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 This paper introduces an innovative, AI-driven methodology for predicting ship 

resistance using only three fundamental input parameters: Length Between Waterlines 

(LWL), Beam at Waterline (BWL), and Draft (T). Traditional resistance prediction 

techniques such as empirical methods, towing tank experiments, and computational 

fluid dynamics (CFD) simulations are highly accurate but involve significant time, cost, 

and complexity. Our approach leverages machine learning algorithms, including 

XGBoost, CatBoost, and Gradient Boosting, to derive a comprehensive suite of 

hydrodynamic characteristics from a robust dataset comprising 308 full-scale 

experiments across 22 different hull shapes. The methodology begins with meticulous 

data preprocessing and feature engineering, including normalization, outlier analysis, 

and correlation assessment, to ensure reliability and minimize error propagation. By 

transforming raw hydrodynamic data into dimensionless groups, our models effectively 

capture both linear and non-linear relationships among critical parameters such as 

displacement, wetted surface area, midship section area, waterplane area, and the 

longitudinal center of buoyancy (LCB). Simple linear regression techniques were 

successfully used to derive parameters with perfect correlations, while more complex 

non-linear interactions were accurately predicted using advanced ensemble methods. 

The integration of these AI models into a Django-based web application further 

enhances the utility of our approach, providing naval architects and marine engineers 

with a user-friendly, real-time tool for design optimization and performance evaluation. 

Comparative analysis indicates that our streamlined model delivers predictions of 

residual and frictional resistance with accuracy comparable to traditional methods, 

while offering significant improvements in computational efficiency and cost-

effectiveness. Overall, this research bridges the gap between classical hydrodynamic 

theory and modern artificial intelligence techniques, offering a rapid, reliable, and 

scalable solution for ship resistance prediction that has the potential to significantly 

enhance early-stage design processes in naval architecture. 
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1. Introduction 
Ship resistance is a fundamental aspect of naval 

architecture that directly impacts a vessel's 

performance, fuel consumption, and overall 

operational efficiency. Accurate prediction of ship 

resistance has traditionally relied on empirical 

methods, such as the Holtrop-Mennen formulation [1], 

towing tank experiments adhering to standardized 

protocols [2], and computational fluid dynamics (CFD) 

simulations [3][4]. While these methods offer high 

accuracy, they are often time-consuming, costly, and 

limited by scale effects inherent in experimental and 

numerical setups [5]. In recent years, the advent of 

artificial intelligence (AI) and machine learning (ML) 

techniques has presented a promising alternative to 

conventional methods, enabling rapid and cost-

effective resistance prediction without the need for 

extensive experimental setups [6]. Recent 

advancements in AI have shown that with sufficient 

training data, machine learning models can accurately 

predict complex hydrodynamic behaviors and 

resistance components from minimal input parameters. 

However, most existing studies focus on specific 

aspects of ship performance and require large, 

multidimensional datasets. 

 

In this work, we propose an innovative approach that 

streamlines the prediction process by utilizing only 

three fundamental input parameters Length Between 

Waterlines (LWL), Beam at Waterline (BWL), and 

Draft (T) to derive a comprehensive set of 

hydrodynamic characteristics, including Maximum 

Beam, displacement, wetted surface area, midship 

section area, waterplane area, and the longitudinal 

center of buoyancy (LCB). By integrating AI-driven 

models with established hydrodynamic theory, our 

methodology not only simplifies the input requirements 

but also maintains high predictive accuracy for both 

residual and frictional resistance. The methodology 

presented in this paper leverages a robust dataset from 

Delft University [7], comprising 308 full-scale 

experiments across 22 different hull shapes. This 

dataset, combined with advanced preprocessing 

techniques, correlation analysis, and sophisticated 

machine learning algorithms (such as XGBoost [8], 

CatBoost [9], and Adaptive Boosting [10]), forms the 

backbone of our predictive framework. Additionally, 

the developed model is integrated into a Django-based 

[11] web application, providing naval architects and 

marine engineers with a user-friendly tool for real-time 

hydrodynamic analysis and design optimization. In 

summary, this study aims to bridge the gap between 

traditional hydrodynamic analysis and modern AI 

methodologies, offering a rapid, reliable, and cost-

effective solution for ship resistance prediction. The 

proposed approach not only enhances design efficiency 

but also paves the way for further research into AI 

applications in naval architecture.  
 
