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Considering both kinematic and dynamic constraints (kinodynamic constraints) of an
autonomous underwater vehicle in a Kinodynamic path planning algorithm in a
dynamic large-scale workspace is an NP-Hard problem. Computational and time
complexity of the kinodynamic path planning problem increase in the order O (n?)
by increasing numbers of moving obstacles, AUV Kinodynamic constraints, degrees
of freedoms, and workspace dimensions. This paper proposes a Randomized
Kinodynamic Sub-optimal Planning (RKSP) algorithm for a man-portable class
AUV. The proposed algorithm solves the path planning problem by applying a
randomized sampling-based method to exploring and expanding in the workspace.
RKSP re-plans the path to avoid collision with moving obstacles in a cluttered
environment through a behavior-based method. RKSP consists of three main
components that tightly coupled together. The first component is a Randomized
kinodynamic Planning (RKP) module that generates the random offspring waypoints
and plans a feasible path by considering the AUV kinodynamic constraints. The
second component is a Numerical Path Optimization (NPO) module that prunes the
inappropriate edges of the path and reduces the computational complexity. The third
component is a Local-Reactive kinodynamic (LRK) module that re-plans the local
path through the neighborhood waypoints to avoid collision with moving obstacles
in an unknown environment. RKSP path planning method is evaluated through the
three different scenarios in a narrow passage, maze-like space and complex space.
Results demonstrate the planned path by the proposed method is feasible and the
AUV tracks the path appropriately and avoids collision with moving obstacles. Also,
the total numbers of waypoints reduce in comparison to the conventional randomized
methods and the planned path is near to the optimal.

1. Introduction

autonomous vehicles, over the past two decades.

According to the last roadmap in the Unmanned
underwater vehicles (UUV) field, Autonomous
underwater vehicles (AUV) have been received many
attentions to carry out specific mission that no other
vehicles can perform [1].

However, applying AUVs in long-term marine
applications have several challenges due to the
technology readiness level. Autonomy is one of the
main challenges in this field. AUV should be able to
plan a feasible and near to optimal path to perform
specific function. Path planning in a dynamic large-
scale environment is an NP-Hard (Non-deterministic
polynomial-time hardness) problem for these

93

Computational and time complexity of path planning
problem increases in the order O(n2) by increasing
numbers of moving obstacles, AUV Kinodynamic
constraints, non-holonomic constraints, degrees of
freedoms, and workspace dimensions. There are
various categories of path planning algorithms. First
category is graph search algorithms that have two
types: non-heuristic and heuristic. Non-heuristic types
only consider cost to start point [1]. Whereas cost to
goal point (in addition to cost to start point) is used in
heuristic types and they need many computational time
(e.g. A*, SMA*, IDA*, KA*, L*, FM, AP Theta*, and
D* [2-5]. Detailed literature reviews were
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accomplished to explain the current state of the art of
path planning and obstacles avoidance for the AUV in
[6, 7]. The path planning algorithm based on behavioral
decision-making for the AUV is proposed in [8]. The
evolution approach is used in this research to the
optimization of energy. The global optimal path
planning algorithm is introduced in [9] based on the
water wave optimization theory. Performance of this
algorithm is increased through the elite opposition-
based learning method. Second category of path
planning algorithms is evolutionary algorithms that
they are inconsistent and incompleteness (e.g. PSO,
ACO, GA, MA, SFLA, and PSO-LPM [2-4]). There
are other evolutionary algorithms that are trapped in
local optimums (ABC, BFO, BINN, and FFA [5]).
Third category of path planning algorithms is
randomized algorithms that they have two main types:
Probabilistic roadmaps (PRM) and Rapidly-exploring
Random Tree (RRT) [6]. Also, another extensions of
these algorithms are exist (e.g. RRT*, SRRT*, LBT-
RRT, RRTX, FG-RR, Multi-RRT, and skilled-RRT [7-
13]) that they improve main algorithms. RRT and PRM
algorithms are better in online path planning and highly
structured static environments, respectively [5].
Moreover, the tree-based planners same as RRT best
can overcome kinodynamic constraints [14].
Kinodynamic constraints are various dependent to used
robot and may be simplified in the motion planning.
Donald and et al. [15] only considered bounds of
velocity and acceleration as constraints. Dubin’s car
kinematic and double integral dynamic are used in a
sample-based algorithm in [16]. Kinodynamic
constraints of a two-wheeled robot is considered using
RRT algorithm [17]. If feasible path from the nearest
node of the tree to the random point applying
kinodynamic constraints doesn’t be possible, other
node of the tree is tried. Double integral dynamic of a
car-like is also used in a sample-based method [18].
Bordalba applies dynamic constraints of cable-
suspended parallel robots to connection of the tree and
generated random point [19]. The extend function, in
growing the tree, achieves kinodynamic motion
planning. Pham [20] tries the K-nearest nodes of the
tree to connect the tree and generated random point
applying dynamic of a manipulator. Closed loop
method as the extend function is used considering
kinematic constraints of a wheeled robot in [21]. Spline
and B-spline fourth-order are used as steering in
expansion of RRT* method in [22] and [23],
respectively. Bera [24] applies control inputs to
dynamic model in kinodynamic planning. These
control inputs can be selected base of optimality
performance. Two methods are presented for steering
in [25] that include designing of controller, to connect
the nearest node of the tree and random point, and
trying a number of admissible controllers. The control
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input randomly is sampled and the tree is grown
integrating forward dynamic in a short time [26, 27]. A
kinodynamic motion planner sample-based method
KPIECE is used in [28] designed for systems with
complex dynamic.

