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1. Introduction

Ship resistance is a fundamental aspect of naval
architecture that directly impacts a vessel's
performance, fuel consumption, and overall
operational efficiency. Accurate prediction of ship
resistance has traditionally relied on empirical
methods, such as the Holtrop-Mennen formulation [1],
towing tank experiments adhering to standardized
protocols [2], and computational fluid dynamics (CFD)
simulations [3][4]. While these methods offer high
accuracy, they are often time-consuming, costly, and
limited by scale effects inherent in experimental and
numerical setups [5]. In recent years, the advent of
artificial intelligence (Al) and machine learning (ML)
techniques has presented a promising alternative to
conventional methods, enabling rapid and cost-
effective resistance prediction without the need for
extensive  experimental  setups [6]. Recent
advancements in Al have shown that with sufficient
training data, machine learning models can accurately
predict complex hydrodynamic behaviors and
resistance components from minimal input parameters.
However, most existing studies focus on specific
aspects of ship performance and require large,
multidimensional datasets.

In this work, we propose an innovative approach that
streamlines the prediction process by utilizing only
three fundamental input parameters Length Between
Waterlines (LWL), Beam at Waterline (BWL), and
Draft (T) to derive a comprehensive set of
hydrodynamic characteristics, including Maximum
Beam, displacement, wetted surface area, midship
section area, waterplane area, and the longitudinal
center of buoyancy (LCB). By integrating Al-driven
models with established hydrodynamic theory, our
methodology not only simplifies the input requirements
but also maintains high predictive accuracy for both
residual and frictional resistance. The methodology
presented in this paper leverages a robust dataset from
Delft University [7], comprising 308 full-scale
experiments across 22 different hull shapes. This
dataset, combined with advanced preprocessing
techniques, correlation analysis, and sophisticated
machine learning algorithms (such as XGBoost [8],
CatBoost [9], and Adaptive Boosting [10]), forms the
backbone of our predictive framework. Additionally,
the developed model is integrated into a Django-based
[11] web application, providing naval architects and
marine engineers with a user-friendly tool for real-time
hydrodynamic analysis and design optimization. In
summary, this study aims to bridge the gap between
traditional hydrodynamic analysis and modern Al
methodologies, offering a rapid, reliable, and cost-
effective solution for ship resistance prediction. The
proposed approach not only enhances design efficiency
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but also paves the way for further research into Al
applications in naval architecture.

2. Methodology

2.1. Data Acquisition and Preprocessing

In this study, we employ the Delft University dataset,
which comprises 308 full-scale experiments conducted
on 22 different hull shapes. The dataset encompasses
essential hydrodynamic parameters such as Maximum
beam (Bmax), Waterline beam (BWL), Draft (T),
Depth (D), Waterline length (LWL), displacement,
wetted surface area (S), midship section area (Ax),
prismatic coeffects (Cp), waterplane area (Aw), and the
longitudinal center of buoyancy (LCB). These
parameters are pivotal for analysing ship resistance,
ensuring a comprehensive representation of the
hydrodynamic behaviour across diverse vessel designs.
For data cleaning, we utilized Python libraries
including NumPy [12], Pandas [13], and Scikit-learn
[14]. Although the original dataset contained several
hydrostatic features such as metacenter height and
buoyancy keel distance that are generally valuable in
hydrodynamic studies, these parameters were
considered non-essential for our specific focus on ship
resistance. By constructing a correlation matrix and
leveraging our hydrodynamic knowledge, we identified
and removed these extraneous features.

