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1. Introduction

Bending steel plates is crucial in ship construction,
ensuring both the hull's shape and hydrodynamic
efficiency. About 15% of the plates used require
curvature, with each exhibiting a unique geometry
based on its position. The bow and stern sections often
feature complex double curvatures, known as non-
Gaussian and non-developable surfaces, which are
difficult to form with traditional methods. These
areas, along with stiffeners, require precise bending
processes, making ship  construction  more
challenging.

Shipyards typically use mechanical and thermal
bending methods to achieve the desired curvature.
Mechanical bending involves presses and molds that
apply force to shape the plates. However, due to the
variability in curvature, particularly in double-curved
surfaces, this method becomes inefficient and
expensive. As a result, thermal bending, particularly
line heating, is more widely used. In this process, heat
is applied along specific lines on the plate, followed
by cooling, causing localized expansion and
contraction that results in bending without the need
for molds or dies. Although line heating is flexible
and adaptable, its success historically depended on
skilled workers, often leading to inconsistent results.
Despite its widespread use, line heating presents
challenges related to precision, repeatability, and
control. Traditionally, the process relied heavily on
the expertise of workers to manually determine
heating paths, leading to variations in outcomes. The
complex nature of the process, influenced by variables
such as plate thickness, heat input, and path geometry,
makes accurate prediction difficult. These challenges
have driven a surge in research toward modeling,
automation, and predictive analytics to improve
control over deformation outcomes. Recent research,
including machine learning technigues, aims to model
the behavior of steel plates under line heating,
optimizing heating parameters and determination of
paths. These innovations are crucial for automating
the process, improving consistency, and enhancing
efficiency and quality in shipbuilding.

This section categorizes and synthesizes the major
research directions into four thematic areas: (1)
heating techniques, (2) numerical modeling and
simulation, (3) automation and intelligent
optimization, and (4) parametric studies.

1.1. Linear Heating Techniques: Flame vs. Laser

Traditional flame-based line heating methods,
typically using oxy-acetylene torches, are widely
applied in shipyards due to their simplicity and low
cost. However, as Anderson [1] notes, these methods
suffer from excessive heat dispersion, high reliance on
operator skill, and inconsistent deformation patterns.
In contrast, laser-based heating offers several
advantages, including localized heat input, high
precision, and the ability to form complex geometries

such as sinusoidal and conical surfaces. These benefits
are particularly valuable in modern shipbuilding,
where automation and reduced labor dependency are
prioritized.

Barry [2] highlights both technical and economic
merits of laser-based linear heating, including
improved accuracy, lower post-processing demands,
and reduced heat-affected zones. The controlled
energy delivery of lasers also enables tighter
tolerances and repeatability, which are essential for
automated production lines.

1.2. Numerical Modeling and Simulation

Accurate prediction of thermal and mechanical
behavior is key to understanding and controlling line
heating. Clausen [3] developed finite element (FE)
tools for simulating heat transfer and predicting
temperature fields, thereby reducing dependence on
empirical methods. Building on this, Anderson [1] and
Bai-chen [4] introduced simplified Gaussian heat
source models to estimate temperature distribution
and residual stresses more efficiently. Their
approaches enabled the coupling of thermal-
mechanical simulations using ANSYS. Shahidi [5]
advanced this methodology by performing thermal
simulations in Fluent and mechanical analysis in
MAPDL. Their work emphasized the critical role of
cooling both natural and forced in influencing final
deformation.

Shabani [6] has carried out a study on the simulation
of thermal distribution during the welding process
using ANSY'S software, focusing on residual stresses
and the deformation of plates.

Lee et al. [7] conducted thermo-elastic-plastic FEM
simulations on EH36 steel saddle plates, effectively
guantifying the influence of geometric and process
parameters on shrinkage and deflection, thereby
providing critical insights for lightweight ship design
and automated forming processes.

1.3. Automation and Optimization through Al and
Robotics

To overcome limitations associated with manual
operation, several industrial and academic efforts have
focused on automation. Tango, et. al from IHI
Corporation [8] and Jang, et. Al [9] introduced robotic
systems like Alpha-IHIMU, which automate torch
handling and process execution. These systems offer
repeatability and efficiency but face challenges such
as the need for worker retraining, offline
programming, and limited flexibility in adapting to
plate variations.