In this paper, Randomized Kinodynamic Sub-
optimal Planning (RKSP) in Unknown and Dynamic
environment is proposed. RKSP consists of three main
components. The first component is RKP that a
kinodynamic path plans considering kinematic and
dynamic constraints of AUV. RKSP plans a
kinodynamic path through the randomized sampling-
based method. The second component is a NPO that
prunes the inappropriate edges of path and reduces the
computational complexity. The third component is a
LRK that re-plans the local path through the
neighborhood waypoints to avoid collision with
moving obstacles in an unknown environment. The
main contributions of this article can be summarized as
follows:

e In the proposed Randomized Kinodynamic Sub-
optimal Planning method, the reachability of each
offspring vertex is evaluated through the low-level
controller for the AUV, hence, both kinematic and
dynamic (kinodynamic) constraints are applied in the
planned path and the designed path is tracked through
the AUV appropriately. It is notable that in the
conventional randomized sampling-based path
planning method only kinematic constraints are
considered in the problem.

e Computational and time complexity of the
kinodynamic path planning problem increase in the
order O(n2) by increasing numbers of moving
obstacles. In the proposed path planning algorithm
competency of each offspring vertex is assessed

through the sub-optimal module, and inappropriate
vertices are eliminated. Hence, the total number of
vertices and also the complexity of the proposed path
planning method is reduced. So the proposed method is
implemented in a real-time manner and AUV re-plans
the path to avoided collision with moving obstacles.

The structure of this paper as follows: a brief
background of randomized sampling-based path
planning algorithm and AUV dynamic model is
presented in Section 2. The proposed Randomized
Kinodynamic Sub-optimal Planning (RKSP) algorithm
consists of three main components that are presented in
Section 3. These components are: 1-Randomized
Kinodynamic Planning (RKP) module, 2-Numerical
Path Optimization (NPO) module, and 3-Local-
Reactive kinodynamic (LRK) module. Performance
and effectiveness of the proposed path planning
algorithm are evaluated through the three different


http://ijmt.ir/article-1-748-en.html

[ Downloaded from ijmt.ir on 2026-02-16 ]

Ehsan Taheri, Ali Adeli / IIMT 2021, Vol. 15; 93-105

A

it
(goal

Figure 1. The sampling-based path planning algorithm concept is illustrated in the configuration space, Fig. A. New random
offspring vertex is generated, and the nearest vertices are selected to evaluate as a parent vertex, Fig. B. Parent vertex is
determined through the metric function and the new vertex is added to the vertices set, Fig. C. Random offspring vertices and
related branch are expanded in the configuration space, Fig. D.

scenarios in Section 4, and finally the manuscript is
concluded in Section 5.

2. Preliminary

In this article randomized sampling-based algorithm
and autonomous underwater vehicle are considered as
path planning method and robot, respectively.
Briefly these two issue are introduced in the following
subsections.

