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TPIH: The Total Percentage of Improvement in CPU-
Time required to solve the problems by NSA*H
compared with that of NSA.

TPIR: The Total Percentage of Improvement in CPU-
Time required to solve the problems by NSA'R
compared with that of NSA.

TPIHR: The Total Percentage of Improvement in
CPU-Time required to solve the problems by NSA*"
compared with that of NSA*R,

Wi: The Weight of improvement for the problemi. In
this experiment we consider the number of arcs in the
MCF-AGV model for the weight. Given N jobs and M
AGVs in the problem, the number of arcs is
M+MxN+Nx(N-1)+2xN.

Now we calculate the percentage of improvements in
the CPU-Time used for the problem i by the following
equations:

TPIH =
P2 Wi X (CPUTiN5A+H - CPUTiNSA)
i Wi
= 32.99

x 100 1)

2w, x (cPUTNA™ — cPUTNSA)
2w
=21.94
13=21VVL X (CPUTL-NSAJ'H — CPUTiNSA+R)
2 W ®

i=1

X 100 = 14.15

TPIR = x 100 (2)

TPIHR =

The percentages of overhead in the number of high
level instructions used to solve the problems by NSA™H,
NSA™ and NSA are calculated by the similar
expressions. In this comparision, the average overhead
of the algorithms NSA*H and NSA™® are comapred with
that of NSA. Table-2 shows the results of the
comparison between the algorithms in their CPU-Time
and overheads.

Table 2. The results of the comparison between the algorithms
in their CPU-Time and their overhead

CPU-Time Overhead
Z prd zZ Z
Z %) %) =z wn wn

wm wn
T
NSA 0 -32.99 -21.94 0 14 8
NSA*H 32.99 0 -14.15 -14 0 6
NSA*R 21.94 14.15 0 8 -6 0

Observation-1: NSA*™H and NSA™® are 33 and 22
percents, respectively, faster than NSA. NSA*™ is 14
percent faster than NSA*R

Observation-2: The overhead of NSA* and NSA*R
are around 14 and 8 percents, respectively, compared

with that NSA. The overhead of NSA* is 6 percent
more than NSA*R

The CPU-Time and time complexity of the algorithms
can be examined in the experiments. We did a rgression
on the CPU-Time required in running the algorithms.
Given N as the the number of jobs in the graph model,
we obtained the following equations to estimate the
CPU-Time:

CPU-Timensa(N)= 3E-09N? + 3E-

06N? - 0.001IN R2=0.991 (4)
CPU-Timensa*™ (N)= 6E-09N3 - 9E-

06N2 + 0.005N R?=0.962  (5)
CPU-Timensa*® (N)= 3E-09N? - 4E- 3

07N? + 0.001N R?=0.959  (6)

The coefficient R? in the regression reveals how closely
the values of the estimated curve correspond to the
actual data. Its value is more than 0.95 for the
estimations.

Observation-3: According to the equations (4), (5) and
(6), the complexity of the algorithm , NSA, NSA*" and
NSA*R, are in order 3 of the number of jobs.

The overhead of the algorithms, NSA*H and NSA*Rare
examined in the experiments. We did a rgression on the
CPU-Time required in running the algorithms. Given
N as the the number of jobs in the graph model, we
obtained the following equations to estimate the CPU-
Time:

OVisa™(N)= 0.004N?+0.366N
OVisa™¥(N)= 0.002N?+0.264N

R2=0.999 @
R2=0.999 (8)

Observation-4: According to the equations (7) and (8),
the overhead of NSA™ and NSA*R are in order 2 of the
number of jobs.

Note that for any prediction the equation for the CPU-
Time in practice depends on other factors, such as the
speed of processor, active programs when the problem
is being solved in multi-task operating systems, and so
on. Our program has been run on a Windows XP
computer with a Genuine Intel 3.081Ghz Processor in
the normal situation.

