Volume 12 - Summer and Autumn 2019                   ijmt 2019, 12 - Summer and Autumn 2019: 31-40 | Back to browse issues page


XML Print


1- K. N. Toosi University of Technology
Abstract:   (8482 Views)
This research aims to present a practical framework to study the structural response of a jacket type offshore platforms subjected to a sudden member removal considering the pile-soil-structure interaction. To this end, a series of nonlinear dynamic analyses are performed, and the progressive collapse resistance of the generic structure is determined. Consequently, the members prone to failure are detected. As a case study, the application of the proposed framework to control the capability of these type of structures for the prevention of progressive collapse occurrence are investigated. In the model structure, some legs and vertical braces in different locations are eliminated, and the effect of each damage case on the performance of the structure is investigated while the environmental wind and wave loads are imposed to the platform. The simulation results demonstrated that although the jacket structure can sustain the loss of primary members safely, it is susceptible to failure progression while a leg and the connected brace are eliminated simultaneously.  The safety margin, in this case, is about 20% only. In addition, it was revealed that in the case in which a leg and the connected brace are eliminated, progressive collapse resistance is about a third in comparison with the case of a leg damaged only.
Full-Text [PDF 1018 kb]   (2259 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2019/06/19 | Accepted: 2019/09/17

References
1. ASCE, (2010), Minimum Design Loads for Buildings and Other Structures (ASCE Standard 7-05).
2. Gsa, U., (2003), Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects, Washington, DC.
3. Marchand, K., J. Stevens, D., Crowder, B., and Campbell, T., (2005), UFC 4-023-03: Design of Buildings to Resist Progressive Collapse.
4. Søreide, T. H., Amdahl, J., Granli, T., and Astrud, O. C., (1986), Collapse Analysis of Framed Offshore Structures, Offshore Technology Conference, Offshore Technology Conference. [DOI:10.4043/5302-MS]
5. T.H.Soreide, J. Amdahl, C.A., (1986), Progressive Collapse Analysis of Offshore Deck Structures, The Norwegian Institute of Technology, Norway. [DOI:10.4043/5302-MS]
6. Moan, T., and Amdahl, J., (1991), Collapse Behaviour of Offshore Structural Systems.
7. Søreide, T. H., Amdahl, J., Eberg, E., Holmås, T., and Hellan, Ø., (1993), USFOS-A Computer Program for Progressive Collapse Analysis of Steel Offshore Structures, Theory Manual, SINTEF, Trondheim, Norw.
8. Sigurdsson, G., Skjong, R., Skallerud, B., and Amdahl, J., (1994), Probabilistic Collapse Analysis of Jackets, American Society of Mechanical Engineers, New York, NY (United States).
9. Amdahl, J., and Johansen, A., (2001), High-Energy Ship Collision with Jacket Legs, The Eleventh International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers.
10. Kim, J., and Kim, T., (2009), Assessment of Progressive Collapse-Resisting Capacity of Steel Moment Frames, J. Constr. Steel Res., 65(1), pp. 169-179. [DOI:10.1016/j.jcsr.2008.03.020]
11. Fu, F., (2009), Progressive Collapse Analysis of High-Rise Building with 3-D Finite Element Modeling Method, J. Constr. Steel Res., 65(6), pp. 1269-1278. [DOI:10.1016/j.jcsr.2009.02.001]
12. Powell, G., (2005), Progressive Collapse: Case Study Using Nonlinear Analysis, Structures Congress. [DOI:10.1061/40753(171)216]
13. Ruth, P., Marchand, K. A., and Williamson, E. B., (2006), Static Equivalency in Progressive Collapse Alternate Path Analysis: Reducing Conservatism While Retaining Structural Integrity, J. Perform. Constr. Facil., 20(4), pp. 349-364. [DOI:10.1061/(ASCE)0887-3828(2006)20:4(349)]
14. Khandelwal, K., El-Tawil, S., and Sadek, F., (2009), Progressive Collapse Analysis of Seismically Designed Steel Braced Frames, J. Constr. Steel Res., 65(3), pp. 699-708. [DOI:10.1016/j.jcsr.2008.02.007]
15. Starossek, U., (2007), Typology of Progressive Collapse, Eng. Struct., 29(9), pp. 2302-2307. [DOI:10.1016/j.engstruct.2006.11.025]
16. Kim, H.-S., Kim, J., and An, D.-W., (2009), Development of Integrated System for Progressive Collapse Analysis of Building Structures Considering Dynamic Effects, Adv. Eng. Softw., 40(1), pp. 1-8. [DOI:10.1016/j.advengsoft.2008.03.011]
