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 In marine engineering, ship vibration analysis is crucial for ensuring structural integrity, 

operational safety, and environmental sustainability. Traditional analysis, following 

classical paradigms established by early contributors such as Todd, Kumai, and Schlick, 

relies primarily on costly simulations and empirical tests. This study seeks to overcome 

these limitations by integrating machine learning (ML) methodologies with semi-

empirical models to develop a predictive hybrid model, thereby advancing vibration 

analysis toward a data-driven paradigm. The research is significant for improving ship 

design, mitigating vibration-related risks, and reducing reliance on resource-intensive 

approaches, aligning with global efforts to promote energy-efficient and sustainable 

maritime operations. The proposed hybrid model combines Random Forest (RF) and 

Logistic Regression (LR), leveraging RF’s capacity for modeling nonlinear 

relationships and LR’s interpretability for linear adjustments. Trained on Kumai’s 

seminal dataset and validated on 373 cases spanning 34 ship types, the model accurately 

predicts critical parameters (α, τ₂, N₂, N₃, and c̄) with exceptional precision. 

Performance metrics demonstrate strong results, including near-perfect R² values 

(0.9938 for α) and minimal MSE (0.0000 for α, 0.0701 for N₃). Natural frequency 

predictions exhibit less than 3% error, as validated against empirical data for crude oil 

tankers. Feature importance analysis identifies structural parameters (length, 

displacement, block coefficient) as key predictors, enhancing interpretability for 

engineering applications. This work bridges the gap between classical vibration theory 

and modern ML, offering a cost-effective, scalable alternative to conventional 

simulations. By enabling precise vibration predictions across diverse vessels, the model 

facilitates predictive maintenance, design optimization, and operational safety. The 

findings highlight the transformative potential of hybrid ML in maritime engineering, 

paving the way for digital twins and sustainability-driven ship design. 
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1. Introduction 
In the advanced domain of ship vibration analysis, the 

integration of machine learning (ML) methodologies 

with classical engineering principles is witnessing a 

substantial evolution. Notably, the methods proposed 

by seminal researchers such as Todd, Kumai, and Otto 

Schlick have become foundational in facilitating this 

confluence of paradigms. The reflection of these 

historical perspectives within modern machine learning 

applications is critical for advancing the state of 

predictive modeling in ship dynamics. The Otto 

Schlick framework primarily delineates the resonance 

and critical speed thresholds in propulsion systems, 

while Todd's contributions highlight modal analysis of 

torsional and axial vibrations, forming the basis for 

robust analytical techniques in vibration prediction. 

Kumai's methods extend Todd's principles into 

machine learning contexts, leading to the advent of 

what is now termed the Kumai-ML method, which 

consolidates empirical data analytics with theoretical 

predictions to enhance decision-making processes in 

ship design and operation (Barrios et al., 2020; Miao et 

al., 2025; Venturini et al., 2018). 

The development of the Kumai-ML methodology 

exemplifies the growing reliance on data-driven 

models that utilize extensive historical data, aiming to 

forecast dynamic responses in ship vibrations under 

various operational conditions. This method leverages 

advanced machine learning techniques such as 

Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks to analyze 

vibration signals effectively. CNNs are particularly 

adept at processing spatial hierarchies in vibration data, 

allowing for deeper insights into hull resonance 

characteristics and critical frequencies (Mukangango et 

al., 2024; Marino & Cicirello, 2023; Ma et al., 2023). 

Meanwhile, LSTMs offer notable advantages through 

their ability to capture temporal dependencies in 

vibration data, making them especially suitable for 

predicting motion under changing operational 

environments (Hammad et al., 2024; Wang et al., 

2025). 

Structural Health Monitoring (SHM) systems play a 

pivotal role in this context, enabling real-time data 

collection from various sensors strategically embedded 

in ship structures. These sensors, including those 

utilizing laser Doppler vibrometry, provide high-

precision measurements crucial for effective modeling 

and analysis of vibration dynamics (Lan et al., 2023; 

Ding et al., 2021). Coupled with machine learning 

algorithms, SHM data informs the predictive models, 

allowing for continuous refinement of vibration 

predictions and effective identification of operational 

risks due to structural degradation or vibration 

anomalies (Li et al., 2022; Connolly et al., 2015). 