2.1. RRT Randomized Planning
RRT algorithm is a randomized and tree-based planner

in which a tree 7(J,E) is made in the configuration
space y with set of nodes and set of edges 0 and E,
respectively. The tree is made using random generating
of nodes and if exist a solution and enough samples, the
tree includes the path from the start to the goal. Most
popular random number generator algorithm is
Mersenne Twister [29] used in software packages. The
recursive relation of this random generator is as follows
[30].

Xeon = Xem @ (4 | %) A, k=0,1, ... 1)

k+n
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Where integer n is degree of recurrence, integer m that
1<m<n, a constant axa matrix A X, upper a—b
bits of X, X, lower b bits of X, . b an integer
0<b<a-1,and @ is bitwise addition. In relation (1),
X, can be generated using initial seeds X;,X,.... X, .
Each random node Q4 € ¥ is generated, using random
number generator, and is added to the tree if distance
of the tree and the random node d,,,4 be less than the
step size Aq . If distance of the tree and the random

node Q,,, be larger than the step size 29 , a new node
0., 1S created wusing steering function with
corresponding distance of the step size Aq to the tree.

The nearest node 0. Of the tree to the random node

is found using a metric function. The metric function is
as follows.

V= (i|ql _qu)lu (2)

That 2=1and A2=2 give Manhattan and Euclidian
distance, respectively. Because of indirect path,
Manhattan distance may be proposed in kinodynamic
constrained problems. However, in randomized
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methods (e.g. RRT) robot heading anticipation is not
possible. Moreover, numerical path optimization
changes heading of robot in various section of path. So,
Euclidian distance is simple metric function in
randomized methods.

Remark 1: The conventional RRT path planning
algorithm consists of five main components: 1) metric,
2) random sampling, 3)steer branch, 4) nearest
neighbors and 5) collision detection functions [20]. The
concept of these five functions is shown in Figure 1.

2.2. AUV Dynamic

In this paper, a man-portable class AUV is considered
that its main parameters are tabulated in Table 1.
Behaviors of this AUV in a 3D space are described
through a six-DoF dynamic model and two coordinate
systems (body and inertia) which are illustrated in
Figure 2, [14]. Relation between these two coordinate
systems are described through the following

transformation matrix, [31, 32].
. 7 J 05, v
e [2 500 ]
Up) 03,3 32(772) Va
n =l n=Ixy ' n,=[¢ 0 w1’
V=Ll 3 vi=luvw], vo=[pgr]

Where, 77, &1, € R3presents the position and orientation

X u
y{=dim)| v |,
7 w

COSy oSO —Siny coS¢+ Cosy Sinfsin ¢
Ji(n,) =| sinycosé  cosy cosg+siny sindsing 4)
-siné cosésin ¢
siny sin ¢+ cosy sin 6 ¢os ¢
—COSy Sin ¢ +siny sin 6.¢os ¢
€0s @ cos ¢

Table 1. Main parameters that are considered for the

AUV.
Parameter Value Unit
[m,L] [31,1.65] [Kg, m]

[X Y g:Z] [0.0,0.0,25] mm

[Xb’vaZb] [0.0,0.0,0.0] mm

[| 0 Ivys |ZZ] [4.232,29.452,29.452] kg.mz

[X ropr K orop] [5.12,0] [N, N.m]
Rate of the pitch and 13 deg/ sec
yaw angle change
Max/min command +12 deg
pitch angle
Max/min command +30 deg
yaw angle
Surge speed 3 knot
Rudder and Elevator +15 deg

surface deflection
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Inertia coordinate system

x,¢ ~
s..\ N~
.0
N Ly
Body coordinate system s ’
x ‘ ! e = -
= = p(roll)
q( pitch) ': u(surge)
v(sway) 1N 7 (yaw)
w(heave)

Figure 2. Body and inertia coordinate systems.

¢ p
0 |=3,(m)|q|
W r
: Q)
1 singtand cosgtané
Jy(n,)=|0 cos ¢ —sing

0 sing/cos@ cos¢lcosd

of the AUV in the inertia coordinate system,
respectively. Vectors ,&y,€R® presents the linear
and angular velocities in the body coordinate system.
Ji(n7,) explains the connection between the position

and linear velocities and J,(17,) describes relation

between the rate of changes in orientation angles and
angular velocities.

Remark 2: We will stand the following assumptions in
the AUV dynamic model. AUV is symmetric about the
x—z and x-y planes. Also, the pitch angle of the AUV is
rarelly greater or less than +45° in practical terms.

