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 The line heating process is widely used in shipbuilding to form complex curvatures in 

steel plates, particularly in the bow and stern sections. However, the method’s reliance 

on skilled operators often leads to inconsistent results. This study presents the 

development of a deep neural network (DNN) model to predict optimal operational 

parameters for plate forming via line heating, thereby improving precision, 

repeatability, and automation. A coupled thermomechanical finite element model was 

developed using ANSYS APDL to simulate temperature distribution and deformation 

for various heating configurations. The simulation results were used to train the DNN, 

which consists of multiple hidden layers with dropout regularization to enhance 

generalization. The model successfully learned the nonlinear relationships between 

input parameters (heat source speed, heat input, and the number of heating passes) and 

resulting deformations. The trained DNN achieved high predictive accuracy, 

demonstrating its potential as a real-time decision-support tool in automated plate 

forming systems. This integration of FEM-based simulation and AI enables more 

efficient, consistent, and cost-effective manufacturing in the shipbuilding industry. 

The proposed DNN model achieved an average predictive accuracy of 49.92%, with 

performance exceeding 80% for cases with distinct deformation patterns. 
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1. Introduction 

Bending steel plates is crucial in ship construction, 

ensuring both the hull's shape and hydrodynamic 

efficiency. About 15% of the plates used require 

curvature, with each exhibiting a unique geometry 

based on its position. The bow and stern sections often 

feature complex double curvatures, known as non-

Gaussian and non-developable surfaces, which are 

difficult to form with traditional methods. These 

areas, along with stiffeners, require precise bending 

processes, making ship construction more 

challenging. 

Shipyards typically use mechanical and thermal 

bending methods to achieve the desired curvature. 

Mechanical bending involves presses and molds that 

apply force to shape the plates. However, due to the 

variability in curvature, particularly in double-curved 

surfaces, this method becomes inefficient and 

expensive. As a result, thermal bending, particularly 

line heating, is more widely used. In this process, heat 

is applied along specific lines on the plate, followed 

by cooling, causing localized expansion and 

contraction that results in bending without the need 

for molds or dies. Although line heating is flexible 

and adaptable, its success historically depended on 

skilled workers, often leading to inconsistent results. 

Despite its widespread use, line heating presents 

challenges related to precision, repeatability, and 

control. Traditionally, the process relied heavily on 

the expertise of workers to manually determine 

heating paths, leading to variations in outcomes. The 

complex nature of the process, influenced by variables 

such as plate thickness, heat input, and path geometry, 

makes accurate prediction difficult. These challenges 

have driven a surge in research toward modeling, 

automation, and predictive analytics to improve 

control over deformation outcomes. Recent research, 

including machine learning techniques, aims to model 

the behavior of steel plates under line heating, 

optimizing heating parameters and determination of 

paths. These innovations are crucial for automating 

the process, improving consistency, and enhancing 

efficiency and quality in shipbuilding. 

This section categorizes and synthesizes the major 

research directions into four thematic areas: (1) 

heating techniques, (2) numerical modeling and 

simulation, (3) automation and intelligent 

optimization, and (4) parametric studies. 
 

1.1. Linear Heating Techniques: Flame vs. Laser 

Traditional flame-based line heating methods, 

typically using oxy-acetylene torches, are widely 

applied in shipyards due to their simplicity and low 

cost. However, as Anderson [1] notes, these methods 

suffer from excessive heat dispersion, high reliance on 

operator skill, and inconsistent deformation patterns. 

In contrast, laser-based heating offers several 

advantages, including localized heat input, high 

precision, and the ability to form complex geometries 

such as sinusoidal and conical surfaces. These benefits 

are particularly valuable in modern shipbuilding, 

where automation and reduced labor dependency are 

prioritized. 

Barry [2] highlights both technical and economic 

merits of laser-based linear heating, including 

improved accuracy, lower post-processing demands, 

and reduced heat-affected zones. The controlled 

energy delivery of lasers also enables tighter 

tolerances and repeatability, which are essential for 

automated production lines. 

 

1.2. Numerical Modeling and Simulation  

Accurate prediction of thermal and mechanical 

behavior is key to understanding and controlling line 

heating. Clausen [3] developed finite element (FE) 

tools for simulating heat transfer and predicting 

temperature fields, thereby reducing dependence on 

empirical methods. Building on this, Anderson [1] and 

Bai-chen [4] introduced simplified Gaussian heat 

source models to estimate temperature distribution 

and residual stresses more efficiently. Their 

approaches enabled the coupling of thermal-

mechanical simulations using ANSYS. Shahidi [5] 

advanced this methodology by performing thermal 

simulations in Fluent and mechanical analysis in 

MAPDL. Their work emphasized the critical role of 

cooling both natural and forced in influencing final 

deformation. 