The integration of machine learning into prediction
and optimization tasks has opened new frontiers. Li &
Wang [10] employed an Improved Sparrow Search
Algorithm with Extreme Learning Machine (ISSA-
ELM) to model and predict plate deformation. Their
data-driven  approach captured the nonlinear
relationships between process parameters and
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deformation outcomes with high accuracy and
demonstrated the feasibility of applying ML to
substitute or supplement conventional simulations.
Masahito Takezawa [11] developed a support system
for ship-hull plate forming using a laser scanner. Their
method constructs a B-spline surface from scanned
point cloud data and uses differential geometry to
analyze the current plate shape.

1.4. Influence of Operational Parameters
Understanding the impact of process parameters is
vital for both simulation accuracy and real-time
control. Das [12] used the Taguchi method to analyze
the influence of laser power, scan speed, and plate
thickness on bending angle, developing regression
models for deformation prediction. Their findings
underscored the sensitivity of deformation to thermal
input and process speed.

Lee & Lim [13] investigated the effect of multi-line
heating and spacing between heat lines on the angular
deviation and flatness of the final product. Their work
provided practical guidelines for torch arrangement in
complex curvature generation, highlighting the need
to consider thermal overlap and mechanical
interaction between adjacent lines.

The reviewed studies collectively demonstrate the
evolution of line heating from manual, empirical
practice to a data-driven, automated, and simulation-
based discipline. Flame heating remains widely used
due to its low cost and ease of implementation, yet
laser heating is gaining ground in precision
applications. Simulation tools, particularly finite
element models, have enabled accurate prediction of
temperature and stress fields, though their
computational cost can be prohibitive in large-scale
use.

Artificial intelligence and machine learning present a
promising alternative, offering faster predictions and
the potential for real-time process control. However,
most existing ML models are still limited by the
availability of high-quality training data and lack
physical interpretability. Robotic systems offer
consistency and speed, but challenges in adaptability
and user-friendliness remain.

In this study, an Al-based system is developed to
automatically predict the optimal heating parameters
for shaping the sail-plates. The goal is to improve the
accuracy, repeatability, and speed of the bending
process, reduce costs, and enhance the quality of
production.

2. Methods and Theories

2.1. Coupled Thermomechanical Simulation of the
Line Heating Process in FEM

Thermomechanical simulation of the line heating
process in an FEM environment, such as ANSYS,
models the heat application and the thermal and
mechanical responses of steel plates during the
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bending process. This approach enables the prediction
of deformation due to localized heating.

The process begins with thermal analysis, where heat
is applied along predefined lines on the plate’s
surface. This heat induces non-uniform temperature
distribution, which propagates through the material.
Once the thermal analysis is complete, a mechanical
analysis is performed. The temperature distribution
from the thermal model is used to simulate thermal
expansion, which induces internal stresses. Material
properties such as yield strength and stiffness, which
vary with temperature, are included to accurately
simulate deformation.

The thermal and mechanical analyses are coupled,
where the output of the thermal analysis (temperature
distribution) serves as input for the mechanical
analysis. This coupling ensures the accurate
simulation of thermomechanical behavior.
Additionally, material models are chosen to account
for nonlinear behavior, including plasticity and phase
changes, which are crucial for high-temperature
conditions common in line heating.

In this study, a Gaussian heat source model (eq. 1) is
employed to simulate the localized heat input during
the line heating process.

4r = dmaxewn (5)(1) 1)

where g is the heat flux at a distance r from the center
of the arc, Q is the total heat input, R is the
characteristic radius that defines the heat distribution
and g,,., is the maximum heat flux at the center.

The parameter R depends on the heat source and other
process variables. However, for simplicity and based
on common practice, it is assumed to be 8 mm, which
corresponds to approximately 95% of the total arc
energy being delivered within this area.