Furthermore, an examination of the dataset using
Pandas confirmed that there were no missing (Nan)
values (Figure 1), thereby ensuring data completeness
and reliability [15]. To ensure the robustness of our
dataset, we conducted an outlier analysis using box
plots (Figure 2) and standard deviation charts (Figure
3) through Tukey's interquartile range method:

Q! = 25th percentile Q3 = 75th percentile

IQR = Q3 — Q.
Lower bound = Q' — 1.5 x IQR
Upper bound = Q3 + 1.5 x IQR 1)

where Q: and Qs represent  the 25th and  75th
percentiles respectively, and IQR= Q.— Qs is the
interquartile range. This method identifies outliers as
observations falling outside this range, with the 1.5
multiplier providing a conservative threshold that
preserves physically plausible extreme values while
filtering statistical anomalies.
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Figure 1. Percentage of missing values across hydrodynamic
parameters.

These statistical tools revealed that while some extreme
values exist in the dataset (visible in Figure 3's
deviation analysis), they are limited in number and fall
within  reasonable physical bounds for ship
hydrodynamic parameters. The standard deviation
visualization (Figure 3) further confirms that nearly all
data points lie within +3c of the mean. Given their
limited quantity and potential validity as rare but
authentic measurements, we retained these outliers to
preserve the dataset's integrity and avoid introducing
bias through excessive filtering.
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Figure 2. Distribution of parameters with outlier detection
using box plots.

Given that the dataset comprises parameters measured
in varying units and scales, feature standardization was
a critical preprocessing step. We applied normalization
and standardization [16] techniques using Scikit-learn
preprocessing tools to transform the data such that each
feature has a mean of zero and a standard deviation of
one. This standardization minimizes error propagation
and ensures that all features contribute equally during
the machine learning model training, ultimately
enhancing the stability and performance of our
predictive analyses. The robust nature of our chosen
machine learning approaches further mitigates
potential outlier effects while maintaining sensitivity to
genuine hydrodynamic phenomena.
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Figure 3. Normalized parameter distributions with £3¢ outlier
thresholds.

2.2 Correlation Analysis and Feature Engineering
In the next phase of our methodology, we conducted a
comprehensive correlation analysis [17] to elucidate
the relationships between the hydrodynamic
parameters in our dataset. By constructing a correlation
matrix (Figure 4), we were able to identify several
strong dependencies among the variables. Notably,
perfect correlations were observed between Bmax and
BWL, as well as between D and T. These findings
allowed us to derive Bmax directly from BWL and D
from T using simple linear regression models, each
achieving 100% accuracy. The correlation matrix was
constructed using the Pearson correlation coefficient,
which quantifies the linear relationship between two
variables, as defined by Equation 2:

. CEm-00i-9)
" T RG o Dix50, - 2 (2)

For parameters with more complex, non-linear
interdependencies, such as the ship's displacement, we
combined LWL, BWL, and T using a CatBoost
Regressor. This approach effectively captured non-
linear relationships, providing highly accurate
predictions for displacement. Building upon these
derived parameters, we further estimated other critical
hydrodynamic quantities including the wetted surface
area (S), midship section area (Ax), waterplane area
(Aw), and longitudinal center of buoyancy (LCB) by
employing appropriate regression models guided by the
strengths of the observed correlations. To remove scale
effects and ensure universal applicability of our model,
all raw parameters were subsequently converted into
dimensionless groups (e.g., L/B, L/T, Cp,
L/Displacement® (1/3), LCB, and various Froude
numbers). This conversion not only normalized the

data but also enhanced the robustness and
generalizability of our predictive modelling
framework.
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Correlation Matrix Heatmap

Figure 4. Correlation matrix of hydrodynamic parameters
highlighting linear dependencies.

2.3 Residual and Frictional Resistance Estimation
In this phase, we focus on accurately quantifying the
two major components of ship resistance residual and
frictional resistance and combining them to compute
the total resistance. To begin with residual resistance,
our strategy involves converting the raw hydrodynamic
parameters into dimensionless groups, such as L/B,
L/T, Cp, L/Displacement® (1/3), LCB, and various
Froude numbers. This transformation is critical to
eliminate scale effects and to embed the essential
physical characteristics of the ship into our modelling
process, thereby facilitating universal comparisons
across different vessel sizes and designs.

