Summer and Fall 2021                   Back to the articles list | Back to browse issues page

XML Print


1- Chabahar Maritime University
Abstract:   (375 Views)
The oscillating water column is one of the most applicable and commercialized wave energy converters. There are some analytical-based simplified approaches like the rigid piston model for analyzing such converters in which the dynamic motion's damping, inertia, and stiffness are respectively modeled with a resistor, inductor, and capacitor (an RLC circuit). The power resonant frequency of wave energy converters is computed by solving the motion equation via its equivalent RLC circuit model. The free decay test is the other simple method for determining the resonant frequency and has been investigated experimentally. However, a comprehensive study is required. In this investigation, first, the effect of parameters like pressure, flow rate, and their phase difference on power resonant frequency, capture factor, etc., are conceptually investigated. Then, the relation between resonant frequency and free decay test frequency is studied for different chamber sizes. The results indicate that the free decay test frequency is generally close to the power resonant frequency.
Full-Text [PDF 1635 kb]   (89 Downloads)    
Type of Study: Research Paper | Subject: Offshore Hydrodynamic
Received: 2022/05/22 | Accepted: 2022/07/17

References
1. EVANS, D.,(1978), The oscillating water column wave-energy device, IMA Journal of Applied Mathematics, 22(4), p. 423-433. [DOI:10.1093/imamat/22.4.423]
2. BRENDMO, A., FALNES, J. and LILLEBEKKEN, P.,(1996), Lineår modelling of oscillating water columns including viscous loss, Applied Ocean Research, 18(2-3), p. 65-75. [DOI:10.1016/0141-1187(96)00011-9]
3. LOPES, M., et al.,(2009), Experimental and numerical investigation of non-predictive phase-control strategies for a point-absorbing wave energy converter, Ocean Engineering, 36(5), p. 386-402. [DOI:10.1016/j.oceaneng.2009.01.015]
4. FALCÃO, A. F., HENRIQUES, J. C. and CÂNDIDO, J. J.,(2012), Dynamics and optimization of the OWC spar buoy wave energy converter, Renewable Energy, 48, p. 369-381. [DOI:10.1016/j.renene.2012.05.009]
5. KETABDARI, M. and AKHTARI, A.,(2012), Numerical modeling of oscillating water column wave energy convertor, International Journal of Advanced renewable energy research, 1(4).
6. SUZUKI, M., WASHIO, Y. and KUBOKI, T.,(2005), in The Fifteenth International Offshore and Polar Engineering Conference. OnePetro.
7. MARTINS-RIVAS, H. and MEI, C. C.,(2009), Wave power extraction from an oscillating water column at the tip of a breakwater, Journal of Fluid Mechanics, 626, p. 395-414. [DOI:10.1017/S0022112009005990]
8. EVANS, D. V. and PORTER, R.,(1997), Efficient calculation of hydrodynamic properties of OWC-type devices. [DOI:10.1115/1.2829098]
9. ŞENTÜRK, U. and ÖZDAMAR, A.,(2012), Wave energy extraction by an oscillating water column with a gap on the fully submerged front wall, Applied Ocean Research, 37, p. 174-182. [DOI:10.1016/j.apor.2012.05.004]
10. HAI, L., GÖTEMAN, M. and LEIJON, M.,(2016), A methodology of modelling a wave power system via an equivalent RLC circuit, IEEE Transactions on Sustainable Energy, 7(4), p. 1362-1370. [DOI:10.1109/TSTE.2016.2538803]
11. HAI, L., SVENSSON, O., ISBERG, J. and LEIJON, M.,(2015), Modelling a point absorbing wave energy converter by the equivalent electric circuit theory: A feasibility study, Journal of Applied Physics, 117(16), p. 164901. [DOI:10.1063/1.4918903]
12. ZHAO, H.-T., SUN, Z.-L., HAO, C.-L. and SHEN, J.-F.,(2013), Numerical modeling on hydrodynamic performance of a bottom-hinged flap wave energy converter, China Ocean Engineering, 27(1), p. 73-86. [DOI:10.1007/s13344-013-0007-y]
13. FARSANGI, M. A. A. and ZOHOOR, H.,(2019), Acoustic energy harvesting via magnetic shape memory alloys, Journal of Physics D: Applied Physics, 52(13), p. 135501. [DOI:10.1088/1361-6463/aafe99]
14. SIMONETTI, I., CAPPIETTI, L., EL SAFTI, H. and OUMERACI, H.,(2015), in International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, vol. 56574, p. V009T009A031.
15. VYZIKAS, T., DESHOULIÈRES, S., GIROUX, O., BARTON, M. and GREAVES, D.,(2017), Numerical study of fixed Oscillating Water Column with RANS-type two-phase CFD model, Renewable Energy, 102, p. 294-305. [DOI:10.1016/j.renene.2016.10.044]
16. ELHANAFI, A., FLEMING, A., MACFARLANE, G. and LEONG, Z.,(2017), Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column-wave energy converter, Renewable Energy, 105, p. 209-231. [DOI:10.1016/j.renene.2016.12.039]
17. ÇELIK, A. and ALTUNKAYNAK, A.,(2020), Determination of damping coefficient experimentally and mathematical vibration modelling of OWC surface fluctuations, Renewable Energy, 147, p. 1909-1920. [DOI:10.1016/j.renene.2019.09.104]
18. ÇELIK, A. and ALTUNKAYNAK, A.,(2020), Determination of hydrodynamic parameters of a fixed OWC by performing experimental and numerical free decay tests, Ocean Engineering, 204, p. 106827. [DOI:10.1016/j.oceaneng.2019.106827]
19. ÇELIK, A. and ALTUNKAYNAK, A.,(2020), Estimation of water column surface displacement of a fixed oscillating water column by simple mechanical model with determination of hydrodynamic parameters via physical experimental model, Journal of Waterway, Port, Coastal, and Ocean Engineering, 146(5), p. 04020030. [DOI:10.1061/(ASCE)WW.1943-5460.0000593]
20. PORTILLO, J., et al.,(2020), Wave energy converter physical model design and testing: The case of floating oscillating-water-columns, Applied Energy, 278, p. 115638. [DOI:10.1016/j.apenergy.2020.115638]
21. FALTINSEN, O.,(1993), Sea loads on ships and offshore structures, Cambridge university press, vol. 1. [DOI:10.4043/7142-MS]
22. FALCÃO, A. D. O. and JUSTINO, P.,(1999), OWC wave energy devices with air flow control, Ocean Engineering, 26(12), p. 1275-1295. [DOI:10.1016/S0029-8018(98)00075-4]
23. GOMES, R., HENRIQUES, J., GATO, L. and FALCÃO, A. D. O.,(2012), Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion, Renewable Energy, 44, p. 328-339. [DOI:10.1016/j.renene.2012.01.105]
24. ABAZARI, A.,(2022), Dynamic Response of a Combined Spar-Type FOWT and OWC-WEC by a Simplified Approach, Renewable Energy Research and Applications.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.