Once the heat source is defined, the temperature
distribution across the steel plate is obtained by
solving the heat conduction equation using finite
element analysis (FEA) in ANSYS, where both the
heat source and boundary conditions (such as
convection or forced cooling) are applied. By solving
this equation over time, the temperature distribution is
calculated across the plate at any given time during
the heating process. This temperature field serves as
the input for the subsequent mechanical analysis,
where the induced thermal stresses and deformations
are computed.

3. Finite Element Simulation

3.1. General Assumption

The finite element analysis in this study was carried
out using ANSYS APDL 2024 R2. A three-
dimensional steel plate, measuring 1000 x 1000 mm
with a thickness of 8 mm, was modeled. A circular
heating path with a radius of 240 mm from the center


http://ijmt.ir/article-1-872-en.html

[ Downloaded from ijmt.ir on 2026-01-29 ]

Ali Tasbihi etal. / IMT 2025, Vol 21 No.2; p.72-79

of the plate was considered for the application of heat
considering a 10 mm radius torch.

SOLID70, an eight-node three-dimensional thermal
element, and SOLIDA45, a three-dimensional structural
element capable of modeling nonlinear material
behavior, were employed for the thermal and
structural analyses, respectively. To ensure precise
heat application, a circular region with a width of 20
mm and an inner radius of 230 mm was defined,
allowing for the generation of a fine and structured
mesh.The element edge lengths in this region were set
to 5 x 10 mm and were gradually increased up to 40
mm toward the outer edges of the plate.

As indicated in validation section and some previous
studies [14,15], one element along the thickness is
enough, however in this study, two numbers are
considered.The finite element model, along with the
boundary conditions of the mechanical analysis, is
shown in Figure 1. To accurately simulate the
boundary conditions, contact elements are defined
beneath the plate surface, with their nodes constrained
in the Z (vertical) direction. This configuration allows
the steel plate to deform freely in all other degrees of
freedom. Additionally, a node at the center of the
plate is fully constrained in the X, Y, and Z directions
to prevent rigid body motion during the simulation.
Free convection boundary conditions were considered
for all steel surfaces in contact with air and ground.
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Figure 1. Model Geometry and Boundary condition

3.2. Extent of the Models

While the plate's length, width, thickness, and heating
path location were kept constant, three key operational
parameters were varied independently: heat source
speed (4 levels), heat input (4 levels), and number of
heating passes (3 cases). The values of the varying
parameters are presented in Table 1. This resulted in a
total of 48 simulation cases. However, due to the
imposed maximum temperature limit of 700 °C, only
36 cases remained within the permissible range and
were therefore considered for prediction of line
heating parameters.

Table 1. Numerical data

Variable Parameters Values

Heat Source Speed [mm/s] 5,6,7and 8

Heat Input [W] 4000, 5000, 6000 and 7000
Number of Passes 1,2and 3

3.3. Material Properties

Material properties were adopted from the work of
Biswas [15]. Table 2 presents the temperature-
dependent properties of C-Mn-Ill steel used in the
transient heat transfer and elastoplastic analyses.
Additionally, Figure 2 illustrates the variation of yield
strength with temperature for C-Mn steel, as reported
in Biswas [15].

Table 2. Temperature-dependent properties of C-Mn-

111 steel
T E v o K c
[°C] [GPa] - [10%°C]  [Wim-K]  [Ikg-K]
0°C 200 0.28 10 51.9 450.0
100 °C 200 0.31 11 51.1 499.2
300 °C 200 0.33 12 46.1 565.5
450 °C 150 0.34 13 415 630.5
550 °C 110 0.36 14 37.5 705.5
600 °C 88  0.37 14 35.6 773.3
720 °C 88  0.37 14 35.6 773.3
800 °C 20 042 14 26 931.0
1450 °C 2 0.47 15 29.45 437.9
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Figure 2. Variation of Yield Strength with Temperature

3.4. Validation

The developed numerical model was validated against
the experimental and numerical results reported by
Biswas. In his study, line heating was applied to a
steel plate with dimensions 300 x 250 x 8 mm using a
5500 W torch with an 8 mm radius at a speed of 6
mm/s for a total of 50 seconds. The simulation results
of the present study, including residual deformation,
showed close agreement with Biswas’ findings,
confirming the accuracy of the model (Figure 3).
Further details of the experimental setup, procedure
and plate properties can be found in Biswas [15].