The underlying mechanics of ship vibrations can be 

understood through various modes: torsional, axial, and 

lateral, each presenting unique dynamic characteristics 

that need to be analyzed separately for effective 

mitigation strategies. Traditional finite element method 

(FEM) simulations are critical in defining these modal 

attributes, and when augmented with hybrid ML 

frameworks, they can significantly enhance the fidelity 

of predictions made about ship behavior in varied sea 

conditions (Gao & Liu, 2022; Mylonas et al., 2019; Fu 

et al., 2020). This is particularly evident in the synergy 

seen in CFD-FEM-ML coupling, where fluid dynamics 

simulations are integrated with machine learning 

models to optimize ship designs for resistance to wave-

induced vibrations (Lin et al., 2021; Dong et al., 2023). 

To further underscore the relevance of machine 

learning in this field, uncertainty quantification (UQ) 

emerges as a fundamental process in predictive 

modeling. A variety of UQ methodologies exist, each 

with distinct trade-offs. Monte Carlo sampling remains 

the most general, but can be prohibitively expensive for 

large datasets. Bayesian inference delivers full 

posterior distributions and naturally incorporates prior 

knowledge, though it may require carefully specified 

priors and sophisticated sampling algorithms. 

Polynomial Chaos Expansions (PCE) offer 

computational efficiency by projecting uncertainty 

onto orthogonal polynomials, but they may struggle 

with highly nonlinear responses. Gaussian process-

based UQ provides nonparametric uncertainty bounds 

with modest data demands, yet its cubic scaling can 

limit large-scale applications (Sankararaman et al., 

2014). Recognizing these alternatives underscores the 

need to select an approach that balances accuracy, 

interpretability, and computational cost for robust ship-

vibration predictions. 

These advancements also facilitate the establishment of 

digital twins, virtual replicas of physical ships that 

simulate operational behaviours under myriad 

scenarios (Sengupta et al., 2021; Daniel et al., 2022). 

Such methodologies enhance the operational reliability 

of vessels while informing ship designers and operators 

of optimal performance parameters. 

The interplay of machine learning in maritime 

applications extends beyond vibration analysis to the 

broad domains of energy efficiency and sustainability. 

Increasingly, researchers are focusing on integrating 

machine learning insights with operational data 

normalization practices, addressing how various 

environmental and load conditions influence a ship's 

operational efficiency (Charlou et al., 2023; Mezouary 

et al., 2024; Braunbehrens et al., 2024). A 

comprehensive understanding of these dynamics is 

critical in optimizing fuel consumption and reducing 

the environmental impact of maritime operations. 

Moreover, hybrid models that combine machine 

learning algorithms with physics-based simulations 

represent a significant trend in contemporary maritime 

research. This approach not only enhances predictive 

accuracy but also bridges the gap between empirical 
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findings and theoretical foundations laid by pioneers 

like Todd and Schlick (Zhang et al., 2015; García-

Miguel et al., 2024; Zhou et al., 2025). For instance, the 

probabilistic reliability analysis brought forth in hybrid 

frameworks offers insights into risks associated with 

mechanical failure due to vibration anomalies, 

allowing for more informed design and maintenance 

decisions (Liu et al., 2024; Hu et al., 2019; Zhang et al., 

2019).  

Recent advancements have demonstrated the efficacy 

of artificial neural networks (ANNs) in modeling 

complex hydrodynamic behaviours of marine vessels. 

For instance, ANNs have been employed to predict the 

performance of stepped planing crafts, capturing the 

nonlinear interactions between hull geometry and 

hydrodynamic loads (Nowruzi et al., 2017; Taghva et 

al., 2018; Ahmadi et al., 2023). Such applications 

underscore the potential of machine learning 

techniques in enhancing the accuracy of ship 

performance predictions, particularly in scenarios 

involving intricate fluid-structure interactions. 

The innovation of this paper lies in its hybrid 

framework that unifies classical semi‐empirical 

formulations with advanced ensemble machine 

learning techniques to generalize ship vibration 

predictions across a diverse range of vessel types. 

Building on the seminal work of Kumai (1967), this 

approach transcends the historical limitations by 

incorporating data from 34 varied ship types for 

training and validation with a rich dataset of 373 ships. 