 

2. Methodology 
2.1. Data Acquisition and Preprocessing 

In this study, we employ the Delft University dataset, 

which comprises 308 full-scale experiments conducted 

on 22 different hull shapes. The dataset encompasses 

essential hydrodynamic parameters such as Maximum 

beam (Bmax), Waterline beam (BWL), Draft (T), 

Depth (D), Waterline length (LWL), displacement, 

wetted surface area (S), midship section area (Ax), 

prismatic coeffects (Cp), waterplane area (Aw), and the 

longitudinal center of buoyancy (LCB). These 

parameters are pivotal for analysing ship resistance, 

ensuring a comprehensive representation of the 

hydrodynamic behaviour across diverse vessel designs. 

For data cleaning, we utilized Python libraries 

including NumPy [12], Pandas [13], and Scikit-learn 

[14]. Although the original dataset contained several 

hydrostatic features such as metacenter height and 

buoyancy keel distance that are generally valuable in 

hydrodynamic studies, these parameters were 

considered non-essential for our specific focus on ship 

resistance. By constructing a correlation matrix and 

leveraging our hydrodynamic knowledge, we identified 

and removed these extraneous features. 

Furthermore, an examination of the dataset using 

Pandas confirmed that there were no missing (Nan) 

values (Figure 1), thereby ensuring data completeness 

and reliability [15]. To ensure the robustness of our 

dataset, we conducted an outlier analysis using box 

plots (Figure 2) and standard deviation charts (Figure 

3) through Tukey's interquartile range method: 

 
𝑸𝟏 =  𝟐𝟓𝒕𝒉 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆 𝑸𝟑 =  𝟕𝟓𝒕𝒉 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆 

 

𝑰𝑸𝑹 =  𝑸₃ −  𝑸₁ 

𝑳𝒐𝒘𝒆𝒓 𝒃𝒐𝒖𝒏𝒅 =  𝑸𝟏 −  𝟏. 𝟓 ×  𝑰𝑸𝑹 

𝑼𝒑𝒑𝒆𝒓 𝒃𝒐𝒖𝒏𝒅 =  𝑸𝟑 +  𝟏. 𝟓 ×  𝑰𝑸𝑹    (1) 
 

where Q₁ and Q₃ represent the 25th and 75th 

percentiles respectively, and IQR= Q₁− Q₃  is the 

interquartile range. This method identifies outliers as 

observations falling outside this range, with the 1.5 

multiplier providing a conservative threshold that 

preserves physically plausible extreme values while 

filtering statistical anomalies. 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

5-
12

-0
1 

] 

                               2 / 9

http://ijmt.ir/article-1-869-en.html


Poorya Khorsandi and Ahmad Hajivand / AI-Driven Ship Resistance Prediction Using Three Key Hydrodynamic Parameters 

 

73 

 

 
Figure 1. Percentage of missing values across hydrodynamic 

parameters. 

 

These statistical tools revealed that while some extreme 

values exist in the dataset (visible in Figure 3's 

deviation analysis), they are limited in number and fall 

within reasonable physical bounds for ship 

hydrodynamic parameters. The standard deviation 

visualization (Figure 3) further confirms that nearly all 

data points lie within ±3σ of the mean. Given their 

limited quantity and potential validity as rare but 

authentic measurements, we retained these outliers to 

preserve the dataset's integrity and avoid introducing 

bias through excessive filtering. 

 

 
Figure 2. Distribution of parameters with outlier detection 

using box plots. 

 

Given that the dataset comprises parameters measured 

in varying units and scales, feature standardization was 

a critical preprocessing step. We applied normalization 

and standardization [16] techniques using Scikit-learn 

preprocessing tools to transform the data such that each 

feature has a mean of zero and a standard deviation of 

one. This standardization minimizes error propagation 

and ensures that all features contribute equally during 

the machine learning model training, ultimately 

enhancing the stability and performance of our 

predictive analyses. The robust nature of our chosen 

machine learning approaches further mitigates 

potential outlier effects while maintaining sensitivity to 

genuine hydrodynamic phenomena. 