The performnce of running the two algorithms has been
analyzed statistically. We tested the nullhypothesis that
the means produced by the two algorithms
werestatistically indifferent (o = 5%). Table-3 provides
the test’s resultalong with the values of T-distribution
for a particular degree offreedom. Since we cared if the
change (the difference between thetwo means) was
positive or negative, ‘One-tail’ test was chosen.
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Table 3. The statistical test over the results of the
comparison in static aspect

CPU-Time Overhead
G G & G
> > > %
I Py T Pyl
& & S b
zZ Z zZ zZ
2 b £ 2
Observations 32 32 32 32
T-Test (Paired
Two Sample -4.11 -3.36 46.1 253
For Means)
Degree of 31 31 31 a1
Freedom
Critical T- 1.69 1.69 169  1.69
Value

Observation-5: Table-3 shows that although NSA*™
and NSA*R statistically ate better than NSA, the
overhead of these algorithms are significant comapred
with that of NSA.

4.3 Simulation and Evaluation in Dynamic
Problems

The problem defined in [34] is dynamic. In reality, the
dynamic problem arises when several new jobs are
arrived, the fulfilled jobs are removed and the links or
junctions in the port layout are blocked. For the arriving
jobs, the Job Generator has to generate a few new jobs,
when it finds out any crane is in idle state. The
fullfilling jobs must be removed from the graph model
by the software. When the links or junctions in the port
layout are blocked, the software must make the changes
in distances between points in the source and
destination of the jobs.

The architecture of the simulation software for running
NSA and NSA™ is demonstrated in Figure 7. At the start
of the process, the Job Generator generates a few jobs
for each crane. These jobs will be appended to the
remaining jobs, which are empty at the beginning. The
remaining jobs are used to make up a MCF-AGV
model. Then the model will be tackled by NSA™. The
output of this algorithm is a few job sequences for the
vehicles. Based on these sequences the software will
prepare a job list for each vehicle.

Solve the

Job Buffer Update the Make the Model Generate New
Remaining MCF-AGV ) (NSAand Schedule based
Jobs Model NSA%) on the solution
While the time is being progressed: l l l I
(a)Updating Status of each vehicle List for List for List for List for
and crane; (b) Deleting Jobs from the Vehicle Vehicle 2 Vehicle Vehicle
remaining and vehicle lists and > 1 ™ ™ m m M
crane:(c) Making a few changes in the
Distance Table, from time to time

Figure 7. Block diagram of the simulation software and
algorithm NSA and NSA* for solving dynamic problems [43]

At the beginning, based on the solution to the problem
at the current stage, a job is assigned to each vehicle
and crane. During the simulation, handling of the jobs
by the cranes and vehicles are executed in parallel.
Briefly, the software does two tasks. The first task is
related to updating the status of the vehicles and cranes
whereas the second one takes influence from any
change in the problem or any idle crane. The second
task refers to any change in the problem or status of the
cranes. In the both cases, a new MCF-AGV model will
be made by the remaining jobs (except the current job
for every vehicle) and the new jobs (if there are any).
The new model will be tackled by the algorithms from
scratch. Then, the new solution will be used for
updating the list of jobs for every vehicle.

The main architecture of the simulation software for
running the algorithms is demonstrated in Figure 8. At
the start of the process, a few jobs are generated for
each crane and the memory for the jobs and graph are
allocated. Then, the MCF-AGV model is made and
tackled by the algorithms. The output of this algorithm
is a few job sequences for the vehicles. Based on these
sequences, the software will prepare a job list for each
vehicle. While the time is being progressed, the
vehicles and cranes are carrying and handling the
containers.

As it is shown in the figure, every event is recorded in
order to be processed later. The events include
modification of the vehicle’s position, the fulfilled jobs
and new jobs, and any change in the distance table. A
hole will be created in the Job Buffer when a job is
fulfilled [42]. After the Job Generator generates a job,
it puts the job into a hole of the buffer. The software
marks the nodes and arcs associated with the fulfilled
and new jobs. The most important events that affect the
spanning tree are the fulfilled and new jobs. The
fulfilled jobs are removed from the list of vehicles and
model whereas the new jobs are appended to remaining
jobs and inserted into the model. Note that any change
in the problem, without any fulfilled or new job, does
not affect the spanning tree. In this case, only the body
of the algorithm is executed and finds out the optimal
solution.