MAPDL Element Plot=

a) b)
Residual Deformation
experimental residual deformation biswas +
numerical residual deformation biswas /
0.4 ‘ +— numerical residual deformation in this research oy

Residual Deformation(mm)

R

0.0

0 50 100 150 200 250
Along X direction(mm)

0)
Figure 3. (a) FE Model (Present Study). (b) Biswas Test Setup
[15]. (¢) Residual deformation pattern along the width of the
plate.

4. Results and Discussion

4.1. Model Deformations (Based on FEA Results)
As mentioned earlier, a fully transient analysis was
conducted for both thermal and mechanical
simulations. The temperature distribution and the
resulting plate deformation were calculated at each
time step during the heating process. An example of
the deformed shape due to circular line heating is
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presented in Figure 4 (heat source speed: 5 mm/s, heat
input: 5000 W, number of heating passes: 3). A total
of approximately 700,000 deformation data points
were extracted across the plate during the heating
process. These data points serve as input for the
machine learning model, which is trained to predict
deformation based on the heat source speed, heat
input, and number of heating passes.

Deformation (mm)

(mm X107
o 3750

etormation

D
g0 1250 20

0.0451

0.0226

Figure 4. Plate Deformation (5 mm/s heat source speed, 5000
W heat input and 3 number of heating passes)

4.2. Machine Learning

Deep neural networks (DNNs) (Figure 5) have
significantly transformed the field of artificial
intelligence, often outperforming conventional
machine learning techniques. Modeled after the
human brain, these sophisticated architectures are
adept at managing complex tasks such as image
recognition and natural language understanding.

The model consists of multiple hidden layers, each
designed to progressively extract and learn
hierarchical features from the input data. To reduce
the risk of overfitting and improve the model’s
generalization capability, dropout regularization is
applied after certain hidden layers. This technique
randomly deactivates a portion of neurons during
training, ensuring the network does not rely too
heavily on specific paths.

Training is conducted over multiple epochs, during
which the entire dataset is repeatedly passed through
the network to refine its internal parameters. Instead
of feeding all the data at once, the dataset is divided
into smaller batches, which helps improve
computational efficiency and stabilize learning.

A suitable loss function is employed to measure the
difference between the model's predictions and the
actual labels. This loss guides the optimization
algorithm in updating the model weights. The final
output layer is responsible for generating a probability
distribution over all target classes, enabling accurate
classification. The model’s performance is evaluated
using accuracy, reflecting the proportion of correctly
predicted instances.

In this study, regression-based approaches were
initially considered to predict deformation values
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directly from the input parameters. However, each of
the 36 simulation cases (samples) contained multiple
variables and only a single output per case, which
limited the feasibility of conventional regression
models. Conducting separate regressions for each
variable would have been inefficient and prone to
error. Therefore, each simulation case was instead
treated as a distinct class, and the task was
reformulated as a classification problem.

The neural network was designed to identify the
inherent patterns of each class from the large number
of deformation records available within a single
simulation. This approach enabled the model to learn
the distribution of patterns corresponding to different
operational parameters, despite having only one
overall output per simulation. While this strategy
improved the ability of the model to generalize, the
inherent limitation of single-output-per-sample
simulations caused a performance drop. Ultimately,
the model achieved an average prediction accuracy of
49.92%, with variations of up to 80% depending on
the sample.

4
A

output layer

Ve
b
o§

input layer
hidden layer 1 hidden layer 2
Figure 5. Deep Neural Network (DNN)

4.3. Prediction of Line Heating Parameters (Based

on DNN Algorithm)

The objective of this model is to predict thermal
parameters based on the desired deformation—a
process herein referred to as prediction. The thermal
parameters considered in this study include heat
source speed, heat input, and the number of heating
passes, all of which significantly affect the resulting
deformation. The dataset comprises approximately
700,000 data points collected from 36 different
models, each containing deformations at each node
and their corresponding location.

A key challenge in this modeling task lies in the
inability to designate specific coordinates as training
or testing data, as each model corresponds to a single
simulated sample, and experimental data is essential
for proper validation. To mitigate this limitation, a
small random value, drawn from a uniform
distribution in the range of (—0.001, 0.001), was added
randomly to a subset of records. This slightly
modified version of the original dataset was then used
as the database.