 

 
Figure 3. Normalized parameter distributions with ±3σ outlier 

thresholds. 
 

2.2 Correlation Analysis and Feature Engineering 

In the next phase of our methodology, we conducted a 

comprehensive correlation analysis [17] to elucidate 

the relationships between the hydrodynamic 

parameters in our dataset. By constructing a correlation 

matrix (Figure 4), we were able to identify several 

strong dependencies among the variables. Notably, 

perfect correlations were observed between Bmax and 

BWL, as well as between D and T. These findings 

allowed us to derive Bmax directly from BWL and D 

from T using simple linear regression models, each 

achieving 100% accuracy. The correlation matrix was 

constructed using the Pearson correlation coefficient, 

which quantifies the linear relationship between two 

variables, as defined by Equation 2: 

 

𝒓ₓᵧ =
(∑(𝒙ᵢ − 𝒙̄)(𝒚ᵢ − ȳ))

√∑(𝒙ᵢ − 𝒙̄)𝟐× ∑(𝒚ᵢ − ȳ)𝟐
     (2) 

 

For parameters with more complex, non-linear 

interdependencies, such as the ship's displacement, we 

combined LWL, BWL, and T using a CatBoost 

Regressor. This approach effectively captured non-

linear relationships, providing highly accurate 

predictions for displacement. Building upon these 

derived parameters, we further estimated other critical 

hydrodynamic quantities including the wetted surface 

area (S), midship section area (Ax), waterplane area 

(Aw), and longitudinal center of buoyancy (LCB) by 

employing appropriate regression models guided by the 

strengths of the observed correlations. To remove scale 

effects and ensure universal applicability of our model, 

all raw parameters were subsequently converted into 

dimensionless groups (e.g., L/B, L/T, Cp, 

L/Displacement^ (1/3), LCB, and various Froude 

numbers). This conversion not only normalized the 

data but also enhanced the robustness and 

generalizability of our predictive modelling 

framework. 
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Figure 4. Correlation matrix of hydrodynamic parameters 

highlighting linear dependencies. 

 

2.3 Residual and Frictional Resistance Estimation 

In this phase, we focus on accurately quantifying the 

two major components of ship resistance residual and 

frictional resistance and combining them to compute 

the total resistance. To begin with residual resistance, 

our strategy involves converting the raw hydrodynamic 

parameters into dimensionless groups, such as L/B, 

L/T, Cp, L/Displacement^ (1/3), LCB, and various 

Froude numbers. This transformation is critical to 

eliminate scale effects and to embed the essential 

physical characteristics of the ship into our modelling 

process, thereby facilitating universal comparisons 

across different vessel sizes and designs. 

We then evaluated several machine learning algorithms 

including XGBoost, LightGBM [18], CatBoost, 

Random Forest [19], Adaptive Boosting, and Support 

Vector Machine (SVM) [20] using these dimensionless 

parameters as inputs. The training process employed a 

10-fold cross-validation strategy [21], ensuring that the 

models were robust and generalizable. Among the 

various models tested, XGBoost emerged as the best 

candidate, demonstrating an accuracy of approximately 

99.8% in predicting residual resistance. 

A key aspect of optimizing the XGBoost model 

involved using grid search for hyperparameter tuning 

to systematically evaluate combinations of learning 

rate, maximum tree depth, number of estimators, 

subsample ratios, and regularization parameters. Model 

performance was assessed through four key metrics: 

Mean Absolute Error (MAE) quantifying average 

prediction deviations (Eq. 3), Mean Squared Error 

(MSE) emphasizing larger errors through squaring (Eq. 

