2- Iran University of Science and Technology

This paper appraises the environmental parameters affecting the Floatover installation method. While this method demands extensive logistics, hardware, and planning from the first stage till the last, Environmental parameters are the main sources of creating external forces. Comprehension of the environmental features and their influence plays a significant role. In this paper, the application of the Design of experiments (DoE) in the offshore installation is examined. This methodology involves the mathematical procedures of designing experiments that allow a precise and effective evaluation of response features using the least number of analyses. By using response surface methodology and Taguchi design, which are methods of DoE, the significance of each parameter is assessed and a function is developed that holds the response with respect to the input environmental parameters. The magnitude of the impact forces acting on the leg mating unit is chosen as the response. Hydrodynamic time domain analysis based on these methods was done. This study was performed for a semi heavy weight topside and a typical T-shaped barge with six degrees of freedom for the Persian Gulf region.

Type of Study: Research Paper |
Subject:
Offshore Structure

Received: 2020/06/30 | Accepted: 2020/12/23

Received: 2020/06/30 | Accepted: 2020/12/23

1. JUNG, J.-J., LEE, W.-S., SHIN, H.-S. and KIM, Y.-H., (2009), Evaluating the Impact Load On the Offshore Platform During Float-over Topside Installation, The Nineteenth International Offshore and Polar Engineering Conference, Japan, 2009.

2. APOS, NEILL, L. A., FAKAS, E., RONALDS, B. F. and CHRISTIANSEN, P. E., (2000), History, Trends and Evolution of Float-Over Deck Installation in Open Waters, SPE Annual Technical Conference and Exhibition, Texas, 2000. [DOI:10.2118/63037-MS]

3. YOON, C. H., LEE, G. T. and MOON, S. H., (2016), Topside Float over Installation on Floating Substructure at Near Shore, The 26th International Ocean and Polar Engineering Conference, Greece, 2016.

4. SEIJ, M. and DE GROOT, H., (2007), State of the Art in Float-Overs, Offshore Technology Conference, USA, 2007. [DOI:10.4043/19072-MS]

5. WANG, A. M., et al., (2010), Latest Progress In Floatover Technologies For Offshore Installations And Decommissioning, The Twentieth International Offshore and Polar Engineering Conference, China, 2010.

6. LIU, G. and LI, H.,(2017), Offshore platform integration and floatover technology. [DOI:10.1007/978-981-10-3617-0]

7. CHAITANYA, K. and NAIR, S. B., (2013), Design of Leg Mating Unit for Float-Over Installation of Decks, Offshore and Arctic Engineering, 2013. [DOI:10.1115/OMAE2013-10707]

8. BOKHORST, J., WILLEMSE, O. and ZOONTJES, R., (2011), Float-Over Analysis for World's Largest Float-Over Barge, 30th International Conference on Ocean, Offshore and Arctic Engineering, 2011. [DOI:10.1115/OMAE2011-49462]

9. INSTITUTE, A. P.,(2007). American Petroleum Institute.

10. KOCAMAN, A., KIM, D. and SETO, J., (2008), Float-over of Arthit PP Deck, Offshore Technology Conference, USA, 2008. [DOI:10.4043/19230-MS]

11. TAN, B.-S., SAHASRABUDHE, S., HANEY, J. A. and LEOW, B.-L., (2008), Arthit Field Development: Float-over Hardware Design and Issues, Offshore Technology Conference, USA, 2008. [DOI:10.4043/19300-MS]

12. YUAN, R., et al., (2012), Design Considerations of Leg Mating Units For Floatover Installations, The Twenty-second International Offshore and Polar Engineering Conference, Greece, 2012.

13. ILZARBE, L., ÁLVAREZ, M. J., VILES, E. and TANCO, M.,(2008), Practical applications of design of experiments in the field of engineering: a bibliographical review, Quality and Reliability Engineering International, 24(4), p. 417-428. [DOI:10.1002/qre.909]

14. HILL, W. J. and HUNTER, W. G.,(1966), A Review of Response Surface Methodology: A Literature Survey, Technometrics, 8(4), p. 571-590. [DOI:10.2307/1266632]

15. TAGUCHI, G., KONISHI, S. and WU, Y.,(1987), Taguchi methods : orthogonal arrays and linear graphs. Tools for quality engineering, American Supplier Institute, Dearborn, Michigan.