7

To prevent overfitting, dropout techniques were
applied at various stages of the neural network. The
data first passed through a layer of 256 neurons with a
dropout rate of 0.3, followed by a 128-neuron layer
with the same dropout rate. In the final hidden layer,
the data flowed through a layer with 64 neurons and a
dropout rate of 0.2. The output from this layer was
connected to the final output layer, which consisted of
36 neurons corresponding to the number of classes in
the problem and was designed to predict the
probability distribution across these classes.

The model was trained over 100 epochs, meaning the
entire training dataset was presented to the model 100
times. A batch size of 64 was employed to accelerate
the training process while maintaining predictive
accuracy. An appropriate loss function was selected
for training, and accuracy was used as the evaluation
metric, representing the percentage of correct
predictions. As shown in Table 3, all 700,000 data
points were used for training. It should be noted that
the dataset presented in Table 3, which contains the
deformation coordinates and displacements, was
directly used as the input to the DNN. These features
enabled the network to learn the relationship between
deformation  patterns and the corresponding
simulation cases.

Table 3. Sample Input Data For DNN

model X Y Z DispX DispY DispzZ
mm mm mm mm mm mm
1 500 -500 8 0.12 -0.12 0.09
2 500 -500 8 0.04 -0.04 0.01
36 500 -500 8 0.15 -0.15 0.05

As shown in Figure 6, some FEM-simulated samples
achieved an accuracy exceeding 80%, indicating that
the DNN successfully recognized deformation
patterns when the differences between cases were
relatively large. These results are promising and
demonstrate the capability of the model to capture
distinct deformation behaviors. However, since the
dataset was generated from finite element simulations,
each input case corresponded to only one fixed output.
This limitation reduced the overall accuracy,
particularly for samples with highly similar
deformation patterns. In such cases, the network had
difficulty distinguishing between them, which directly
resulted in lower accuracy.
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Figure 6. Accuracy of All Samples

5. Conclusions

In this study, previous works related to the line
heating process as well as research involving the
application of artificial intelligence in predicting the
process were reviewed. A numerical model was then
developed and validated using both experimental data
and existing simulations to assess its accuracy.
Subsequently, A new method has been proposed to
predict the operational parameters (output data) for
line heating process to obtain the required
deformation in the plates (input data), contributing to
improved control of the forming process in
shipbuilding. The thermal parameters considered in
this study include heat source speed, heat input, and
the number of heating passes, all of which
significantly affect the resulting deformation. At the
final stage, machine learning technique (Deep Neural
Network) was employed as a tool to enhance the
accuracy of deformation prediction.

In the final conclusion, it is important to emphasize
the range of accuracies achieved by the DNN model,
culminating in an average accuracy of 49.92%. The
lowest classification accuracies were observed in
cases where deformation patterns were highly similar,
while the highest accuracies (above 80%)
corresponded to samples with distinct deformation
characteristics. The selected DNN architecture, with
layered dropout regularization, demonstrated the best
balance between generalization and predictive
capability.

For future work, it is recommended to extend this
approach to more complex geometries such as saddle
plates, enabling broader application of the method
under more realistic  industrial  conditions.
Additionally, to improve prediction accuracy, several
strategies can be considered. First, adding real
samples and accurately labeling them can significantly
enhance the model’s learning capability. Second,
increasing the number of simulated models can
provide a more diverse dataset for training. Third,
redundant or common points across all samples can be
removed to reduce noise and improve model focus.
Finally, fine-tuning the model may lead to better
results; however, this step requires access to high-
performance computing resources.
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Furthermore, to overcome the limitation of having
only one deformation output per simulation sample, a
deformation-based data augmentation strategy can be
applied. By introducing small artificial distortions into
each sample and labeling them consistently with the
original class, it becomes possible to create multiple
variations from a single simulation. For instance,
generating around 100 distorted versions of each
sample would provide a richer dataset, enabling the
DNN to better learn deformation patterns. This
approach is expected to significantly improve the
model’s predictive accuracy and robustness in
subsequent studies.
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