We then evaluated several machine learning algorithms
including XGBoost, LightGBM [18], CatBoost,
Random Forest [19], Adaptive Boosting, and Support
Vector Machine (SVM) [20] using these dimensionless
parameters as inputs. The training process employed a
10-fold cross-validation strategy [21], ensuring that the
models were robust and generalizable. Among the
various models tested, XGBoost emerged as the best
candidate, demonstrating an accuracy of approximately
99.8% in predicting residual resistance.

A key aspect of optimizing the XGBoost model
involved using grid search for hyperparameter tuning
to systematically evaluate combinations of learning
rate, maximum tree depth, number of estimators,
subsample ratios, and regularization parameters. Model
performance was assessed through four key metrics:
Mean Absolute Error (MAE) quantifying average
prediction deviations (Eq. 3), Mean Squared Error
(MSE) emphasizing larger errors through squaring (Eq.
4), Root Mean Square Error (RMSE) maintaining
dimensional consistency (Eg. 5), and R-squared (R?)
measuring explained variance (Eq. 6). The optimal
configuration was selected through 10-fold cross-
validation by simultaneously minimizing MAE, MSE,
and RMSE while maximizing R?, ensuring robust
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capture of non-linear interactions for residual
resistance prediction. This rigorous process yielded the
following evaluation metrics:

MAE =231 |y; - il (3)
MSE = iZ?ﬂ(J’i - 90?2 (4)
RMSE = \/m ()
2 _ 4 _ ZEa0i—9)®
R"=1 S 9)? (6)

For frictional resistance calculation, we adopted the
well-established ITTC-1957 method (Eg. 7), which
computes the friction coefficient (CF) based on the
Reynolds number (Re). This formulation is widely
accepted in naval architecture for estimating viscous
drag:

where Re=VL/vis the Reynolds number,
with V representing ship velocity, L the waterline
length, and v the kinematic viscosity of water. The
ITTC-1957 method provided a reliable measure of the
frictional resistance component, particularly at lower
speeds where viscous effects dominate.

Re = W xL)

Cr=0 VL (7)

=4 (log10 (Re)—2 )2

Finally, the total resistance of the ship is determined by
summing the residual resistance (predicted via the
optimized XGBoost model) and the frictional
resistance (calculated using the ITTC57 method). This
integrated approach, which combines data-driven
machine learning with classical hydrodynamic theory,
offers a robust and accurate estimation of the forces
opposing the ship’s movement. Such a comprehensive
methodology not only streamlines the resistance
prediction process but also enhances the precision of
performance evaluations and design optimizations in
naval architecture.

The complete code is available at
https://github.com/pooryakhorsand/ml_yacht_resistan
ce_3parameters/blob/main/Untitled5.ipynb.

3. Results and Discussion

In this study, our primary objective was to develop an
Al-driven model capable of predicting all essential
hydrodynamic properties and the total resistance of
sailing yachts using only three fundamental input
parameters: Length Between Waterlines (LWL), Beam
at Waterline (BWL), and Draft (T). This innovative
approach not only streamlines the data input process
but also integrates multiple predictive steps to
accurately derive additional parameters such as Bmax,
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D, displacement, wetted surface area, Ax, Ay, Cp, and
LCB culminating in the calculation of both frictional
and residual resistance, and ultimately the total
resistance.

This section is organized to systematically present the
predictive performance of each step in our model. We
begin with the derivation of key hydrodynamic
parameters through correlation analysis and regression
techniques, followed by a detailed evaluation of our Al
models, including the comparison of several machine
learning algorithms wused for predicting residual
resistance. Furthermore, the section discusses how our
Al-driven methodology compares with traditional
resistance estimation techniques such as towing tank
experiments and CFD simulations, highlighting both
the advantages and potential limitations of our
approach.