Shabani [6]⁠ has carried out a study on the simulation 

of thermal distribution during the welding process 

using ANSYS software, focusing on residual stresses 

and the deformation of plates. 

Lee et al. [7] conducted thermo-elastic-plastic FEM 

simulations on EH36 steel saddle plates, effectively 

quantifying the influence of geometric and process 

parameters on shrinkage and deflection, thereby 

providing critical insights for lightweight ship design 

and automated forming processes.  

 

1.3. Automation and Optimization through AI and 

Robotics 

To overcome limitations associated with manual 

operation, several industrial and academic efforts have 

focused on automation. Tango, et. al from IHI 

Corporation [8] and Jang, et. Al [9] introduced robotic 

systems like Alpha-IHIMU, which automate torch 

handling and process execution. These systems offer 

repeatability and efficiency but face challenges such 

as the need for worker retraining, offline 

programming, and limited flexibility in adapting to 

plate variations. 

The integration of machine learning into prediction 

and optimization tasks has opened new frontiers. Li & 

Wang [10] employed an Improved Sparrow Search 

Algorithm with Extreme Learning Machine (ISSA-

ELM) to model and predict plate deformation. Their 

data-driven approach captured the nonlinear 

relationships between process parameters and 
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deformation outcomes with high accuracy and 

demonstrated the feasibility of applying ML to 

substitute or supplement conventional simulations. 

Masahito Takezawa [11] developed a support system 

for ship-hull plate forming using a laser scanner. Their 

method constructs a B-spline surface from scanned 

point cloud data and uses differential geometry to 

analyze the current plate shape.  

 

1.4. Influence of Operational Parameters 

Understanding the impact of process parameters is 

vital for both simulation accuracy and real-time 

control. Das [12] used the Taguchi method to analyze 

the influence of laser power, scan speed, and plate 

thickness on bending angle, developing regression 

models for deformation prediction. Their findings 

underscored the sensitivity of deformation to thermal 

input and process speed. 

Lee & Lim [13] investigated the effect of multi-line 

heating and spacing between heat lines on the angular 

deviation and flatness of the final product. Their work 

provided practical guidelines for torch arrangement in 

complex curvature generation, highlighting the need 

to consider thermal overlap and mechanical 

interaction between adjacent lines. 

The reviewed studies collectively demonstrate the 

evolution of line heating from manual, empirical 

practice to a data-driven, automated, and simulation-

based discipline. Flame heating remains widely used 

due to its low cost and ease of implementation, yet 

laser heating is gaining ground in precision 

applications. Simulation tools, particularly finite 

element models, have enabled accurate prediction of 

temperature and stress fields, though their 

computational cost can be prohibitive in large-scale 

use. 

Artificial intelligence and machine learning present a 

promising alternative, offering faster predictions and 

the potential for real-time process control. However, 

most existing ML models are still limited by the 

availability of high-quality training data and lack 

physical interpretability. Robotic systems offer 

consistency and speed, but challenges in adaptability 

and user-friendliness remain. 

In this study, an AI-based system is developed to 

automatically predict the optimal heating parameters 

for shaping the sail-plates. The goal is to improve the 

accuracy, repeatability, and speed of the bending 

process, reduce costs, and enhance the quality of 

production. 

 

2. Methods and Theories 

2.1. Coupled Thermomechanical Simulation of the 

Line Heating Process in FEM 

Thermomechanical simulation of the line heating 

process in an FEM environment, such as ANSYS, 

models the heat application and the thermal and 

mechanical responses of steel plates during the 

bending process. This approach enables the prediction 

of deformation due to localized heating. 

The process begins with thermal analysis, where heat 

is applied along predefined lines on the plate’s 

surface. This heat induces non-uniform temperature 

distribution, which propagates through the material. 

Once the thermal analysis is complete, a mechanical 

analysis is performed. The temperature distribution 

from the thermal model is used to simulate thermal 

expansion, which induces internal stresses. Material 

properties such as yield strength and stiffness, which 

vary with temperature, are included to accurately 

simulate deformation. 

The thermal and mechanical analyses are coupled, 

where the output of the thermal analysis (temperature 

distribution) serves as input for the mechanical 

analysis. This coupling ensures the accurate 

simulation of thermomechanical behavior. 

Additionally, material models are chosen to account 

for nonlinear behavior, including plasticity and phase 

changes, which are crucial for high-temperature 

conditions common in line heating. 

In this study, a Gaussian heat source model (eq. 1) is 

employed to simulate the localized heat input during 

the line heating process. 
 