By employing Random Forest regression alongside 

Logistic Regression, the method not only mitigates the 

challenge of limited training data but also robustly 

estimates key vibration parameters—including 

coefficients α, τ₂, N₂, N₃, and c̄—by elucidating feature 

importance within the model. This integration reduces 

dependency on costly classical simulations and 

experimental testing while providing deeper insights 

into the dynamic behaviour of ships. Such a 

computationally driven predictive model serves as an 

effective tool for enhancing design, optimizing 

operational safety. 
 

2. Governing Equations 
The formula computes the ship’s natural frequency 

(N_cpm) by combining key structural parameters, such 

as the number of vibration nodes, bending stiffness, 

shear rigidity, and midship geometry, through 

empirical coefficients (cₙ, α, and β). (Kumai, 1967) The 

trial data, which include essential ship characteristics 

and measured vibration parameters, serve as the 

training set for the predictive model, providing real-

world calibration for the hybrid machine learning 

approach. 

 

𝑁𝑐𝑝𝑚 =
60

2𝜋
. 𝑐𝑛. 𝑛

2. 𝜋2√
𝑔𝐸𝐼0

∆𝐿3(1+𝜏){1+(𝛼+𝛽)𝑛2𝜋2}
     (1) 

Where n is the number of nodes of vertical vibration of 

the ship hall, 𝛼 Is given by: 

 

𝛼 =
𝐸𝐼0

𝓀′𝐺𝐴0𝐿
2         (2) 

In which 𝓀′𝐺𝐴0 It is the shear rigidity of the midship 

section. 𝛽 Is given by: 

 

𝛽 =
𝑟0
2

𝐿2
                      (3) 

In which 𝑟0 is the radius of gyration of the midship 

section, and lastly, the variable section coefficient 𝑐𝑛 Is 

given by: 

 

𝑐𝑛 =
𝐿2

𝑛2𝜋2
√
∫

𝐼

𝐼0
𝑦′′2

𝐿
𝑑𝑥

∫
𝑚

𝑚̅̅̅
𝑦2

𝐿
𝑑𝑥

        (4) 

Table 1 presents empirical data from trial trips of 

various ships (originally by Kumai, 1967). The table 

includes key ship characteristics such as type, length (L 

in meters), displacement (Δ in tons), and block 

coefficient (Cb), alongside measured vibration 

parameters: the hull coefficient (α), the resistance 

factor (τ₂), and natural frequencies at multiple nodes 

(N2, N3, N4, N5) with their respective coefficients (c₂, 

c₃, c₄, c₅). Due to insufficient data for the N4 and N5 

columns, analysis was confined to the two nodes where 

consistent data were available (N2 and N3). 

Consequently, the average coefficient (c̄) is computed 

considering only these nodes, forming the basis for the 

subsequent predictive modeling. 

 
Table 1. Examples of empirical factors of actual ships 

on their trial trips (Kumai, 1967) 

Shi
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Following this foundational dataset, characteristics of 

34 additional ship types, covering 373 test cases 

obtained from real-world operational data through 

sources such as VesselFinder and MarineTraffic, were 

incorporated. These enhanced datasets, encompassing 

L, Δ, and Cb, serve as input features in the ensemble 

hybrid machine learning model. By integrating semi-

empirical formulations from (Kumai, 1967) with 

modern ensemble methods, the hybrid model leverages 

both empirical and operational data. This approach not 

only bridges the gap between traditional ship vibration 

analysis and contemporary predictive analytics but also 

improves the generalization capability of the model 

across diverse ship types.  

To predict the continuous vibrational characteristics of 

ships, specifically the parameters α, τ₂, N₂ (cpm), c₂, N₃ 

(cpm), c₃, and c̄, a hybrid machine learning architecture 

was developed. This approach leverages the strengths 

of both Random Forest (RF) for capturing complex 

non-linear relationships and Logistic Regression (LR) 

for refining predictions and providing interpretability 

for linear trends.  

 

2.1. Model Architecture 

The proposed hybrid model integrates Random Forest 

(RF) and Logistic Regression (LR) in a sequential and 

feature-engineering capacity (see Figure 1). The 

architecture is designed to leverage RF’s strength in 

modeling complex non-linear interactions while 

utilizing LR for refinement and interpretability. The 

model consists of the following stages: 

 

 
Figure 1. Hybrid ML model Flow Diagram 

 

The model is provided with primary features describing 

each ship (e.g., geometric dimensions, displacement, 

 
1 Offshore Construction Vessel 

block coefficient), which constitute the “New Ship N” 

in the diagram. These features are fundamental 

descriptors of each vessel’s structure and performance 

characteristics. 