4), Root Mean Square Error (RMSE) maintaining 

dimensional consistency (Eq. 5), and R-squared (R²) 

measuring explained variance (Eq. 6). The optimal 

configuration was selected through 10-fold cross-

validation by simultaneously minimizing MAE, MSE, 

and RMSE while maximizing R², ensuring robust 

capture of non-linear interactions for residual 

resistance prediction. This rigorous process yielded the 

following evaluation metrics: 
 

𝑴𝑨𝑬 =
𝟏

𝒏
∑ |𝒚𝒊 − ŷ𝒊|

𝒏
𝒊=𝟏   (3) 

 

𝑴𝑺𝑬 =
𝟏

𝒏
∑ (𝒚𝒊 − ŷ𝒊)

𝟐𝒏
𝒊=𝟏   (4) 

 

𝑹𝑴𝑺𝑬 =  √
𝟏

𝒏
∑ (𝒚𝒊 − ŷ𝒊)

𝟐𝒏
𝒊=𝟏   (5) 

 

𝑹𝟐 =  𝟏 −
∑ (𝒚𝒊− ŷ𝒊)𝟐𝒏

𝒊=𝟏

∑ (𝒚𝒊−  𝒚̄)𝟐𝒏
𝒊=𝟏

    (6) 

 
For frictional resistance calculation, we adopted the 

well-established ITTC-1957 method (Eq. 7), which 

computes the friction coefficient (CF) based on the 

Reynolds number (Re). This formulation is widely 

accepted in naval architecture for estimating viscous 

drag: 

where Re=VL/ν is the Reynolds number, 

with V representing ship velocity, L the waterline 

length, and ν the kinematic viscosity of water. The 

ITTC-1957 method provided a reliable measure of the 

frictional resistance component, particularly at lower 

speeds where viscous effects dominate. 

 

𝑹𝒆 =
(𝑽 × 𝑳)

𝝂
     

𝑪𝑭 = 𝟎.
𝟎𝟕𝟓

(𝒍𝒐𝒈𝟏𝟎 (𝑹𝒆)− 𝟐 )𝟐  (7) 

 
Finally, the total resistance of the ship is determined by 

summing the residual resistance (predicted via the 

optimized XGBoost model) and the frictional 

resistance (calculated using the ITTC57 method). This 

integrated approach, which combines data-driven 

machine learning with classical hydrodynamic theory, 

offers a robust and accurate estimation of the forces 

opposing the ship’s movement. Such a comprehensive 

methodology not only streamlines the resistance 

prediction process but also enhances the precision of 

performance evaluations and design optimizations in 

naval architecture. 

The complete code is available at  

https://github.com/pooryakhorsand/ml_yacht_resistan

ce_3parameters/blob/main/Untitled5.ipynb. 

  
 

3. Results and Discussion 
In this study, our primary objective was to develop an 

AI-driven model capable of predicting all essential 

hydrodynamic properties and the total resistance of 

sailing yachts using only three fundamental input 

parameters: Length Between Waterlines (LWL), Beam 

at Waterline (BWL), and Draft (T). This innovative 

approach not only streamlines the data input process 

but also integrates multiple predictive steps to 

accurately derive additional parameters such as Bmax, 
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D, displacement, wetted surface area, Ax, Ay, Cp, and 

LCB culminating in the calculation of both frictional 

and residual resistance, and ultimately the total 

resistance. 

This section is organized to systematically present the 

predictive performance of each step in our model. We 

begin with the derivation of key hydrodynamic 

parameters through correlation analysis and regression 

techniques, followed by a detailed evaluation of our AI 

models, including the comparison of several machine 

learning algorithms used for predicting residual 

resistance. Furthermore, the section discusses how our 

AI-driven methodology compares with traditional 

resistance estimation techniques such as towing tank 

experiments and CFD simulations, highlighting both 

the advantages and potential limitations of our 

approach. 

 

3.1 Correlation Analysis and Parameter Derivation 

Our initial analysis involved constructing a 

comprehensive correlation matrix to understand the 

relationships between all hydrodynamic parameters. As 

illustrated in the accompanying heatmap (Figure 4), 

two standout findings emerged: a perfect 100% 

correlation between Bmax and BWL, and likewise 

between D and T. These perfect correlations imply that 

Bmax can be directly derived from BWL and D from T 

without loss of information. Consequently, these 

findings significantly simplify our input space, 

allowing us to expand the parameter set while 

maintaining the integrity of the predictions. 

To leverage these perfect correlations, we implemented 

simple Linear Regression models. For Bmax, using 

BWL as the sole predictor yielded a regression model 

with 100% accuracy. A similar approach was applied 

to predict D from T, resulting in equally flawless 

performance. The resulting regression equations are 

presented in Eq. 8. These outcomes not only validate 

the reliability of our dataset but also ensure that the 

derived parameters enhance the overall model without 

introducing errors. 