𝑞𝑟 = 𝑞𝑚𝑎𝑥𝑒𝑥𝑝 (
−3𝑟2

𝑅2
)(1) (1) 

 

where qr is the heat flux at a distance r from the center 

of the arc, Q is the total heat input, R is the 

characteristic radius that defines the heat distribution 

and 𝑞𝑚𝑎𝑥 is the maximum heat flux at the center. 

The parameter R depends on the heat source and other 

process variables. However, for simplicity and based 

on common practice, it is assumed to be 8 mm, which 

corresponds to approximately 95% of the total arc 

energy being delivered within this area. 

Once the heat source is defined, the temperature 

distribution across the steel plate is obtained by 

solving the heat conduction equation using finite 

element analysis (FEA) in ANSYS, where both the 

heat source and boundary conditions (such as 

convection or forced cooling) are applied. By solving 

this equation over time, the temperature distribution is 

calculated across the plate at any given time during 

the heating process. This temperature field serves as 

the input for the subsequent mechanical analysis, 

where the induced thermal stresses and deformations 

are computed. 

 

3. Finite Element Simulation 

3.1. General Assumption 

The finite element analysis in this study was carried 

out using ANSYS APDL 2024 R2. A three-

dimensional steel plate, measuring 1000 × 1000 mm 

with a thickness of 8 mm, was modeled. A circular 

heating path with a radius of 240 mm from the center 
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of the plate was considered for the application of heat 

considering a 10 mm radius torch. 

SOLID70, an eight-node three-dimensional thermal 

element, and SOLID45, a three-dimensional structural 

element capable of modeling nonlinear material 

behavior, were employed for the thermal and 

structural analyses, respectively. To ensure precise 

heat application, a circular region with a width of 20 

mm and an inner radius of 230 mm was defined, 

allowing for the generation of a fine and structured 

mesh.The element edge lengths in this region were set 

to 5 × 10 mm and were gradually increased up to 40 

mm toward the outer edges of the plate.  

As indicated in validation section and some previous 

studies [14,15], one element along the thickness is 

enough, however in this study, two numbers are 

considered.The finite element model, along with the 

boundary conditions of the mechanical analysis, is 

shown in Figure 1. To accurately simulate the 

boundary conditions, contact elements are defined 

beneath the plate surface, with their nodes constrained 

in the Z (vertical) direction. This configuration allows 

the steel plate to deform freely in all other degrees of 

freedom. Additionally, a node at the center of the 

plate is fully constrained in the X, Y, and Z directions 

to prevent rigid body motion during the simulation. 

Free convection boundary conditions were considered 

for all steel surfaces in contact with air and ground. 
 

 

 

Figure 1. Model Geometry and Boundary condition 

 

3.2. Extent of the Models 

While the plate's length, width, thickness, and heating 

path location were kept constant, three key operational 

parameters were varied independently: heat source 

speed (4 levels), heat input (4 levels), and number of 

heating passes (3 cases). The values of the varying 

parameters are presented in Table 1. This resulted in a 

total of 48 simulation cases. However, due to the 

imposed maximum temperature limit of 700 °C, only 

36 cases remained within the permissible range and 

were therefore considered for prediction of line 

heating parameters. 

 
Table 1. Numerical data 

Variable Parameters Values 

Heat Source Speed [mm/s] 5, 6, 7 and 8 

Heat Input [W] 4000, 5000, 6000 and 7000 

Number of Passes 1, 2 and 3 

 

3.3. Material Properties 

Material properties were adopted from the work of 

Biswas [15]⁠. Table 2 presents the temperature-

dependent properties of C-Mn-III steel used in the 

transient heat transfer and elastoplastic analyses. 

Additionally, Figure 2 illustrates the variation of yield 

strength with temperature for C-Mn steel, as reported 

in Biswas [15]⁠. 

 
Table 2.  Temperature-dependent properties of C-Mn-

III steel 

T E ν α K c 

[°C]  [GPa]  -  [10⁻⁶/°C]  [W/m·K] [J/kg·K] 

0 °C 200 0.28 10 51.9 450.0 

100 °C 200 0.31 11 51.1 499.2 

300 °C 200 0.33 12 46.1 565.5 

450 °C 150 0.34 13 41.5 630.5 

550 °C 110 0.36 14 37.5 705.5 

600 °C 88 0.37 14 35.6 773.3 

720 °C 88 0.37 14 35.6 773.3 

800 °C 20 0.42 14 26 931.0 

1450 °C 2 0.47 15 29.45 437.9 
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Figure 2. Variation of Yield Strength with Temperature 

 

3.4. Validation 

The developed numerical model was validated against 

the experimental and numerical results reported by 

Biswas. In his study, line heating was applied to a 

steel plate with dimensions 300 × 250 × 8 mm using a 

5500 W torch with an 8 mm radius at a speed of 6 

mm/s for a total of 50 seconds. The simulation results 

of the present study, including residual deformation, 

showed close agreement with Biswas’ findings, 

confirming the accuracy of the model (Figure 3). 