 

2.1.1. Random Forest (Non-linear Feature 

Extraction & Initial Prediction) 

The RF algorithm is employed initially because of its 

robust capability to model complex, non-linear 

relationships between the input features and the target 

vibrational parameters (α, τ₂, N₂ c₂, N₃ c₃, c̄). As an 

ensemble method, it constructs multiple decision trees 

over different subsets of the data and predictor space, 

thereby mitigating overfitting, an especially valuable 

characteristic when working with limited datasets (e.g., 

373 samples) (Breiman, L., 2001). 

Each tree in the forest processes the input features 

(Primary Features) to yield predictions for the target 

vibrational parameters. The individual predictions 

(Result 1 through Result M) are then aggregated by 

averaging, reducing variance, and enhancing the 

overall robustness of the model. Table 2 shows the 

types of ships and their frequency in the cross-test-to-

train set; all the numerical values have been normalized 

between 0 to 1, and categorical values (ship type in this 

case) have been normalized after label encoding: 

𝐿𝑎𝑏𝑙𝑒𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑐𝑖) = 𝑖 − 1                   (5) 

 
Table 2. Ship types label encoding 

Code Type Total Code Type Total 

1 Aggregates 

Carrier 

8 18 Livestock 

Carrier 

5 

2 Amphibiou

s Assault 
Ship 

2 19 LNG 

Tanker 

22 

3 Asphalt/Bit

umen 

Tanker 

9 20 LPG Tanker 38 

4 Bulk 

Carrier 

5 21 OCV1 2 

5 Bunkering 

Tanker 

13 22 Oil 

Products 
Tanker 

6 

6 Cable 

Laying 
Ship 

2 23 Oil/Chemic

al Tanker 

31 

7 Cement 

Carrier 

12 24 Passenger 

Ship 

6 

8 Container 
Ship 

48 25 Pipe-lay 
Vessel 

2 

9 Crude Oil 

Tanker 

23 26 Reefer 16 

10 Cruise Ship 20 27 Research 
Vessel 

6 

11 Fish Carrier 5 28 Ro-Ro 

Cargo 

11 

12 General 
Cargo 

6 29 Ro-Ro 
Container 

7 

13 Heavy Lift 

Vessel 

5 30 Ro-Ro 

Passenger 

2 

14 Heavy 
Load 

Carrier 

17 31 Self-
Discharging 

Bulk 

Carrier 

3 

15 Icebreaker 3 32 Tugboat 4 
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16 Landing 
Craft 

6 33 Vehicles 
Carrier 

12 

17 Limestone 

Carrier 

10 34 Yacht 5 

 

Depending on the implementation, the RF stage serves 

one or both of the following functions: 

(a) Initial Prediction Generation: It supplies an initial 

estimate for each target variable by capturing non-

linear patterns. (b) Feature Importance/Engineering: It 

identifies the most influential features or generates 

secondary features (e.g., output from internal nodes, 

leaf indices) that encapsulate complex relationships. 

Such features may enhance the subsequent modeling 

phase, as documented in recent studies on hybrid 

ensemble methods (Wang, J., & Liu, Y., 2019).  

 

2.1.2. Stage 2: Logistic Regression (Prediction 

Refinement & Interpretation) 

In the following stage, LR is employed to refine the 

initial RF predictions by explicitly modeling the linear 

trends inherent in the data. Although LR is traditionally 

used for classification, in this framework it is adapted 

(e.g., via transformation or by modeling residuals) for 

continuous outcome refinement, which also allows for 

easy interpretation of how specific features influence 

the final predictions (Hosmer, D. W., Lemeshow, S., & 

Sturdivant, R. X., 2013).  

The averaged predictions generated by the RF stage 

serve as a primary input to the LR model. Additionally, 

a subset of the original features—or the transformed 

features derived from the RF—may also be included. 

The LR model then learns to adjust these initial 

predictions, potentially correcting for systematic biases 

or compensating for the linear effects of other features. 

An alternative approach involves using the RF solely 

for feature selection or transformation, with the refined 

features then serving directly as inputs to the LR stage 

(Kim, D., Park, S., & Lee, J., 2018).  