3.1 Correlation Analysis and Parameter Derivation
Our initial analysis involved constructing a
comprehensive correlation matrix to understand the
relationships between all hydrodynamic parameters. As
illustrated in the accompanying heatmap (Figure 4),
two standout findings emerged: a perfect 100%
correlation between Bmax and BWL, and likewise
between D and T. These perfect correlations imply that
Bmax can be directly derived from BWL and D from T
without loss of information. Consequently, these
findings significantly simplify our input space,
allowing us to expand the parameter set while
maintaining the integrity of the predictions.

To leverage these perfect correlations, we implemented
simple Linear Regression models. For Bmax, using
BWL as the sole predictor yielded a regression model
with 100% accuracy. A similar approach was applied
to predict D from T, resulting in equally flawless
performance. The resulting regression equations are
presented in Eq. 8. These outcomes not only validate
the reliability of our dataset but also ensure that the
derived parameters enhance the overall model without
introducing errors.

Bmax = —0.05 + (1.18) * Bwl
D =115+ (1.00)* T (8)

Unlike the linear relationships observed for Bmax and
D, the displacement of the ship exhibited a non-linear
correlation with the primary input parameters (BWL,
T, and LWL). As shown in the correlation heatmap
(Figure 4), displacement has a strong correlation with
D (0.83), a moderate correlation with BWL (0.65), and
a weak correlation with LWL (0.1). The low correlation
between displacement and LWL can be attributed to the
limited variation in LWL across the dataset. Our
dataset includes 22 ship bodies, with LWL values
ranging only from 10 to 10.15. This narrow range
means that LWL has minimal influence on other
parameters and overall resistance, leading to its weak
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correlation with displacement. To effectively model
this complexity, we utilized the CatBoost Regressor, a
powerful gradient-boosting algorithm known for
efficiently handling non-linear relationships. The
model demonstrated 100% accuracy in predicting
displacement, as confirmed by our comparative
performance metrics and scatter plots (Figure 5). These
results affirm the suitability of the CatBoost approach
in capturing intricate hydrodynamic dependencies.

CatBoost Regression: Actual vs Predicted Displacement
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Figure 5. Scatter plot of predicted vs. actual ship
displacement, demonstrating CatBoost Regressor accuracy.

For the prediction of wetted surface area (S), we
employed the CatBoost Regressor to capture the non-
linear relationships among the input parameters and S.
Our model used LWL, BWL, T, and displacement as
inputs, with observed correlations of 0.16, 0.88, 0.48,
and 0.89 with S, respectively. The CatBoost model
achieved near 100% accuracy in predicting S, as
demonstrated by the performance plot in Figure 6,
resulting in highly precise predictions with an error
margin below 1%.

CatBoost Regression: Actual vs Predicted Water Surface Area

| = Predicted vs Actual X
--- Perfect Prediction -
L
MAE: 0.04 x”
MSE: 0.01 -
RMSE: 0.07
R?: 99.88%

Predicted Water Surface Area
X
2

23 24 25 26 27 28 29 30
Actual Water Surface Area

Figure 6. Scatter plot of predicted vs. actual water surface,
demonstrating CatBoost Regressor accuracy.

For the prediction of the midship section area (Ax), we
utilized a Linear Regression model, leveraging T,

BWL, and displacement as the primary input
parameters. These variables demonstrated strong
correlations with  Ax, including 0.97 with

displacement, 0.89 with T, and 0.6 with BWL,
validating the choice of the Linear Regression


http://ijmt.ir/article-1-869-en.html

[ Downloaded from ijmt.ir on 2026-01-28 ]

Poorya Khorsandi and Ahmad Hajivand / IJMT 2025, Vol 21 No.1; p.71-79

approach. The model provided highly accurate
predictions, confirming its effectiveness in capturing
the relationships between the input parameters and Ax,
as represented in Equation 9.

Ax = —12511111033481.34 + (0.52) + Bwl +
(—10879226985632.47) + T + (10879226985634.52) *

Displacement (9)

The prediction of the waterplane area (Aw) was
similarly based on S, Ax, BWL, and displacement,
which demonstrated correlations of 0.9, 0.47, 0.93, and
0.6, respectively, with Aw. A Linear Regression model
was employed, and the formula for Aw is provided in
Equation 10.