Further details of the experimental setup, procedure 

and plate properties can be found in Biswas [15]⁠. 

 

 
 

a) b) 

 
c) 

Figure 3. (a) FE Model (Present Study). (b) Biswas Test Setup 

[15]⁠. (c) Residual deformation pattern along the width of the 

plate. 

 

4. Results and Discussion 

4.1. Model Deformations (Based on FEA Results) 

As mentioned earlier, a fully transient analysis was 

conducted for both thermal and mechanical 

simulations. The temperature distribution and the 

resulting plate deformation were calculated at each 

time step during the heating process. An example of 

the deformed shape due to circular line heating is 

presented in Figure 4 (heat source speed: 5 mm/s, heat 

input: 5000 W, number of heating passes: 3). A total 

of approximately 700,000 deformation data points 

were extracted across the plate during the heating 

process. These data points serve as input for the 

machine learning model, which is trained to predict 

deformation based on the heat source speed, heat 

input, and number of heating passes. 

 

 
Figure 4. Plate Deformation (5 mm/s heat source speed, 5000 

W heat input and 3 number of heating passes) 
 

 

4.2. Machine Learning 

Deep neural networks (DNNs) (Figure 5) have 

significantly transformed the field of artificial 

intelligence, often outperforming conventional 

machine learning techniques. Modeled after the 

human brain, these sophisticated architectures are 

adept at managing complex tasks such as image 

recognition and natural language understanding. 

The model consists of multiple hidden layers, each 

designed to progressively extract and learn 

hierarchical features from the input data. To reduce 

the risk of overfitting and improve the model’s 

generalization capability, dropout regularization is 

applied after certain hidden layers. This technique 

randomly deactivates a portion of neurons during 

training, ensuring the network does not rely too 

heavily on specific paths. 

Training is conducted over multiple epochs, during 

which the entire dataset is repeatedly passed through 

the network to refine its internal parameters. Instead 

of feeding all the data at once, the dataset is divided 

into smaller batches, which helps improve 

computational efficiency and stabilize learning. 

A suitable loss function is employed to measure the 

difference between the model's predictions and the 

actual labels. This loss guides the optimization 

algorithm in updating the model weights. The final 

output layer is responsible for generating a probability 

distribution over all target classes, enabling accurate 

classification. The model’s performance is evaluated 

using accuracy, reflecting the proportion of correctly 

predicted instances. 

In this study, regression-based approaches were 

initially considered to predict deformation values 
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directly from the input parameters. However, each of 

the 36 simulation cases (samples) contained multiple 

variables and only a single output per case, which 

limited the feasibility of conventional regression 

models. Conducting separate regressions for each 

variable would have been inefficient and prone to 

error. Therefore, each simulation case was instead 

treated as a distinct class, and the task was 

reformulated as a classification problem. 

The neural network was designed to identify the 

inherent patterns of each class from the large number 

of deformation records available within a single 

simulation. This approach enabled the model to learn 

the distribution of patterns corresponding to different 

operational parameters, despite having only one 

overall output per simulation. While this strategy 

improved the ability of the model to generalize, the 

inherent limitation of single-output-per-sample 

simulations caused a performance drop. Ultimately, 

the model achieved an average prediction accuracy of 

49.92%, with variations of up to 80% depending on 

the sample. 
 

Figure 5. Deep Neural Network (DNN)  
 

4.3. Prediction of Line Heating Parameters (Based 

on DNN Algorithm) 

The objective of this model is to predict thermal 

parameters based on the desired deformation—a 

process herein referred to as prediction. The thermal 

parameters considered in this study include heat 

source speed, heat input, and the number of heating 

passes, all of which significantly affect the resulting 

deformation. The dataset comprises approximately 

700,000 data points collected from 36 different 

models, each containing deformations at each node 

and their corresponding location. 

A key challenge in this modeling task lies in the 

inability to designate specific coordinates as training 

or testing data, as each model corresponds to a single 

simulated sample, and experimental data is essential 

for proper validation. To mitigate this limitation, a 

small random value, drawn from a uniform 

distribution in the range of (−0.001, 0.001), was added 

randomly to a subset of records. This slightly 

modified version of the original dataset was then used 

as the database. 

