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1. Introduction

In the advanced domain of ship vibration analysis, the
integration of machine learning (ML) methodologies
with classical engineering principles is witnessing a
substantial evolution. Notably, the methods proposed
by seminal researchers such as Todd, Kumai, and Otto
Schlick have become foundational in facilitating this
confluence of paradigms. The reflection of these
historical perspectives within modern machine learning
applications is critical for advancing the state of
predictive modeling in ship dynamics. The Otto
Schlick framework primarily delineates the resonance
and critical speed thresholds in propulsion systems,
while Todd's contributions highlight modal analysis of
torsional and axial vibrations, forming the basis for
robust analytical techniques in vibration prediction.
Kumai's methods extend Todd's principles into
machine learning contexts, leading to the advent of
what is now termed the Kumai-ML method, which
consolidates empirical data analytics with theoretical
predictions to enhance decision-making processes in
ship design and operation (Barrios et al., 2020; Miao et
al., 2025; Venturini et al., 2018).

The development of the Kumai-ML methodology
exemplifies the growing reliance on data-driven
models that utilize extensive historical data, aiming to
forecast dynamic responses in ship vibrations under
various operational conditions. This method leverages
advanced machine learning techniques such as
Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks to analyze
vibration signals effectively. CNNs are particularly
adept at processing spatial hierarchies in vibration data,
allowing for deeper insights into hull resonance
characteristics and critical frequencies (Mukangango et
al., 2024; Marino & Cicirello, 2023; Ma et al., 2023).
Meanwhile, LSTMs offer notable advantages through
their ability to capture temporal dependencies in
vibration data, making them especially suitable for
predicting motion under changing operational
environments (Hammad et al., 2024; Wang et al.,
2025).

Structural Health Monitoring (SHM) systems play a
pivotal role in this context, enabling real-time data
collection from various sensors strategically embedded
in ship structures. These sensors, including those
utilizing laser Doppler vibrometry, provide high-
precision measurements crucial for effective modeling
and analysis of vibration dynamics (Lan et al., 2023;
Ding et al., 2021). Coupled with machine learning
algorithms, SHM data informs the predictive models,
allowing for continuous refinement of vibration
predictions and effective identification of operational
risks due to structural degradation or vibration
anomalies (Li et al., 2022; Connolly et al., 2015).

The underlying mechanics of ship vibrations can be
understood through various modes: torsional, axial, and

lateral, each presenting unique dynamic characteristics
that need to be analyzed separately for effective
mitigation strategies. Traditional finite element method
(FEM) simulations are critical in defining these modal
attributes, and when augmented with hybrid ML
frameworks, they can significantly enhance the fidelity
of predictions made about ship behavior in varied sea
conditions (Gao & Liu, 2022; Mylonas et al., 2019; Fu
etal., 2020). This is particularly evident in the synergy
seen in CFD-FEM-ML coupling, where fluid dynamics
simulations are integrated with machine learning
models to optimize ship designs for resistance to wave-
induced vibrations (Lin et al., 2021; Dong et al., 2023).
To further underscore the relevance of machine
learning in this field, uncertainty quantification (UQ)
emerges as a fundamental process in predictive
modeling. A variety of UQ methodologies exist, each
with distinct trade-offs. Monte Carlo sampling remains
the most general, but can be prohibitively expensive for
large datasets. Bayesian inference delivers full
posterior distributions and naturally incorporates prior
knowledge, though it may require carefully specified
priors and sophisticated sampling algorithms.
Polynomial Chaos Expansions (PCE) offer
computational efficiency by projecting uncertainty
onto orthogonal polynomials, but they may struggle
with highly nonlinear responses. Gaussian process-
based UQ provides nonparametric uncertainty bounds
with modest data demands, yet its cubic scaling can
limit large-scale applications (Sankararaman et al.,
2014). Recognizing these alternatives underscores the
need to select an approach that balances accuracy,
interpretability, and computational cost for robust ship-
vibration predictions.

These advancements also facilitate the establishment of
digital twins, virtual replicas of physical ships that
simulate operational behaviours under myriad
scenarios (Sengupta et al., 2021; Daniel et al., 2022).
Such methodologies enhance the operational reliability
of vessels while informing ship designers and operators
of optimal performance parameters.

The interplay of machine learning in maritime
applications extends beyond vibration analysis to the
broad domains of energy efficiency and sustainability.
Increasingly, researchers are focusing on integrating
machine learning insights with operational data
normalization practices, addressing how various
environmental and load conditions influence a ship's
operational efficiency (Charlou et al., 2023; Mezouary
et al, 2024; Braunbehrens et al., 2024). A
comprehensive understanding of these dynamics is
critical in optimizing fuel consumption and reducing
the environmental impact of maritime operations.
Moreover, hybrid models that combine machine
learning algorithms with physics-based simulations
represent a significant trend in contemporary maritime
research. This approach not only enhances predictive
accuracy but also bridges the gap between empirical
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findings and theoretical foundations laid by pioneers
like Todd and Schlick (Zhang et al., 2015; Garcia-
Miguel et al., 2024; Zhou et al., 2025). For instance, the
probabilistic reliability analysis brought forth in hybrid
frameworks offers insights into risks associated with
mechanical failure due to vibration anomalies,
allowing for more informed design and maintenance
decisions (Liu etal., 2024; Hu et al., 2019; Zhang et al.,
2019).