Differential equations of AUV is as following:
MV +C(V )V +D(V)V +g =1.q (6)
WhereV =[u v w p q r] isastate vector that

includes translational and rotational speeds that are
explained before. Global mass matrix M is:

m-x, o0 0 0 mz, -my,
0 my, 0 -mz, 0 —mx,-Y,
- 0 0 m—Zw myg _ng_Zq 0 (7)
0 -mz, my, l.k, 0 0
mz, 0 —-mx,-M 0 |,-M, 0
=My, mx,~N. 0 0 0 [.-N, |

Coriolis and centripetal matrix C is:
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Primary Kinodynamic Path

1-set initial parameters RKP module
2-set mission requirements == Qrand Qnearest — q new
3-set initial map Applied Kniodynamic constraints

LRK module
1-Update map

3-Estimating probability of collision

Near-optimal Kinodynamic Path

Navigation
(IMU/GPS)

NPO module

1-Prunes the inappropriate edgs
and vertices

2-Estimating position of moving obstacles

Low-level controller
(High order Sliding)

Guidance system (LoS)

2-Reduction the computational |
complexity

Control Command

Replans the ()
local path Control Force Actuators
.
12l
> 1 1

1

Forward Looking Sonar
(FLS)

Kinematics

Figure 3. The schematic block diagram of the proposed Randomized Kinodynamic Sub-optimal Planning (RKSP) algorithm.

0] —mr mq
mr (0] —mp
—mq mp 0]
C=l-m(y a+z,n) my_p mz ,P
mx 9 mxa mz A
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—my p m(z r + X,P) -my r
—mz P —mz 9 m(X,P+ Yy @
0 l..r —1,4
_I zzr O I xxp
l,4 —1 ..P 0 ]

Six equations of damping term D(V)V are described as
follow, [32]:
Xo=—(X ulul+X wa+ X qqqz+ X+ X.r)
Yo=Y VIVI+Y rir|+Y uw+Y WP +Y ur+Y pqpq)
VA D:—(Z WWW|W|+Z qqq|q|+Z UWuw+ZuququZvaerZmrp) (9)
Ko=-K ,plpl
M D:7(|\/| WWW|W|+M qqq|q|+|\/| WPt M WA+ M uw+ M Vpvp)
N D:—(N Wv|v|+N ”r|r|+N WUV N P+ N WP+ N urur)
Six equations of hydrostatic forces (g) are also as
follows:

X ,=W —B)sin(0)

Y ,=—W — B)sin(p)cos(6)

Z,= —(W — B)cos(¢)cos(6)

K o= (ng - be)cos(G) cos(p) +(z W - Z ,B)cos(0)sin(¢)

M 0= (z W - 7 ,B)sin(9) + (XQW - X,B)cos(6)cos(¢)

N . :(ng - X,B)cos(9)sin(p) + (ng - be)sin(H)
The main concern here is AUV avoiding collision by
moving obstacles through the kinodynamic path
planning algorithm. The dynamic model of AUV is
described briefly in this subsection and interested
readership about the AUV dynamic model are referred
to these references, [33, 34]. Propulsion and control

forces (75;) are:

(10)
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X, =X

T prop
Y, =Y, U%5,
Z = Zuudsu25e
K, =Ko+ Kuudau25UI
M, = Muudsuzé'e

N, = I\qud,ruzé‘r

(11)

Behavior of this six-DoF nonlinear model in the 3D
space is evaluated through the numerical values from
Table 1 and Appendix A.

2. Randomized Kinodynamic Sub-optimal
Planning

Randomized Kinodynamic Sub-optimal planning
(RKSP) includes Randomized Kinodynamic Planning
(RKP) module, Numerical Path Optimization (NPO)
module and Local-Reactive Kinodynamic (LRK)
module. In the RKP, a kinodynamic path is generated
through a kinodynamic tree. The NPO optimizes the
generated kinodynamic path with the RKP. The LRK
re-plans the path through the behavioral-based method
to avoid collision with moving obstacles. These three
modules are presented in this section. Block diagram
of the proposed Randomized Kinodynamic Sub-
optimal path planning algorithm is shown in Figure 3.