To prevent overfitting, dropout techniques were 

applied at various stages of the neural network. The 

data first passed through a layer of 256 neurons with a 

dropout rate of 0.3, followed by a 128-neuron layer 

with the same dropout rate. In the final hidden layer, 

the data flowed through a layer with 64 neurons and a 

dropout rate of 0.2. The output from this layer was 

connected to the final output layer, which consisted of 

36 neurons corresponding to the number of classes in 

the problem and was designed to predict the 

probability distribution across these classes. 

The model was trained over 100 epochs, meaning the 

entire training dataset was presented to the model 100 

times. A batch size of 64 was employed to accelerate 

the training process while maintaining predictive 

accuracy. An appropriate loss function was selected 

for training, and accuracy was used as the evaluation 

metric, representing the percentage of correct 

predictions. As shown in Table 3, all 700,000 data 

points were used for training. It should be noted that 

the dataset presented in Table 3, which contains the 

deformation coordinates and displacements, was 

directly used as the input to the DNN. These features 

enabled the network to learn the relationship between 

deformation patterns and the corresponding 

simulation cases.  

 
Table 3. Sample Input Data For DNN  

model X Y Z DispX DispY DispZ 

- mm mm mm mm mm mm 

1 
500 -500 8 0.12 -0.12 0.09 

…. …. …. …. …. …. 

2 
500 -500 8 0.04 -0.04 0.01 

…. …. …. …. …. …. 

…. …. …. …. …. …. …. 

36 
500 -500 8 0.15 -0.15 0.05 

…. …. …. …. …. …. 

 

As shown in Figure 6, some FEM-simulated samples 

achieved an accuracy exceeding 80%, indicating that 

the DNN successfully recognized deformation 

patterns when the differences between cases were 

relatively large. These results are promising and 

demonstrate the capability of the model to capture 

distinct deformation behaviors. However, since the 

dataset was generated from finite element simulations, 

each input case corresponded to only one fixed output. 

This limitation reduced the overall accuracy, 

particularly for samples with highly similar 

deformation patterns. In such cases, the network had 

difficulty distinguishing between them, which directly 

resulted in lower accuracy.  
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Figure 6. Accuracy of All Samples 
 

5. Conclusions 

In this study, previous works related to the line 

heating process as well as research involving the 

application of artificial intelligence in predicting the 

process were reviewed. A numerical model was then 

developed and validated using both experimental data 

and existing simulations to assess its accuracy. 

Subsequently, A new method has been proposed to 

predict the operational parameters (output data) for 

line heating process to obtain the required 

deformation in the plates (input data), contributing to 

improved control of the forming process in 

shipbuilding. The thermal parameters considered in 

this study include heat source speed, heat input, and 

the number of heating passes, all of which 

significantly affect the resulting deformation. At the 

final stage, machine learning technique (Deep Neural 

Network) was employed as a tool to enhance the 

accuracy of deformation prediction. 

In the final conclusion, it is important to emphasize 

the range of accuracies achieved by the DNN model, 

culminating in an average accuracy of 49.92%. The 

lowest classification accuracies were observed in 

cases where deformation patterns were highly similar, 

while the highest accuracies (above 80%) 

corresponded to samples with distinct deformation 

characteristics. The selected DNN architecture, with 

layered dropout regularization, demonstrated the best 

balance between generalization and predictive 

capability.  

For future work, it is recommended to extend this 

approach to more complex geometries such as saddle 

plates, enabling broader application of the method 

under more realistic industrial conditions. 

Additionally, to improve prediction accuracy, several 

strategies can be considered. First, adding real 

samples and accurately labeling them can significantly 

enhance the model’s learning capability. Second, 

increasing the number of simulated models can 

provide a more diverse dataset for training. Third, 

redundant or common points across all samples can be 

removed to reduce noise and improve model focus. 

Finally, fine-tuning the model may lead to better 

results; however, this step requires access to high-

performance computing resources. 

Furthermore, to overcome the limitation of having 

only one deformation output per simulation sample, a 

deformation-based data augmentation strategy can be 

applied. By introducing small artificial distortions into 

each sample and labeling them consistently with the 

original class, it becomes possible to create multiple 

variations from a single simulation. For instance, 

generating around 100 distorted versions of each 

sample would provide a richer dataset, enabling the 

DNN to better learn deformation patterns. This 

approach is expected to significantly improve the 

model’s predictive accuracy and robustness in 

subsequent studies.  
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E Young's Modulus [Gpa] 

K Conductivity [W/m·K] 

T Temperature[°C] 

c Specific Heat [J/kg·K] 

α Thermal Expansion [10⁻⁶ / °C] 

ν Poisson's Ratio 
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