Aw = 11.42 + (0.98) * watedg,,fqce + (0.65) * Ax +
(0.65) * Bwl + (—9.00) * Displacement (10)

For the block coefficient (Cb), we used its well-known
formula, which defines Cb as the ratio of displacement
volume to the product of LWL, BWL, and T. Since this
parameter is calculated directly rather than predicted
via regression, no additional model was necessary.
Similarly, for predicting the prismatic coefficient (Cp),
we used its well-known formula, which defines Cp as
the ratio of displacement to the product of the midship
section area (Ax) and the waterline length (LWL). This
formula allows us to directly calculate Cp without
requiring a regression model. The formulas for Cb and
Cp are shown in Equation 11.

_ Displacement
B LWL « BWL + T

Displacement
Ax * LWL

Cp = (11)
The prediction of the longitudinal center of buoyancy
(LCB) proved challenging due to its weak correlation
with the primary input parameters. To improve the
model's predictive capability, we included all available
parameters, enabling the model to better capture the
complex, non-linear relationships influencing LCB. As
a result, we employed a Gradient Boosting model,
which efficiently handled these intricate dependencies.
The corresponding scatter plot shown in Figure 7
illustrates the model’s satisfactory accuracy, despite
the inherent challenges in prediction.

Table. 1. summarizes the prediction models, input features,
and performance metrics for each hydrodynamic parameter.

Feature Model MAE MSE RMSE R?
Bmax Linear
Regression 0.00 0.00 0.00 100%
(BWL)
D Linear
Regression 0.00 0.00 0.00 100%

Q)]
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Displacement ~ CatBoost
(BWL, T, 000 0.00 0.00 100%
LWL)

Wetted CatBoost

Surface Area (LWL, BWL, o

©) T, 0.04 001 0.07 99.88%
Displacement)

Midship Linear

Section Area  Regression (T, o

(A%) BWL, 0.01  0.00 0.02 99.68%
Displacement)

Waterplane Linear

Area (Aw) Regression (S,
Ax. BWL. 012  0.02 0.16 99.36%

Displacement)

Gradient Boosting: Actual vs Predicted LCB
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Figure 7. Scatter plot of predicted vs. actual water surface,
demonstrating CatBoost Regressor accuracy.

In addition, Table 1 summarizes the performance of our
predictive models across all hydrodynamic features.
For each predicted parameter, the table details the
selected input features, the machine learning model
used (e.g., Linear Regression, CatBoost, Gradient
Boosting [23]), and key performance metrics such as
Rz, MSE, MAE, RMSE, and MAPE. This
comprehensive overview confirms the high accuracy
and reliability of our approach, highlighting the
suitability of simple regression for directly correlated
parameters (Bmax and D), CatBoost for capturing non-
linear relationships (displacement and wetted surface
area), and Gradient Boosting for modelling complex
dependencies (LCB).

3.2 Residual, and Total Resistance
Estimation

Residual resistance, which includes wave-making and
viscous pressure resistance, was predicted using
machine learning algorithms. Given our dataset of 308
rows and a limited number of columns, traditional deep
learning approaches resulted in poor accuracy due to
overfitting [24]. Instead, we tested six machine
learning models XGBoost, LightGBM, CatBoost,
Random Forest, Adaptive Boosting, and SVM.

To enhance model performance, we transformed key
hydrodynamic parameters into dimensionless groups
suchas L/B, L/T, Cp, L/Displacement” (1/3), LCB, and
various Froude numbers. These transformations

remove scale effects and enable universal comparisons

Frictional,
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across different vessel sizes. The inclusion of multiple
Froude numbers further improved model accuracy by
capturing residual resistance across varying speed
ranges.