17. Kim, T., and Kim, J., (2009), Collapse Analysis of Steel Moment Frames with Various Seismic Connections, J. Constr. Steel Res., 65(6), pp. 1316-1322. [DOI:10.1016/j.jcsr.2008.11.006]
18. Kim, J., Lee, Y., and Choi, H., (2011), Progressive Collapse Resisting Capacity of Braced Frames, Struct. Des. tall Spec. Build., 20(2), pp. 257-270. [DOI:10.1002/tal.574]
19. Tsai, M.-H., and Lin, B.-H., (2008), Investigation of Progressive Collapse Resistance and Inelastic Response for an Earthquake-Resistant RC Building Subjected to Column Failure, Eng. Struct., 30(12), pp. 3619-3628. [DOI:10.1016/j.engstruct.2008.05.031]
20. Kim, J., and An, D., (2009), Evaluation of Progressive Collapse Potential of Steel Moment Frames Considering Catenary Action, Struct. Des. tall Spec. Build., 18(4), pp. 455-465. [DOI:10.1002/tal.448]
21. Grierson, D. E., Safi, M., Xu, L., and Liu, Y., (2005), Simplified Methods for Progressive-Collapse Analysis of Buildings, Metropolis and Beyond Structural Engineering Institute. [DOI:10.1061/40753(171)225]
22. Naji, A., and Irani, F., (2012), Progressive Collapse Analysis of Steel Frames: Simplified Procedure and Explicit Expression for Dynamic Increase Factor, Int. J. Steel Struct., 12(4), pp. 537-549. [DOI:10.1007/s13296-012-4008-0]
23. Asgarian, B., and Rezvani, F. H., (2012), Progressive Collapse Analysis of Concentrically Braced Frames through EPCA Algorithm, J. Constr. Steel Res., 70, pp. 127-136. [DOI:10.1016/j.jcsr.2011.10.022]
24. Jiang, J., Li, G.-Q., and Usmani, A., (2015), Effect of Bracing Systems on Fire-Induced Progressive Collapse of Steel Structures Using OpenSees, Fire Technol., 51(5), pp. 1249-1273. [DOI:10.1007/s10694-014-0451-0]
25. Jiang, B., Li, G.-Q., and Usmani, A., (2015), Progressive Collapse Mechanisms Investigation of Planar Steel Moment Frames under Localized Fire, J. Constr. Steel Res., 115, pp. 160-168. [DOI:10.1016/j.jcsr.2015.08.015]
26. Fu, Q., Yang, B., Hu, Y., Xiong, G., Nie, S., Zhang, W., and Dai, G., (2016), Dynamic Analyses of Bolted-Angle Steel Joints against Progressive Collapse Based on Component-Based Model, J. Constr. Steel Res., 117, pp. 161-174. [DOI:10.1016/j.jcsr.2015.10.010]
27. Chen, C. H., Zhu, Y. F., Yao, Y., Huang, Y., and Long, X., (2016), An Evaluation Method to Predict Progressive Collapse Resistance of Steel Frame Structures, J. Constr. Steel Res., 122, pp. 238-250. [DOI:10.1016/j.jcsr.2016.03.024]
28. Gerasimidis, S., and Sideri, J., (2016), A New Partial-Distributed Damage Method for Progressive Collapse Analysis of Steel Frames, J. Constr. Steel Res., 119, pp. 233-245. [DOI:10.1016/j.jcsr.2015.12.012]
29. Mazzoni, S., McKenna, F., Scott, M. H., and Fenves, G. L., (2006), The Open System for Earthquake Engineering Simulation (OpenSEES) User Command-Language Manual.
30. Sherman, D. R., (1980), Post Local Buckling Behavior of Tubular Strut Type Beam-Columns: An Experimental Study, Report to Shell Oil Company, University of Wisconsin-Milwaukee.
31. API, R. P., (2000), 2A-WSD, Recomm. Pract. planning, Des. Constr. fixed offshore platforms-working Stress Des., 21.
32. Chakrabarti, S. K., (1987), Hydrodynamics of Offshore Structures, WIT press.
33. SACS (Structural Analysis Computer Software).
34. Reese, L. C., Cox, W. R., and Koop, F. D., (1975), Field Testing and Analysis of Laterally Loaded Piles Om Stiff Clay, Offshore Technology Conference, Offshore Technology Conference. [DOI:10.4043/2312-MS]
35. Reese, L. C., Van Impe, W. F., and Holtz, R. D., (2002), Single Piles and Pile Groups under Lateral Loading, Appl. Mech. Rev., 55, p. B9. [DOI:10.1115/1.1445326]
36. Matlock, H., (1970), Correlations for Design of Laterally Loaded Piles in Soft Clay, Offshore Technol. Civ. Eng. hall fame Pap. from early years, pp. 77-94. [DOI:10.4043/1204-MS]
37. Reese, L. C., and Welch, R. C., (1975), Lateral Loading of Deep Foundations in Stiff Clay, J. Geotech. Geoenvironmental Eng., 101(ASCE# 11456 Proceeding).
38. Murchison, J. M., and O'Neill, M. W., (1984), Evaluation of Py Relationships in Cohesionless Soils, Analysis and Design of Pile Foundations, ASCE, pp. 174-191.
39. Davisson, M. T., and Robinson, K. E., (1965), Bending and Buckling of Partially Embedded Piles, Soil Mech & Fdn Eng Conf Proc, Canada.
40. Vamvatsikos, D., and Cornell, C. A., (2002), Incremental Dynamic Analysis, Earthq. Eng. Struct. Dyn., 31(3), pp. 491-514. [DOI:10.1002/eqe.141]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.