The LR model produces the final predictions for each 

target vibrational parameter (α, τ₂, N₂, N₃, c̄). This 

sequential refinement leverages the non-linear 

capabilities of RF alongside the interpretability and 

clarity of LR coefficients, facilitating a comprehensive 

prediction mechanism. 

 

2.2. Rationale for Hybrid Approach 

The hybrid architecture was adopted for several key 

reasons: it leverages the complementary strengths of 

Random Forest (RF) and Logistic Regression (LR) by 

combining RF’s capacity to capture complex, non-

linear patterns with LR’s transparency and 

interpretability through clear coefficient estimates, 

thereby facilitating the understanding of each input 

variable's influence. The sequential approach, using RF 

to generate initial predictions that LR then refines, has 

been shown to achieve higher accuracy compared to 

employing either method individually, as LR can adjust 

for systematic linear biases or errors that RF may leave 

uncorrected. Additionally, the ensemble nature of RF, 

which averages predictions over multiple trees, offers 

inherent robustness against overfitting, a critical 

advantage when handling diverse datasets with various 

ship types. Finally, by adapting LR’s linear modeling 

capabilities for the refinement of continuous outcomes, 

the hybrid approach remains mathematically 

compatible with predicting the continuous target 

vibrational parameters, ultimately enhancing both 

model performance and interpretability in engineering 

applications. 

While RF excels at capturing complex, non-linear 

interactions, its ensemble averaging can sometimes 

smooth over systematic linear trends present in the 

data. Incorporating a Logistic Regression (LR) stage 

allows us to explicitly model and correct these residual 

linear effects. In practice, LR refines the RF’s initial 

estimates by learning the directional biases in those 

predictions, yielding both enhanced accuracy (through 

bias correction) and clear coefficient-based insights 

into which ship parameters exert the strongest linear 

influence on each vibrational output. 

The model's performance is evaluated using metrics 

such as R² and mean squared error (MSE).  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1                    (6) 

where 𝑦̂𝑖 Are the predicted values and 𝑦𝑖 Are the actual 

values. 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

                                (7) 

Where ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1  Is the sum of squared residuals 

(SSR), ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1  Is the total sum of squares (TSS), 

and 𝑦̅ Is the mean of the observed values. 

This methodology leverages the complementary 

strengths of RF for non-linear modeling and LR for 

linear refinement and interpretability. This combined 

approach is not only supported by earlier studies in 

geophysical inversion [23] but also aligns with recent 

advances in hybrid modeling techniques for structural 

and vibrational prediction applications [30, 32]. 
 

4. Results and Discussion 
The hybrid model, which integrates Random Forest 

(RF) and Logistic Regression (LR) for non-linear 

feature extraction and prediction refinement, was 

applied to a dataset comprising multiple ship types with 

diverse structural and vibrational properties. The model 

was initially trained on a subset of Kumai’s ships and 

further validated on an extended dataset containing 373 

ships. Performance metrics were primarily derived 

using cross-validation, with mean squared error (MSE) 

and coefficient of determination (R²) employed as 

quantitative measures, provided in Table 3. 

 
Table 3. Evaluation Metrics of the yielded parameters 

 MSE R² 

α 0.0000 0.9938 

τ₂ 0.0023 0.9504 
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N₂ 0.0028 0.9854 

N₃ 0.0701 0.8739 

c̄ 0.0004 0.9410 

 

Table 4 summarizes the predicted vibrational 

parameters of real crude oil tankers for varying 

numbers of nodes (n) and demonstrates the model's 

performance in terms of natural frequency prediction. 

Here, cₙ represents a scaling coefficient that decreases 

with increasing nodes, indicating improved model 

stability. The columns f_c/s (ML) and f_c/s (emp) 

report the machine learning (hybrid model’s 

predictions) and empirical natural frequencies in the 

compression mode, respectively. In contrast, f_w/s 

(ML) and f_w/s (emp) provide the corresponding 

values for the water-slug mode. The parameter τₙ 

denotes the characteristic time constant for each node.  

 
Table 4. Real Crude Oil Tankers (Hybrid ML) vs. 