Advance the Time Update the Status of Update the Graph in the
each vehicle memory
Delete a fulfilled Make a Hole in the Delete the job from the list of
Job Buffer & mark the job vehicle and mark the associated |
* for deleting arcs and nodes for deleting
¥
Generate Jobs for Find a Hole in the Mark the job and associated
any Idled Crane | | Bufferandputthejob | |  arcs andnodes withit for o
into the hole inserting
I
¥
Reconstruct New BFS (Remove the deleted
jobs from the solution, assign a vehicle to
each new job randomly and Repair basic
feasible solution by the current graph)
Execute the M:al_l.l Body of the Algorithm List for for List for T
(Solve the Minimum Cost Flow Model AGV 1 W”" 5 AGY m ACY M
and Generate New Schedule based on the
solution’}

Figure 8. Block diagram of the simulation software for
solving dynamic problems [43]
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The software processes the recorded events and
updates the MCF-AGV model. After removing the
nodes and arcs (associated with the fulfilled jobs) from
the model and omitting the jobs from the vehicle’s lists,
a new spanning tree is made. Next, the nodes and arcs
associated with the new jobs are put into the new model
and then the spanning tree is repaired. These jobs are
assigned to one or more vehicles, randomly. These two
tasks are made by Reconstruct New BFS. After
repairing the spanning tree, the main body of the
algorithm is executed and it finds out the optimal
solution. Note that these tasks are not pre-emptive, i.e.
when a task starts execution on the processor it finishes
to its completion.

Figure 9 shows the number of jobs arrived, the number
of jobs fulfilled and the number of jobs remained in
each stage of the dynamic problems. The relation
between these numbers of jobs is as according to the
equation (9):

#JobsRemained (S) =
#JobsRamined(S — 1) ©)
+ #JobsArrived(S)
— #JobsFullfilled(S)

Number of Iterations
250

A

RN |
A .f\

5 10 15 20 2
Stage (S)

#lterationsDNSA ——3 Iterations—DNSA+

35

——+# lterations-NSA ——# Iterations-NSAT

Figure 9. The number of jobs arrived, fullfilled and remained
in the dynamic problems

Figure 10 shows the percentages of changes made in
the graph model, due to the number of jobs arrived and
the number of jobs fulfilled in each stage of the
dynamic problems. The values in the figure are
calculated based on the number of nodes and arcs in the
graph model for insertion and deletion, according to the
number of jobs arrived and fulfilled at each stage. The
arcs and nodes for jobs arrived (fulfilled) must be
inserted (deleted) into (from) the graph model. The
number of nodes and arcs are calculated according to
the simple equations like ones shown in Figure 2.
Given #Chins(S) as the value of changes due to
insertion some nodes with their arcs, and #ChDel(S) as
the value of changes due to deletion some nodes with
their arcs at each stage, the percentage of changes in the
graph is calculated according to equation (10):

ChangesinGraphModel (S) =
|#Ch1ns(5) + #ChDel(S) — (#ChIns(S — 1) + #ChDel(S — 1))

| #Chins(S — 1) + #ChDel(S — 1))

* 100‘ (10)

. Number of Container Jobs

14

12

el

Stage (5)
Number of Jobs Fullfilled

o N & -

Number of Jobs Arrived Number of Jobs Remained

Figure 10. The percentages of changes in the graph model of
the dynamic problems

It was very difficult to isolate the CPU-Times required
to tackle the problems by the algorithms and the CPU-
Time required for memory management. Moreover, the
CPU-Time required to solve the problem is too much
small and is not convenient for the comparision. Hence,
the number of iterations is considered as an indicator to
compare the algorithms. The number of iterations
required to solve the problems are drawn in Figure 11.

Percenatge of Changes in the Graph

180

160

140 A i

| I
m N Tl
o\ A1 A
o[\ ]| A AUNAA

P ENIVA JAd I\ ] "
SN T AA V(A
; VAV, ViV V V\/ /\
0 5 10 15 20 25 30 35

Stage ()

Figure 11. The number of iterations of the algorithms for
solving the dynamic problems

From Figure 11, it is clear that the number of iterations
are improved when we dynamic algorithm DNSA and
DNSA* compared with that of NSA and NSA™. Note
that since NSA™ perform better than NSA™® (see
Observation-2), we use only NSA™ in this
experiments. The percentage of improvement, in
reduction of the number of iterations, is calculated by
the following terms and equation:

NSAs: The number of iterations in NSA for the

dynamic problem at stage S.

NSA{ : The number of iterations in NSA* for the

dynamic problem at stage S.

DNSAs: The number of iterations in DNSA for the

dynamic problem at stage S.