3.1. Randomized Kinodynamic Planning (RKP)
module

RKP is randomized kinodynamic planning in which
path is planned using randomized method RRT. In the
RRT, steering function expands the tree from the

nearest node (.., t0 the generated random point Q.

. Steering function of a kinodynamic planning consists
of kinematic and dynamic constraints of AUV. The
AUV with complex kinodynamic constraints lead to a
complex steering function. The AUV has six DoF and
three actuators (propeller, rudder, and elevator). In this
work, steering function carries kinodynamic
constraints of the AUV. Steering function must
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[ Known obstacle

qgoal

~ Ohnew
o

qstan

Onearest ~

= -(-“ q new

qnearest \
@ Ohew

Figure 4. Randomized kinodynamic planning through RKP
in known environment

satisfies moving constraints that are tabulated in Table
1 and dynamic equations (6) which can be written in
the following form.

G(t) = f(a(t),u(t)
WhereqeQcR", o is state space, and u(t) eU cR"
is control action.
Steering function is applied the action U(t) to the
equations (12) in order to steer the path from the
nearest node (..; t0 generated random pointd,,.q -

The action U(t) is applied and the node G, is
achieved with maximum Euclidean distance Aq from

the node 0, - Kinodynamic path from the node 0,

to the node (., is accepted if each generated state of

equations 0(12) be collision-free in known
environment. The tree of RKP is shown in Figure 4

through which kinodynamic path from the start Jg,, to
the goal q,, is obtained.

The dashed curves show collision avoidance in known
environment with the blue static obstacles.
Pseudocode of kinodynamic RRT is shown in
Algorithm 1 in which 7 is the tree. First, the start

point 0,; is added to the tree in line 1. Second,

random points are generated with random_state(y)
function from configuration space y» with iteration K
(lines 2 and 3). Then, nearest node of the tree to the
random  point Q.4 is found through
O,ang ) function (line 4). The

Steer( Qe drang » Aq ) function generates the curve

nearest_neighbor(r,

Owre from the nearest node (. to the random point
O Carrying AUV constraints with maximum
distance Aq from (. (line 5). The new
configuration 0, is obtained from the end point of

the curve (g, in line 6.
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Algorithm 1: Kinodynamic RRT( Gy, Qua» 7 )

L 7init(Gy) ;
2. for k=1,....K do
O.g < Fandom_state(y) ;

3
4. earest < nearest_neighbor(?, Qg );
5. qcurve < Steer( qnearestl qrand » AQ );
6. ey < New_config( Qe )

7. if CollisionFree( g, ) then

8 r.add _edge(qcurve) ;

9. radd _vertex(q,,) ;
10. if Oy € Qe then
11. Return Reached;
12. end if

13.  endif

14. end for

15. Return(7);

If the curve Q.. be collision-free, this curve and the

new configuration are added to the tree as edge and
node, respectively (lines 7 to 9). Kinodynamic path is
founded if the new configuration reaches to the region

Qgoa around the goal. The steer function is shown in

Algorithm 2. The AUV_Model function generates
dynamic model of AUV in line 3. The Control
function generates control action u corresponding the
dynamic model of AUV (line 4). The AUV_Simulator
function simulates the dynamic model of AUV using

control action u and generates the state S; (line 6). If
this state be collision-free, it is added to the curve

O.ne (lines 7 and 8). This process is continued until

the distance d; between S; and the nearest node 0.
be less than Aq .

3.2. Numerical Path Optimization (NPO) module
The generated offline kinodynamic path through RKP
has many curvatures that can increase computational
and time complexity. In a generated path through basic
RRT, path can be optimized eliminating redundant
nodes (considering obstacles avoidance). Generated
path of RKP is formed from many curvature that each
waypoint has its heading. In this subsection, two
heuristic stage optimization is proposed for
kinodynamic paths.

In first stage, three conditions must be prepared to
optimize the path in each waypoint. First, arrow shown
AUV heading collides with the path. Second, heading

Algorithm 2: Steer(Gueyeqt, Urana » AQ)
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. di «0 ;
* qcurve (_{qnearest} !