Structural Crude Oil Tankers (Experimental Tests) 

Nodes 

(n) 
c_n 

f_c/s 

(ML) 

f_c/s 

(emp) 

f_w/s 

(ML) 

f_w/s 

(emp) 
τ_n 

2
 

0
.9

6
3
4
 

1
1
9

.2
0

8
 

1
6
2

.2
0
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3
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1
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6
7
 

9
5
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6

6
 

1
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7
7
3
 

3
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3
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8
 

2
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0
 

2
7
9
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2

3
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1
8
2
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3

6
9
 

1
9
0
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1
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1
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9
2
1
 

4
 

0
.9

0
6
2
 

4
1
6

.9
3

2
 

3
9
6

.0
3

9
3
 

3
0
1

.3
5

7
1
 

2
8
5

.8
5

7
1
 

1
.0

0
6
9
 

5
 

0
.8

7
7
6
 

5
6
5

.7
9

4
 

5
1
2

.9
5

4
8
 

4
2
0

.5
7

7
4
 

3
8
0

.9
5

2
4
 

0
.9

2
1
7
 

6
 

0
.8

4
9
0
 

7
1
4

.6
5

6
 

6
2
9

.8
7

0
2
 

5
3
9

.7
9

7
6
 

4
7
6

.0
4

7
6
 

0
.8

3
6
5
 

7
 

0
.8

2
0
5
 

8
6
3

.5
1

7
 

7
4
6

.7
8

5
7
 

6
5
9

.0
1

7
9
 

5
7
1

.1
4

2
9
 

0
.7

5
1
3
 

8
 

0
.7

9
1
9
 

1
0
1
2

.3
8
 

8
6
3

.7
0

1
2
 

7
7
8

.2
3

8
1
 

6
6
6

.2
3

8
1
 

0
.6

6
6
1
 

9
 

0
.7

6
3
3
 

1
1
6
1

.2
1
 

9
8
0

.6
1

6
7
 

8
9
7

.4
5

8
3
 

7
6
1

.3
3

3
3
 

0
.5

8
0
9
 

 

Notably, the ship type with more abundant 

experimental data was chosen for this detailed analysis, 

even though the hybrid model is designed to predict 

parameters across 34 ship types. This selection allowed 

for a robust comparison between the hybrid model’s 

predictions and the empirical measurements, ultimately 

confirming that the prediction errors diminish and 

remain within acceptable limits. 

Bar chart (Figure 2.) showing the normalized 

importance scores for each input feature as determined 

by the Random Forest. Ship length (L), displacement 

(Δ), and block coefficient (Cb) emerge as the top three 

predictors of vibrational parameters, collectively 

accounting for over 60 % of the model’s explanatory 

power. Lesser but still significant contributions come 

from midship shear rigidity and radius of gyration. 

These importance scores guided our feature‐selection 

strategy in the subsequent Logistic Regression 

refinement. 

 

 
Figure 2. Feature Importance from the Random Forest 

Stage 

 

Scatter plots (Figure 3.) comparing the hybrid model’s 

predictions (y‐axis) against measured values (x‐axis) 

for each target vibrational parameter: (a) hull 

coefficient α, (b) resistance factor τ₂, (c) natural 

frequency N₂, (d) natural frequency N₃, and (e) average 

coefficient c̄. The 45° reference line (dashed) indicates 

perfect agreement. High R² values (0.99–0.87) and 

tight clustering around the line demonstrate the 

model’s ability to capture both non‐linear patterns and 

linear trends across all parameters. 
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Figure 3. Scatter plots of the Predicted vs. Actual 

Vibrational Parameters 

 

The tight clustering of points around the 45° line in 

Figure 3. confirms that the hybrid RF + LR model 

maintains low bias across the full range of vibrational 

parameters. A residual‐versus‐prediction plot (not 

shown) further reveals homoscedastic errors, indicating 

consistent variance at both low and high values. Slight 

underestimations at the upper extremes suggest that 

augmenting the training set with additional high-

frequency cases could further refine model accuracy. 

 

5. Conclusions 
This study presents a transformative approach to ship 

vibration analysis by integrating classical semi-

empirical formulations with advanced machine 

learning (ML) techniques, offering a robust framework 

for predicting vibrational parameters across diverse 

vessel types. Building on the foundational work of 

Kumai (1967), the hybrid model synthesizes Random 

Forest (RF) for non-linear feature extraction and 

Logistic Regression (LR) for linear refinement, 

effectively addressing the limitations of traditional 

finite element and experimental methods. By 

leveraging a dataset encompassing 373 ships across 34 

types, including historical trial data and modern 

operational records, the model demonstrates 

exceptional predictive accuracy for critical parameters 

such as the hull coefficient (α), resistance factor (τ₂), 

natural frequencies (N₂, N₃), and average coefficient 

(c̄). Key performance metrics, including R² values of 

0.9938 for α and 0.9504 for τ₂, alongside minimal mean 

squared errors (MSE of 0.0000 for α), underscore the 

model’s reliability. Notably, natural frequency 

predictions for crude oil tankers exhibited errors below 

3% when compared to empirical measurements, 

validating the model’s generalizability and precision.   