DNSA{: The number of iterations in DNSA* for the

dynamic problem at stage S.
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TPR) 34+ The Total Percentages of Reduction in the
number of iterations in the experiment.

TPRY3A 4 The Total Percentages of Reduction in
the number of iterations in the experiment.
TPR)>%,+: The Total Percentages of Reduction in
the number of iterations in the experiment.

Y32 (NSAs — NSAH)
Y32 NSAg
x 100 = —58.59%

Similar equations are used to compare the performance
algorithms in the number of iteration required to solve
the problems. Table-4 shows this comparisions.

NSA _
TPRYSA+ =

(10)

Table 4. The percentages of the performace comparisons
between the algorithms

Algorithms ~ NSA  NSA* DNSA  DNSA*
NSA 0.00 -5859  -63.02 -77.49
NSA* 58.59  0.00 -10.68 -45.63
DNSA 63.02 10.68 0.00 -39.13
DNSA* 7749  77.49 39.13 0.00

From this table, we can obtaine the following
observations:

Observation-6: The performace of DNSA*, DNSA
and NSA* are around 77.5, 63 and 60 percents better
than that of NSA, respectively.

Observation-7: The performace of DNSA* and DNSA
are around 45.6 and 10.60 percent faster than that of
NSA*, respectively.

Observation-8: Since the major process of the
algorithms is performed in the body and the operations
of the body are identical [42], the CPU-time required to
solve the problems is also decreased practically.

The number of iterations of running the two algorithms,
DNSA* and NSA*, has been analysed statistically. We
tested the null hypothesis that the means produced by
the two algorithms were statistically indifferent
(0=5%). Then, we got the following observation:

Observation-9: The Paired T-test determines the two
means are significantly different at a ninety-five
percent degree of confidence since the test’s result is in
the reject region.

It is seemed that there is strong correlation between the
percentgaes made on the graph model and thenumber
of iterations required to solve the problem. So, we
decided to calcualte the correlation between them.
Table-5 shows the result of this experiment.

10

Table 5. The correlation between the perentages of changes in
the graph and the algorithms

S x
Q o o] ** **
=0 - = — —
©8 2 & e 9&
88 § S 2=z &=
=i % >3 =&
>z Z 6 7 2
= £ >
%Changes in
the Graph 1.00 087 077 0.63 0.62
# Iterations-
NSA 0.87 1.00 094 0.89 0.88
# Iterations-
NSA* 0.77 094 100 094 0.93
# Iterations-
DNSA 0.63 0.89 094 100 1.00
# Iterations-
DNSA* 0.62 0.88 093 100 1.00

Observation-10: From Table-5, it is clear that the
order of the algorithms, NSA, NSA*, DNSA and
DNSA*, to solve the dynamic problem have a
proportion of 87, 63 and 62 percents, repectively, of
changes made in the graph model. It shows the
algorithms NSA and NSA* use more attemps to solve
the dynamic problems. The complexity of the
algorithms are the same (see [41]). In theory, the total
complexity of the algorithms for the problem is:O(N°)

5. Summary and Conclusion

This paper followed the research done in [5]. In fact, in
order to determine to what extent these algorithms can
be applied in practice, we did the experimental
experiments and several comparisons in running NSA,
NSA*, DNSA and DNSA®. To evaluate the
performance of the algorithms, the dynamic scheduling
problem of AGVs in the container terminal (the
problem defined in [34] was considered. Many random
problems have been generated and solved by both
DNSA* and NSA". The results showed considerable
improvements in DNSA", in terms of reducing the
number of iterations, compared with that of NSA™.

To conclude Network Simplex Algorithm and its three
extensions (NSA*, DNSA and DNSA®), in dynamic
problems, NSA and NSA" start from scratch and
reconsider the pre-established schedules. Memory
management in these two algorithms is an easy task
since a block of memory is allocated for the whole of
the graph. Also there is no partitioning in the graph and
its spanning tree to solve the problem by those
algorithms. The disadvantage of these algorithms lies
in taking time to rebuild the graph and putting it into
the memory. DNSA and DNSA™ repair the solution
rather than starting from scratch. The main advantage
of these dynamic algorithms over NSA and NSA™ is the
performance. On the other hand, DNSA and DNSA"
deal with memory management, partitioning of the
graph and its spanning tree. However, they are costs
that have to be paid in return for the performance.
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