M « AUV_Model
u < Control function (M)

.while d. < Aq do

S, <~ AUV_Simulator(M , U );

if CollisionFree(S; ) then
Qeune <_qcun/eU{Si};

di A "qnearesl =5 " ;
10. endif
11. end while

12. Return (Ogyne );

© N o g krwd F

©

of collided point be same as waypoint heading. Third,
optimized path be collision-free. Corresponding to
Figure 5, arrow in waypoint A collides with path in C

(first condition) and heading ¥, is equal with heading

W (second condition). Steering function generates

the red dashed kinodynamic path carrying
kinodynamic constraints (12). This red dashed path
has collision with obstacles, therefore it doesn’t have
third condition. The waypoints B and E have all three
conditions and the blue dashed optimized paths,
through steering function, to the waypoints D and F,
respectively, are accepted.

In second stage of optimization, kinodynamic curves
are generated through steering function from variants
points of path to forward points of path with large
steps (that is named optimization local goal). If each
curve has three conditions, it is replaced with
corresponding piece-path of main kinodynamic path.
First, heading of optimization local goal and end point
of the curve be same. Second, distance of the curve be
less than corresponding piece-path of main
kinodynamic path. Third, the curve be collision-free.
Corresponding to Figure 6, the kinodynamic curve
from A to B (the green dashed curve) has three
conditions (heading of this curve in B is same as
heading of main path, distance of this curve is less than
corresponding piece-path of main path, and this curve
is collision-free). So, this curve is accepted and
replaced with corresponding piece-path of the main
path. Also, the kinodynamic curve from C to D has
same conditions.

99

qgoal
AUV Heading
.
/
T

e T D, vy, E.ve
qslart I

Figure 5. First stage Optimization of the kinodynamic path

q start

Figure 6. Second stage optimization of the kinodynamic path

3.3. Local-Reactive Kinodynamic Re-planning
(LRK) module in Known and Unknown
Environment

LRK is Local and Reactive kinodynamic re-planning

in Unknown Environment in which kinodynamic re-
planning is implemented to avoid static and moving
obstacles. Four methods are considered to avoid
obstacles in kinodynamic re-planning are called: 1.
Local kinodynamic planning, 2. Local tree path
extraction, 3. Reactive kinodynamic planning, 4.
Reactive-local tree path extraction.

First, collision points CP1 and CP2 is detected and the
local start LS and the local goal LG are determined
corresponding to Figure 7 Then, the LRUE is called
and the local kinodynamic tree is generated.
Kinodynamic path (the blue dashed curve) is found
from the LS to the LG through the local tree (first
method). If kinodynamic path doesn’t found, the
kinodynamic path is extracted to the frontier local goal
LG2 through the local tree path extraction method (the
blue curve corresponding to Figure 8). If kinodynamic
path cannot be extracted to the LG2, the reactive
kinodynamic planning method generates the
kinodynamic edge (the Dblue dashed curve
corresponding to Figure 9) and the local kinodynamic
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Figure 7. Local kinodynamic path re-planning from the LS to
the LG to avoid collision by an unknown static obstacle.

Local space

Detected
obstacle

Figure 8. Extending and exploring the random kinodynamic
offspring vertices to avoid collision by an unknown static
obstacle.

Local space

CpP2

Detected
obstacle

Figure 9. Plan the local path to avoid collision by an unknown
static obstacle

Local space

Detected
obstacle

Figure 10. Re-plan the local kinodynamic path to the next
local-goal (LG2)

100

Dynamic
obstacle

Figure 11. Estimating future collision point with moving
obstacle and re-planning the local path through the LRK
module
path is generated from the second local start SLS to
the LG (the red dashed curve). If the local
kinodynamic path doesn’t found, the kinodynamic
path is extracted to the LG2 through the Reactive-local
tree path extraction method with the root SLS (the red

dashed curve corresponding to Figure 10).

3.4. Local-Reactive Kinodynamic Re-Planning
(LRK) module in Dynamic Environment
As same as previous subsection LRK carries dynamic

obstacles. However, a dynamic obstacle can moves to
the AUV. Then, LRK first estimates future collisions
of kinodynamic path and pathway of the moving
obstacle.

If collision time of the AUV and the dynamic obstacle
approximately be equal, LRK re-plans. Corresponding
to Figure 11 the red rectangular dynamic obstacle
moves to the AUV path and future collision is detected
in same time t+At | RK re-planes and the blue
dashed kinodynamic path is generated. Figure 3 shows
the framework of RRT kinodynamic planning that a
kinodynamic path is generated considering known
obstacles and optimization stages are applied. In this
phase kinodynamic constraints of AUV are carried
and generated path are feasible for AUV. This path is
executed by AUV and the path is re-planned updating
area of static and dynamic obstacles.