 
𝑩𝒎𝒂𝒙 =  −𝟎. 𝟎𝟓 + (𝟏. 𝟏𝟖) ∗  𝑩𝒘𝒍 

𝑫 =  𝟏. 𝟏𝟓 + (𝟏. 𝟎𝟎) ∗  𝑻    (8) 

 
Unlike the linear relationships observed for Bmax and 

D, the displacement of the ship exhibited a non-linear 

correlation with the primary input parameters (BWL, 

T, and LWL). As shown in the correlation heatmap 

(Figure 4), displacement has a strong correlation with 

D (0.83), a moderate correlation with BWL (0.65), and 

a weak correlation with LWL (0.1). The low correlation 

between displacement and LWL can be attributed to the 

limited variation in LWL across the dataset. Our 

dataset includes 22 ship bodies, with LWL values 

ranging only from 10 to 10.15. This narrow range 

means that LWL has minimal influence on other 

parameters and overall resistance, leading to its weak 

correlation with displacement. To effectively model 

this complexity, we utilized the CatBoost Regressor, a 

powerful gradient-boosting algorithm known for 

efficiently handling non-linear relationships. The 

model demonstrated 100% accuracy in predicting 

displacement, as confirmed by our comparative 

performance metrics and scatter plots (Figure 5). These 

results affirm the suitability of the CatBoost approach 

in capturing intricate hydrodynamic dependencies. 

 

 
Figure 5. Scatter plot of predicted vs. actual ship 

displacement, demonstrating CatBoost Regressor accuracy. 

 

For the prediction of wetted surface area (S), we 

employed the CatBoost Regressor to capture the non-

linear relationships among the input parameters and S. 

Our model used LWL, BWL, T, and displacement as 

inputs, with observed correlations of 0.16, 0.88, 0.48, 

and 0.89 with S, respectively. The CatBoost model 

achieved near 100% accuracy in predicting S, as 

demonstrated by the performance plot in Figure 6, 

resulting in highly precise predictions with an error 

margin below 1%. 

 

 
Figure 6. Scatter plot of predicted vs. actual water surface, 

demonstrating CatBoost Regressor accuracy. 

 

For the prediction of the midship section area (Ax), we 

utilized a Linear Regression model, leveraging T, 

BWL, and displacement as the primary input 

parameters. These variables demonstrated strong 

correlations with Ax, including 0.97 with 

displacement, 0.89 with T, and 0.6 with BWL, 

validating the choice of the Linear Regression 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

5-
12

-0
1 

] 

                               5 / 9

http://ijmt.ir/article-1-869-en.html


Poorya Khorsandi and Ahmad Hajivand / IJMT 2025, Vol 21 No.1; p.71-79 

 

76 

 

approach. The model provided highly accurate 

predictions, confirming its effectiveness in capturing 

the relationships between the input parameters and Ax, 

as represented in Equation 9. 
 

𝑨𝒙 =  −𝟏𝟐𝟓𝟏𝟏𝟏𝟏𝟏𝟎𝟑𝟑𝟒𝟖𝟏. 𝟑𝟒 +  (𝟎. 𝟓𝟐) ∗  𝑩𝒘𝒍 +
 (−𝟏𝟎𝟖𝟕𝟗𝟐𝟐𝟔𝟗𝟖𝟓𝟔𝟑𝟐. 𝟒𝟕) ∗  𝑻 +  (𝟏𝟎𝟖𝟕𝟗𝟐𝟐𝟔𝟗𝟖𝟓𝟔𝟑𝟒. 𝟓𝟐) ∗

 𝑫𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕  (9) 

 
The prediction of the waterplane area (Aw) was 

similarly based on S, Ax, BWL, and displacement, 

which demonstrated correlations of 0.9, 0.47, 0.93, and 

0.6, respectively, with Aw. A Linear Regression model 

was employed, and the formula for Aw is provided in 

Equation 10. 
 