Among the tested models, XGBoost achieved the
highest accuracy (99.8%), demonstrating superior
handling of non-linear dependencies in predicting
residual resistance. Detailed performance metrics
MAE, RMSE, and R2 are presented in Figure 8, and the
corresponding scatter plots for each algorithm are
shown in Figure 9. Additionally, Table 2 consolidates
these metrics (MAE, MSE, RMSE, and R?) for all six
algorithms, providing a comprehensive comparison of
their predictive performance.

Comparison of Evaluation Metrics Across Models

-
s
&

P S & g K & a4 & 5

AR # Ve

Figure 8. MAE, RMSE, and R2 for each machine learning
model.

Figure 9. Scatter plots of predicted versus actual residual
resistance.

Table. 2. presents the performance metrics of six machine
learning models for predicting residual resistance.

Model MAE MSE RMSE R2
XGBoost 0.270534 0.297569 0.545498 99.87%
CatBoost 0.321662 0.503819 0.709802 99.78%
Random 0.487186 1.031691 1.015722 99.55%
Forest

AdaBoost 0.992492 2.024278 1.422771 99.12%
LightGBM 1.030206 6.928767 2.632255 96.98%
SVM 5.365370 99.734449 9.986714 56.47%

Frictional resistance, representing the viscous drag due
to the interaction between the ship's hull and water, was
computed using the ITTC57 method, a widely accepted
standard in naval architecture. This method calculates
the friction coefficient based on the Reynolds number,
as formulated in Eq. 7, yielding a reliable estimate of
frictional drag, especially at lower speeds where
viscous effects are most significant.

The total resistance of the ship is determined by
summing the residual resistance (predicted via our
machine learning model) and the frictional resistance
(computed using the ITTC57 method). This integrated
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approach, which combines data-driven insights with
classical  hydrodynamic  theory, provides a
comprehensive and accurate estimation of the forces
opposing the ship's motion, offering a robust tool for
optimizing the design and performance of sailing
yachts.

3.3 Comparison with Traditional Methods
Traditional methods, such as towing tank experiments
and Computational ~ Fluid Dynamics (CFD)
simulations, have long been the backbone of
hydrodynamic analysis in naval architecture. Towing
tank experiments are known for their high accuracy and
direct measurement of resistance forces, but they are
expensive, time-consuming, and limited by scale
effects. Similarly, CFD simulations provide detailed
insights into fluid dynamics around the hull, yet they
require substantial computational resources and
specialized expertise. In contrast, our Al-driven
approach using a streamlined three-parameter input
model (length, width, and draft) offers rapid
predictions at a fraction of the cost. By converting
parameters into dimensionless groups and employing
machine learning algorithms like XGBoost, we achieve
near-instantaneous estimates of both residual and
frictional resistance. Although this method may not
capture every minute physical nuance, it strikes an
excellent balance between computational efficiency
and acceptable experimental accuracy.

One of the primary advantages of our approach is its
simplicity: using only three input parameters within a
pre-defined range (e.g., width values between 2 and 3,
as determined by our dataset) significantly reduces data
collection and processing complexity. This
minimalistic input model allows for quick iterations
during the early design phases, which is crucial for
optimizing performance and fuel consumption.
However, there are certain limitations to this approach.
The primary constraint is that users can only modify the
length, width, and draft within the tested range of the
dataset. This ensures accurate predictions but restricts
flexibility in exploring designs beyond the dataset’s
predefined limits. Additionally, while the model
effectively estimates resistance parameters, any errors
in the original dataset may influence the predicted
values. Despite these constraints, this method remains
a powerful tool for initial yacht design, allowing for
rapid evaluation of hydrodynamic performance within
the validated parameter space.

Our Al-driven methodology has been successfully
integrated into a Django-based application, where users
can input the three key parameters length, width, and
draft within specified ranges. Once the data is entered,
the application immediately displays the remaining
hydrodynamic parameters and resistance values
through intuitive graphs and tables. This real-time
visualization not only aids designers in quickly
assessing design viability but also facilitates early-
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stage optimization of yacht models, enhancing both
fuel consumption estimates and overall operational
efficiency. According to Figure 10, the interface
presents a clear and structured layout, allowing users to
efficiently analyse resistance components and make
informed design decisions.