4. Simulation Results
To evaluate the path planning abilities of the proposed

Randomized Kinodynamic Sub-optimal Planning
(RKSP) algorithm in designing a feasible path for the
AUV, three scenarios with different complexities are
designed through MATLAB R2019a.
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Figure 12. RRT kinodynamic planning in known
environment a) narrow passage, b) maze-like space
Scenario-1 (Randomized kinodynamic path planning
in a narrow passage and maze-like space with static
known environment): In the first scenario the RKSP
path planning algorithm is performed for the AUV in
a static known environment. In this scenario two type
of static known environment with different
complexities are considered: 1-narrow passage with
68 static obstacle, and 2-maze-like space with 79 static

obstacle.

Figure 13. First heuristic stage of kinodynamic path
optimization (the blue dashed curves) and second heuristic
stage of kinodynamic path optimization (the green dashed

curves) in narrow space and maze-like space.
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Performance of RKSP algorithm in designing a
feasible Kinodynamic path for the AUV in the narrow
passage and maze-like space is shown in Figure 12 and
tabulated in Table 2. In this scenario the RKP module
plans the primary randomized kinodynamic path and
the NPO module optimizes the planed path by pruning
the inappropriate edges. Hence, the total number of
vertices and also the complexity of the proposed
RKSP path planning algorithm is reduced.

The primary randomized kinodynamic path and the
near-optimal path in the narrow passage and maze-like
space are shown in Figure 13 through the red and
green line respectively.

Scenario-2 (Randomized kinodynamic path planning
in a static unknown environment): In the second
scenario the ability of the RKSP path planning
algorithm is assessed in a static unknown
environment. In this scenario, workspace consist of 94
known and 3 unknown static obstacles. The primary
randomized kinodynamic path and the near-optimal
path are shown in Figure 14 through the red and blue
line respectively. In this scenario the kinodynamic
path is planned through the RKP module and is
optimized through the NPO module. The LRK module
is applied to re-plan the local path to avoid collision
with unknown static obstacles that are detected with
the forward looking sonar. The re-planed local paths
are shown in Figure 15 with green line.

Scenario-3 (Randomized kinodynamic path planning
in a dynamic unknown environment): In the third
scenario the ability of the RKSP path planning
algorithm is assessed in a dynamic unknown

Kinodynamic RRT Path Planning (Main Path ->Red)
300

O odesof ree
——— Edge of tree

250

Edge of path

[0 Known obstacles

200

> 150

100

50

Figure 14. RRT kinodynamic planning in presence of known
static obstacles
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Figure 15. Path planning and path re-planning to avoid
collision with unknown static obstacles
environment. In this scenario, workspace consist of
109 known and 5 unknown moving obstacles. The
primary randomized kinodynamic path is planned
through the RKP module and is optimized through the
NPO module. AUV avoid to collision with moving
obstacles by re-planning the local paths in the LRK

module, Figure 16.

Path planning through the proposed RKSP in the two
types of static known environment with different
complexities: 1-narrow passage, and 2-maze-like
space is considered in the first scenario and their
results are shown in Figure 12 a&b. In both
environments, the initially planned path is illustrated
through the blue line

Table 2. Comparison of the LRKP results in the three
scenarios with different complexity.

Start

Goal

Scenariol Scenario2 Scenario3
Maze- Narrow
like passage

Start

Goal

Number of 79 68 94 109
static known

obstacles

Number of 0 0 3 0
static

unknown

obstacles

Number of 0 0 0 5

unknown

moving

obstacles

Number of 8849 6325 1257 2131
total

offspring
vertex

Number of 0 0 5 2

re-planed

local path

Initial path 48 32 75 73
cost

Start

Goal

Figure 16. Kinodynamic path planning and local-path re-

planning to avoid collision with unknown moving

obstacles.
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Table 3. Comparison of the standard RRT with LRKP.