𝑨𝒘 =  𝟏𝟏. 𝟒𝟐 + (𝟎. 𝟗𝟖) ∗  𝒘𝒂𝒕𝒆𝒅𝒔𝒖𝒓𝒇𝒂𝒄𝒆 + (𝟎. 𝟔𝟓) ∗  𝑨𝒙 +

 (𝟎. 𝟔𝟓) ∗  𝑩𝒘𝒍 + (−𝟗. 𝟎𝟎) ∗  𝑫𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕 (10) 

 
For the block coefficient (Cb), we used its well-known 

formula, which defines Cb as the ratio of displacement 

volume to the product of LWL, BWL, and T. Since this 

parameter is calculated directly rather than predicted 

via regression, no additional model was necessary. 

Similarly, for predicting the prismatic coefficient (Cp), 

we used its well-known formula, which defines Cp as 

the ratio of displacement to the product of the midship 

section area (Ax) and the waterline length (LWL). This 

formula allows us to directly calculate Cp without 

requiring a regression model. The formulas for Cb and 

Cp are shown in Equation 11. 

 

 

𝑪𝑩 =  
𝑫𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕

𝑳𝑾𝑳 ∗  𝑩𝑾𝑳 ∗  𝑻
 

 

𝑪𝒑 =  
𝑫𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕

𝑨𝒙 ∗ 𝑳𝑾𝑳
                                                     (11) 

 
The prediction of the longitudinal center of buoyancy 

(LCB) proved challenging due to its weak correlation 

with the primary input parameters. To improve the 

model's predictive capability, we included all available 

parameters, enabling the model to better capture the 

complex, non-linear relationships influencing LCB. As 

a result, we employed a Gradient Boosting model, 

which efficiently handled these intricate dependencies. 

The corresponding scatter plot shown in Figure 7 

illustrates the model’s satisfactory accuracy, despite 

the inherent challenges in prediction. 

 
Table. 1. summarizes the prediction models, input features, 

and performance metrics for each hydrodynamic parameter. 

 
Feature Model MAE MSE RMSE R² 

 

Bmax Linear 

Regression 
(BWL) 

0.00 0.00 0.00 100% 

D Linear 

Regression 
(T) 

0.00 0.00 0.00 100% 

Displacement CatBoost 
(BWL, T, 

LWL) 

0.00 0.00 0.00 100% 

Wetted 
Surface Area 

(S) 

CatBoost 
(LWL, BWL, 

T, 

Displacement) 

0.04 0.01 0.07 99.88% 

Midship 

Section Area 

(Ax) 

Linear 

Regression (T, 

BWL, 
Displacement) 

0.01 0.00 0.02 99.68% 

Waterplane 
Area (Aw) 

Linear 
Regression (S, 

Ax, BWL, 

Displacement) 

0.12 0.02 0.16 99.36% 

 
 

 
Figure 7. Scatter plot of predicted vs. actual water surface, 

demonstrating CatBoost Regressor accuracy. 

 

In addition, Table 1 summarizes the performance of our 

predictive models across all hydrodynamic features. 

For each predicted parameter, the table details the 

selected input features, the machine learning model 

used (e.g., Linear Regression, CatBoost, Gradient 

Boosting [23]), and key performance metrics such as 

R², MSE, MAE, RMSE, and MAPE. This 

comprehensive overview confirms the high accuracy 

and reliability of our approach, highlighting the 

suitability of simple regression for directly correlated 

parameters (Bmax and D), CatBoost for capturing non-

linear relationships (displacement and wetted surface 

area), and Gradient Boosting for modelling complex 

dependencies (LCB). 
      

3.2 Residual, Frictional, and Total Resistance 

Estimation 

Residual resistance, which includes wave-making and 

viscous pressure resistance, was predicted using 

machine learning algorithms. Given our dataset of 308 

rows and a limited number of columns, traditional deep 

learning approaches resulted in poor accuracy due to 

overfitting [24]. Instead, we tested six machine 

learning models XGBoost, LightGBM, CatBoost, 

Random Forest, Adaptive Boosting, and SVM. 

To enhance model performance, we transformed key 

hydrodynamic parameters into dimensionless groups 

such as L/B, L/T, Cp, L/Displacement^ (1/3), LCB, and 

various Froude numbers. These transformations 

remove scale effects and enable universal comparisons 
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across different vessel sizes. The inclusion of multiple 

Froude numbers further improved model accuracy by 

capturing residual resistance across varying speed 

ranges. 