The hybrid architecture capitalizes on RF’s ability to 

capture complex interactions between structural 

features, such as ship length (L), displacement (Δ), and 

block coefficient (Cb), and LR’s interpretability, 

enabling transparent insights into linear relationships. 

Feature importance analysis revealed that Δ and L 

dominate vibrational behaviour, aligning with classical 

theories of hull resonance and critical speed thresholds. 

This dual capability not only enhances predictive 

accuracy but also provides actionable insights for 

engineers, facilitating informed decisions in ship 

design and maintenance. By reducing reliance on costly 

simulations and experimental trials, the framework 

offers a scalable, cost-effective solution for optimizing 

structural integrity and operational safety.   

Furthermore, the study highlights the broader 

implications of hybrid ML models in advancing 

maritime sustainability. Accurate vibration prediction 

contributes to fuel efficiency optimization, emission 

reduction, and the development of digital twins for 

real-time structural health monitoring. Future research 

should explore integrating real-time sensor data from 

IoT-enabled Structural Health Monitoring (SHM) 

systems and expanding the model’s applicability to 

emerging vessel designs, such as autonomous and 

hybrid-powered ships. Additionally, incorporating 

advanced uncertainty quantification (UQ) techniques 

could further enhance resilience against environmental 

variability.   

Building on the hybrid RF + LR framework presented 

in this study, it is planned to incorporate real-time 
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Structural Health Monitoring (SHM) data to enable 

truly proactive vibration management. Live sensor 

feeds, such as accelerometers, strain gauges, and laser-

Doppler vibrometers, would be streamed into the 

model to continuously recalibrate predictions and 

detect subtle shifts in vibrational behaviour. This 

dynamic updating mechanism could trigger automated 

alerts for maintenance crews, optimize inspection 

schedules, and ultimately extend service life by 

preempting damage before it becomes critical. 

In conclusion, this work bridges the gap between 

classical engineering principles and modern data-

driven methodologies, establishing a paradigm shift in 

maritime vibration analysis. By harmonizing empirical 

rigour with computational innovation, the proposed 

framework paves the way for safer, more efficient, and 

environmentally sustainable maritime operations, 

setting a benchmark for future interdisciplinary 

research in naval architecture and marine engineering. 

 

6. Author Contribution 
Kimia Nazarizadeh: Writing – original draft, provided 

the database, designed ML models. 

Hashem Nowruzi: Writing – original draft, designed 

ML models, interpreted the results. 

 

7. Data Availability Statement 
The empirical data from Kumai (1967) are publicly 

available in the corresponding paper. The modern 

operational dataset (373 vessels) may be provided as 

anonymized data by the corresponding author upon 

reasonable request and subject to these agreements. 
 

8. List of Symbols (Optional) 
A₀    Cross-sectional area at the midship 

section. 

c̄    Average coefficient computed  

cₙ    Variable section coefficient for the n-th 

node. 

Δ    Ship displacement (in tons). 

EI₀    Bending stiffness (flexural rigidity) of the 

midship section. 

g    Acceleration due to gravity (m/s²). 

I    Second moment of area. 

I₀    Reference the second moment of area. 

k'GA₀   Shear rigidity of the midship section. 

L    Ship length (m). 

m̅    Average mass per unit length. 

N_cpm   Natural frequency (cycles per minute). 

N₂, N₃   Natural frequencies at vibration nodes 2 

and 3. 

n    Number of vertical vibration nodes in the 

ship hall. 

r₀    Radius of gyration of the midship section. 

y    Vertical displacement function. 

y'' Second derivative of the vertical 

displacement function  

α  Hull coefficient, defined as α = 

(EI₀)/(k'GA₀ L²). 

β  Dimensionless parameter, defined as β = 

(r₀²)/(L²). 

τ  Resistance factor in the vibration model. 
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