Type of Type of Type of Training
Constraints  Obstacles Workspace and
query
Proposed  Kinodynamic ~ Known- Needs pre-  Offline-
RKSP Static definemap  Online
Standard Kinematic ~ Unknown- Needs Offline-
RRT Moving exact pre-  Offline
[11] define map

and the optimized path with the triangular inequality
is illustrated through the red line. The number of the
vertices (waypoints) in the optimized path with the
triangular inequality is reduced in comparison with the
initial path while due to the randomized nature of the
proposed RKSP the optimized path is sub-optimal.
Path planning through the proposed RKSP in the
unknown static environment is considered in the
second scenario. Its related results are shown in Figure
15. The local search tree with green edges is shown in
this scenario to avoid collision by the unknown static
obstacles. In the third scenario, five unknown moving
obstacles are considered in the simulations. Moving
obstacles b and d have collided with the initially
planned path. Hence, the initial path is re-planed in the
local area that is shown by the green edges in Figure
16. Furthermore, the features of proposed RKSP are
compared with the standard RRT in Table 3.

Figure 17. 3D view of AUV path planning.
Moreover, simulations of the second scenario are

performed in the 3D environment which is shown in
Figure 17. In Figure 17-1 initial kinodynamic path is
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planned, AUV tracks the initial path in Figure 17-2,
AUV detects the unknown static obstacles and re-
planes the path in Figure 17-3, and finally, AUV
reaches the goal in Figure 17-4.

5. Conclusion
Plan a feasible path through the considering the

kinodynamic constraints of AUV in a dynamic large-
scale environment and avoid collision with unknown
moving obstacles is an NP-Hard problem.
Computational and time complexity of the
kinodynamic path planning problem increase in the
order O(n?) by increasing numbers of moving
obstacles. This paper, the Randomized Kinodynamic
Sub-optimal Planning (RKSP) algorithm is proposed
to plan a feasible path. The main advantage of this
RKSP is to obtain a set of feasible vertices for the
AUV, and also the ability to re-plan the local paths in
a real-time manner. In a nutshell, vertices in the RKSP
algorithm are expanded in the large-scale environment
through the randomized nature in a rapid manner,
while, the kinodynamic constraints of AUV are
considered in designing these vertices. Also, the
RKSP prunes the inappropriate offspring vertices to
plan a sub-optimal path. The RKSP consists of three
main components that tightly coupled together.
Kinodynamic constraints are applied to the planed
path through the first component. The planed path is
optimized through the second component. The local
paths are re-planed through the third component to
avoid collision with unknown moving obstacles. To
assess the path planning abilities of the proposed
RKSP algorithm in planning a feasible path for the
AUV, three scenarios with different complexities are
designed. In the first scenario, the RKSP plans near-
optimal kinodynamic path in the both maze-like and
narrow passage environment. In the second scenario,
the RKSP re-plan the path to avoid collision with
unknown static obstacles while considering
kinodynamic constraints in path planning approach. In
the third scenario, the RKSP re-plan the path to avoid
collision with moving obstacles in real-time manner.
The results show that the AUV tracks the planned
vertices and the path is re-planned to avoid collision
with unknown moving obstacles. In complex
situations, the AUV can't reach the local-goal to re-
plan the path due to the kinodynamic constraints of
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AUV, however, the proposed path planning algorithm
is able to design the next local-goal.
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Appendix A

Definitions of the main parameters of the AUV model
that are used in this paper.
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No. Parameter Value Unit
1 X -4.326 kg/m
2 Xa -0.564.812 kg
3 X wa -42.048 kg/rad
4 Xeq -45.005 kg*m/rad
5 Xur -29.859 kg/rad
6 Xor -11.658 kg*m/rad
7 y -50.232 kg/m
8 y -27.968 kg*m/rad"2
9 y -13.552 kg/m
10 y 29.859 kg
11 y 11.658 kg*m/rad
12 y 0.564.812 kg/rad
13 y 42.048 kg/rad
wp
14 45.005 kg*m/rad
y Pq
15 y 40.109 kg/(m*rad)
uudr
16 Z o -50.232 kg/m
17 Za 27.968 kg*m/rad
18 Zu -13.552 kg/m
19 Z. -42.048 kg
20 z, -45.005 kg*m/rad
21 Zu 0.564.812 kg/rad
22 Zo 0.564.812 kg/rad
23 Z, 11.658 kg/rad
24 Z s -40.109 kg/(m*rad)
25 Muuds -17.357 kg/rad
26 Nuudr -17.357 kg/rad
27 K 0.041235 kg/rad
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