Among the tested models, XGBoost achieved the 

highest accuracy (99.8%), demonstrating superior 

handling of non-linear dependencies in predicting 

residual resistance. Detailed performance metrics 

MAE, RMSE, and R² are presented in Figure 8, and the 

corresponding scatter plots for each algorithm are 

shown in Figure 9. Additionally, Table 2 consolidates 

these metrics (MAE, MSE, RMSE, and R²) for all six 

algorithms, providing a comprehensive comparison of 

their predictive performance. 

 

 
Figure 8. MAE, RMSE, and R² for each machine learning 

model. 
 

 
 

 

 
Figure 9. Scatter plots of predicted versus actual residual 

resistance. 

 

Table. 2. presents the performance metrics of six machine 

learning models for predicting residual resistance. 
Model MAE MSE RMSE R² 

XGBoost 0.270534 0.297569 0.545498 99.87% 
CatBoost 0.321662 0.503819 0.709802 99.78% 

Random 

Forest 

0.487186 1.031691 1.015722 99.55% 

AdaBoost 0.992492 2.024278 1.422771 99.12% 

LightGBM 1.030206 6.928767 2.632255 96.98% 

SVM 5.365370 99.734449 9.986714 56.47% 

 

Frictional resistance, representing the viscous drag due 

to the interaction between the ship's hull and water, was 

computed using the ITTC57 method, a widely accepted 

standard in naval architecture. This method calculates 

the friction coefficient based on the Reynolds number, 

as formulated in Eq. 7, yielding a reliable estimate of 

frictional drag, especially at lower speeds where 

viscous effects are most significant. 

The total resistance of the ship is determined by 

summing the residual resistance (predicted via our 

machine learning model) and the frictional resistance 

(computed using the ITTC57 method). This integrated 

approach, which combines data-driven insights with 

classical hydrodynamic theory, provides a 

comprehensive and accurate estimation of the forces 

opposing the ship's motion, offering a robust tool for 

optimizing the design and performance of sailing 

yachts. 

 

3.3 Comparison with Traditional Methods 

Traditional methods, such as towing tank experiments 

and Computational Fluid Dynamics (CFD) 

simulations, have long been the backbone of 

hydrodynamic analysis in naval architecture. Towing 

tank experiments are known for their high accuracy and 

direct measurement of resistance forces, but they are 

expensive, time-consuming, and limited by scale 

effects. Similarly, CFD simulations provide detailed 

insights into fluid dynamics around the hull, yet they 

require substantial computational resources and 

specialized expertise. In contrast, our AI-driven 

approach using a streamlined three-parameter input 

model (length, width, and draft) offers rapid 

predictions at a fraction of the cost. By converting 

parameters into dimensionless groups and employing 

machine learning algorithms like XGBoost, we achieve 

near-instantaneous estimates of both residual and 

frictional resistance. Although this method may not 

capture every minute physical nuance, it strikes an 

excellent balance between computational efficiency 

and acceptable experimental accuracy. 

One of the primary advantages of our approach is its 

simplicity: using only three input parameters within a 

pre-defined range (e.g., width values between 2 and 3, 

as determined by our dataset) significantly reduces data 

collection and processing complexity. This 

minimalistic input model allows for quick iterations 

during the early design phases, which is crucial for 

optimizing performance and fuel consumption. 

However, there are certain limitations to this approach. 

The primary constraint is that users can only modify the 

length, width, and draft within the tested range of the 

dataset. This ensures accurate predictions but restricts 

flexibility in exploring designs beyond the dataset’s 

predefined limits. Additionally, while the model 

effectively estimates resistance parameters, any errors 

in the original dataset may influence the predicted 

values. Despite these constraints, this method remains 

a powerful tool for initial yacht design, allowing for 

rapid evaluation of hydrodynamic performance within 

the validated parameter space.     
Our AI-driven methodology has been successfully 

integrated into a Django-based application, where users 

can input the three key parameters length, width, and 

draft within specified ranges. Once the data is entered, 

the application immediately displays the remaining 

hydrodynamic parameters and resistance values 

through intuitive graphs and tables. This real-time 

visualization not only aids designers in quickly 

assessing design viability but also facilitates early-
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stage optimization of yacht models, enhancing both 

fuel consumption estimates and overall operational 

efficiency. According to Figure 10, the interface 

presents a clear and structured layout, allowing users to 

efficiently analyse resistance components and make 

informed design decisions. 