Figure 10. Django app interface showing resistance plots (left)
and chart view (right) for user inputs.

The implementation of this Al-driven approach offers
significant benefits for the design process. By
streamlining iterations and reducing dependency on
time-consuming experiments or computationally
expensive simulations, it enables rapid prototyping and
cost-effective design optimization. Designers can
experiment with different configurations and
immediately see the hydrodynamic implications,
leading to faster and more informed decision-making.
Looking forward, there is potential for further
refinement by incorporating additional parameters or
expanding the dataset’s range, which could enhance the
model’s accuracy and extend its applicability to a wider
variety of hull forms and operating conditions.

3.4 Discussion of Error Sources and Future Work
Our experiments indicate that when the length, width,
and draft of the ship remain within the limits defined
by our experimental dataset, the prediction chain is
highly reliable with minimal error propagation. This is
largely because the derived parameters are calculated
from accurately constrained inputs. However, potential
sources of error do exist. For example, assumptions
inherent in the regression models and the quality of the
dataset could contribute to discrepancies if the inputs
fall outside the tested range. Any deviation from these
limits may lead to error propagation through the
derived parameters, affecting the overall resistance
predictions.

To enhance the robustness and generalizability of our
Al-driven model, future work should focus on
expanding the dataset. Creating a dataset with more
than 300 results that covers a much larger range of
dimensions would allow users to experiment with a
broader spectrum of designs. This expansion would
facilitate try-and-error processes over an extended
parameter space, ultimately improving model accuracy
and versatility. Additionally, integrating real-time
simulation tools and incorporating feedback from field
data could further refine the model. Extending the
methodology to accommodate other vessel types and
operational conditions is also a promising avenue for
future research.
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In summary, our work demonstrates the feasibility of
deriving multiple hydrodynamic parameters from just
three primary inputs length, width, and draft without
compromising on accuracy, provided the inputs remain
within the experimental limits. The Al model,
particularly when leveraging XGBoost for residual
resistance, has proven to be a reliable predictor of ship
resistance.

4. Conclusions

In conclusion, this study successfully demonstrates the
viability of an Al-driven approach to ship resistance
prediction using a minimal set of three primary inputs
Length Between Waterlines (LWL), Beam at Waterline
(BWL), and Draft (T). By integrating classical
hydrodynamic theory with advanced machine learning
algorithms, our methodology not only simplifies the
design process but also maintains a high degree of
predictive accuracy. The robust dataset from Delft
University, encompassing 308 full-scale experiments
across 22 hull types, provided a solid foundation for
developing models that accurately derive multiple
hydrodynamic parameters such as displacement,
wetted surface area, midship section area, waterplane
area, and longitudinal center of buoyancy (LCB). The
research highlights the strengths of employing both
linear regression for parameters with perfect
correlations and sophisticated ensemble methods like
XGBoost, CatBoost, and Gradient Boosting for
capturing more complex, non-linear interactions. These
techniques effectively bridge the gap between
traditional ~ empirical methods and modern
computational practices, offering a streamlined process
that is both cost-effective and computationally
efficient. The integration of these models into a
Django-based web application further enhances their
practical applicability, enabling real-time analysis and
design optimization for naval architects and marine
engineers. Moreover, while the proposed approach
significantly reduces the dependency on time-
consuming experimental setups and computationally
expensive simulations, it remains robust within the
validated range of input parameters. The findings pave
the way for future research aimed at expanding the
dataset and refining model accuracy, thereby extending
the approach’s applicability to a broader range of vessel
designs and operating conditions. Overall, this work
not only contributes to the evolving landscape of Al
applications in naval architecture but also offers a
promising tool for enhancing early-stage design
processes and operational performance in maritime
engineering.
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