16. Y.D.VENKATESH, S. A.,(2012), Application of Taguchi Method for Optimization of Process Parameters in Improving the Surface Roughness of Lathe Facing Operation, International Refereed Journal of Engineering and Science (IRJES).

17. RAVELLA, S., KUMAR, C., REDDY SHETTY, P. and HOBBS, P.,(2008), The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal, Biotechnology journal, 3, p. 510-523. [DOI:10.1002/biot.200700201]

18. YANG, S.-Y., CHEN, C.-W. and CHOU, J.-C.,(2012), Investigation on the sensitivity of TiO2:Ru pH sensor by Taguchi design of experiment, Solid-State Electronics, 77, p. 82-86. [DOI:10.1016/j.sse.2012.05.024]

19. JURKÓW, D. and STIERNSTEDT, J.,(2014), Investigation of High Temperature Co-fired Ceramics sintering conditions using Taguchi Design of the experiment, Ceramics International, 40(7, Part B), p. 10447-10455. [DOI:10.1016/j.ceramint.2014.03.015]

20. MYERS, R. H., MONTGOMERY, D. C. and ANDERSON-COOK, C. M.,(2016), Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons.

21. KAMRANZAD, B., ETEMAD-SHAHIDI, A. and CHEGINI, V.,(2013), Assessment of wave energy variation in the Persian Gulf, Ocean Engineering, 70, p. 72-80. [DOI:10.1016/j.oceaneng.2013.05.027]

22. ARAI, M. and SHIMIZU, T., (2001), in Practical Design of Ships and Other Floating Structures, Y.-S. Wu, W.-C. Cui & G.-J. Zhou Ed^Eds, Elsevier Science Ltd, Oxford, p. 331-339. [DOI:10.1016/B978-008043950-1/50042-9]

23. CUMMINS, W. E., (1962), The impulse response function and ship motions, David Taylor Model Basin Washington DC.

24. ARMESTO, JOSÉ A., GUANCHE, R., JESUS, F. D., ITURRIOZ, A. and LOSADA, IÑIGO J.,(2015), Comparative analysis of the methods to compute the radiation term in Cummins' equation, Journal of Ocean Engineering and Marine Energy, 1(4), p. 377-393. [DOI:10.1007/s40722-015-0027-1]

25. OGILVIE, T. F.,(1964), Recent progress toward the understanding and prediction of ship motions, Proceedings of the 5th Symposium on Naval Hydrodynamics. Bergen.

26. LAI, S. K. C., XAVIER, Numerical Modelling of Installation Aids for Platform Installation, Saipem, UK.

27. CHEN, M., EATOCK TAYLOR, R. and CHOO, Y. S.,(2014), Time domain modeling of a dynamic impact oscillator under wave excitations, Ocean Engineering, 76, p. 40-51. [DOI:10.1016/j.oceaneng.2013.10.004]

28. CHEN, M., EATOCK TAYLOR, R. and CHOO, Y. S.,(2017), Investigation of the complex dynamics of float-over deck installation based on a coupled heave-roll-pitch impact model, Ocean Engineering, 137, p. 262-275. [DOI:10.1016/j.oceaneng.2017.04.007]

29. TAHAR, A., HALKYARD, J., STEEN, A. and FINN, L.,(2006), Float Over Installation Method-Comprehensive Comparison Between Numerical and Model Test Results, Journal of Offshore Mechanics and Arctic Engineering, 128(3), p. 256-262. [DOI:10.1115/1.2199556]

30. ANDERSON, M. W., P.,(2015), DOE Simplified, Productivity Press, New York.

31. VANAJA, K. and RANI, R. H.,(2008), Design of Experiments: Concept and Applications of Plackett Burman Design, Clin Res Regul Aff, 24, p. 1-23. [DOI:10.1080/10601330701220520]

32. WANG, J. and WAN, W.,(2009), Experimental design methods for fermentative hydrogen production: a review, International journal of hydrogen energy, 34(1), p. 235-244. [DOI:10.1016/j.ijhydene.2008.10.008]

33. FERREIRA, S. L. C., et al.,(2007), Box-Behnken design: An alternative for the optimization of analytical methods, Analytica Chimica Acta, 597(2), p. 179-186. [DOI:10.1016/j.aca.2007.07.011]