 

 
Figure 10. Django app interface showing resistance plots (left) 

and chart view (right) for user inputs. 

 

The implementation of this AI-driven approach offers 

significant benefits for the design process. By 

streamlining iterations and reducing dependency on 

time-consuming experiments or computationally 

expensive simulations, it enables rapid prototyping and 

cost-effective design optimization. Designers can 

experiment with different configurations and 

immediately see the hydrodynamic implications, 

leading to faster and more informed decision-making. 

Looking forward, there is potential for further 

refinement by incorporating additional parameters or 

expanding the dataset’s range, which could enhance the 

model’s accuracy and extend its applicability to a wider 

variety of hull forms and operating conditions.  
 
3.4 Discussion of Error Sources and Future Work 
Our experiments indicate that when the length, width, 

and draft of the ship remain within the limits defined 

by our experimental dataset, the prediction chain is 

highly reliable with minimal error propagation. This is 

largely because the derived parameters are calculated 

from accurately constrained inputs. However, potential 

sources of error do exist. For example, assumptions 

inherent in the regression models and the quality of the 

dataset could contribute to discrepancies if the inputs 

fall outside the tested range. Any deviation from these 

limits may lead to error propagation through the 

derived parameters, affecting the overall resistance 

predictions. 

To enhance the robustness and generalizability of our 

AI-driven model, future work should focus on 

expanding the dataset. Creating a dataset with more 

than 300 results that covers a much larger range of 

dimensions would allow users to experiment with a 

broader spectrum of designs. This expansion would 

facilitate try-and-error processes over an extended 

parameter space, ultimately improving model accuracy 

and versatility. Additionally, integrating real-time 

simulation tools and incorporating feedback from field 

data could further refine the model. Extending the 

methodology to accommodate other vessel types and 

operational conditions is also a promising avenue for 

future research. 

In summary, our work demonstrates the feasibility of 

deriving multiple hydrodynamic parameters from just 

three primary inputs  length, width, and draft  without 

compromising on accuracy, provided the inputs remain 

within the experimental limits. The AI model, 

particularly when leveraging XGBoost for residual 

resistance, has proven to be a reliable predictor of ship 

resistance. 

 

4. Conclusions 
In conclusion, this study successfully demonstrates the 

viability of an AI-driven approach to ship resistance 

prediction using a minimal set of three primary inputs 

Length Between Waterlines (LWL), Beam at Waterline 

(BWL), and Draft (T). By integrating classical 

hydrodynamic theory with advanced machine learning 

algorithms, our methodology not only simplifies the 

design process but also maintains a high degree of 

predictive accuracy. The robust dataset from Delft 

University, encompassing 308 full-scale experiments 

across 22 hull types, provided a solid foundation for 

developing models that accurately derive multiple 

hydrodynamic parameters such as displacement, 

wetted surface area, midship section area, waterplane 

area, and longitudinal center of buoyancy (LCB). The 

research highlights the strengths of employing both 

linear regression for parameters with perfect 

correlations and sophisticated ensemble methods like 

XGBoost, CatBoost, and Gradient Boosting for 

capturing more complex, non-linear interactions. These 

techniques effectively bridge the gap between 

traditional empirical methods and modern 

computational practices, offering a streamlined process 

that is both cost-effective and computationally 

efficient. The integration of these models into a 

Django-based web application further enhances their 

practical applicability, enabling real-time analysis and 

design optimization for naval architects and marine 

engineers. Moreover, while the proposed approach 

significantly reduces the dependency on time-

consuming experimental setups and computationally 

expensive simulations, it remains robust within the 

validated range of input parameters. The findings pave 

the way for future research aimed at expanding the 

dataset and refining model accuracy, thereby extending 

the approach’s applicability to a broader range of vessel 

designs and operating conditions. Overall, this work 

not only contributes to the evolving landscape of AI 

applications in naval architecture but also offers a 

promising tool for enhancing early-stage design 

processes and operational performance in maritime 

engineering. 
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