Recent advancements have demonstrated the efficacy
of artificial neural networks (ANNSs) in modeling
complex hydrodynamic behaviours of marine vessels.
For instance, ANNs have been employed to predict the
performance of stepped planing crafts, capturing the
nonlinear interactions between hull geometry and
hydrodynamic loads (Nowruzi et al., 2017; Taghva et
al., 2018; Ahmadi et al., 2023). Such applications
underscore the potential of machine learning
techniques in enhancing the accuracy of ship
performance predictions, particularly in scenarios
involving intricate fluid-structure interactions.

The innovation of this paper lies in its hybrid
framework that unifies classical semi-empirical
formulations with advanced ensemble machine
learning techniques to generalize ship vibration
predictions across a diverse range of vessel types.
Building on the seminal work of Kumai (1967), this
approach transcends the historical limitations by
incorporating data from 34 varied ship types for
training and validation with a rich dataset of 373 ships.
By employing Random Forest regression alongside
Logistic Regression, the method not only mitigates the
challenge of limited training data but also robustly
estimates key vibration parameters—including
coefficients a, 12, N2, N3, and c—hy elucidating feature
importance within the model. This integration reduces
dependency on costly classical simulations and
experimental testing while providing deeper insights
into the dynamic behaviour of ships. Such a
computationally driven predictive model serves as an
effective tool for enhancing design, optimizing
operational safety.

2. Governing Equations

The formula computes the ship’s natural frequency
(N_cpm) by combining key structural parameters, such
as the number of vibration nodes, bending stiffness,
shear rigidity, and midship geometry, through
empirical coefficients (cn, 0, and ). (Kumai, 1967) The
trial data, which include essential ship characteristics
and measured vibration parameters, serve as the
training set for the predictive model, providing real-
world calibration for the hybrid machine learning
approach.

_ 80 2 2 9El
Ncpm - 2n'cn'n - \/AL3(1+T){1+(a+B)n2n:2} (1)

Where n is the number of nodes of vertical vibration of
the ship hall, « Is given by:

a=—C ®)

T RIGAQL?
In which £'GA, It is the shear rigidity of the midship
section. B Is given by:

B=3 ©)
In which ry is the radius of gyration of the midship
section, and lastly, the variable section coefficient c,, Is
given by:

I
2 | Eynzdx

Cp = 22 I, %yzdx (4)

Table 1 presents empirical data from trial trips of
various ships (originally by Kumai, 1967). The table
includes key ship characteristics such as type, length (L
in meters), displacement (A in tons), and block
coefficient (Cb), alongside measured vibration
parameters: the hull coefficient (o), the resistance
factor (12), and natural frequencies at multiple nodes
(N2, N3, N4, N5) with their respective coefficients (cz,
¢s, Ca, Cs). Due to insufficient data for the N4 and N5
columns, analysis was confined to the two nodes where
consistent data were available (N2 and N3).
Consequently, the average coefficient (¢) is computed
considering only these nodes, forming the basis for the
subsequent predictive modeling.

Table 1. Examples of empirical factors of actual ships
on their trial trips (Kumai, 1967)
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Following this foundational dataset, characteristics of
34 additional ship types, covering 373 test cases
obtained from real-world operational data through
sources such as VesselFinder and MarineTraffic, were
incorporated. These enhanced datasets, encompassing
L, A, and Cb, serve as input features in the ensemble
hybrid machine learning model. By integrating semi-
empirical formulations from (Kumai, 1967) with
modern ensemble methods, the hybrid model leverages
both empirical and operational data. This approach not
only bridges the gap between traditional ship vibration
analysis and contemporary predictive analytics but also
improves the generalization capability of the model
across diverse ship types.

To predict the continuous vibrational characteristics of
ships, specifically the parameters a, T2, N2 (cpm), ¢z, N3
(cpm), cs, and ¢, a hybrid machine learning architecture
was developed. This approach leverages the strengths
of both Random Forest (RF) for capturing complex
non-linear relationships and Logistic Regression (LR)
for refining predictions and providing interpretability
for linear trends.

2.1. Model Architecture

The proposed hybrid model integrates Random Forest
(RF) and Logistic Regression (LR) in a sequential and
feature-engineering capacity (see Figure 1). The
architecture is designed to leverage RF’s strength in
modeling complex non-linear interactions while
utilizing LR for refinement and interpretability. The
model consists of the following stages:

y.hipNT\

SN TIN5
4 -

Result 1 Result 2 Result M

Qﬂjmiry Voting / Averaging + Logistic Regtessiny

Hybrid Model Prediction

Figure 1. Hybrid ML model Flow Diagram

Random Forest  Primary Features

The model is provided with primary features describing
each ship (e.g., geometric dimensions, displacement,

L Offshore Construction Vessel

block coefficient), which constitute the “New Ship N”
in the diagram. These features are fundamental
descriptors of each vessel’s structure and performance
characteristics.

2.1.1. Random Forest (Non-linear Feature
Extraction & Initial Prediction)

The RF algorithm is employed initially because of its
robust capability to model complex, non-linear
relationships between the input features and the target
vibrational parameters (a, t2, N2 ¢z, N3 ¢3, ). As an
ensemble method, it constructs multiple decision trees
over different subsets of the data and predictor space,
thereby mitigating overfitting, an especially valuable
characteristic when working with limited datasets (e.g.,
373 samples) (Breiman, L., 2001).

Each tree in the forest processes the input features
(Primary Features) to yield predictions for the target
vibrational parameters. The individual predictions
(Result 1 through Result M) are then aggregated by
averaging, reducing variance, and enhancing the
overall robustness of the model. Table 2 shows the
types of ships and their frequency in the cross-test-to-
train set; all the numerical values have been normalized
between 0 to 1, and categorical values (ship type in this
case) have been normalized after label encoding:

LableEncoder(c;) =i—1 (5)
Table 2. Ship types label encoding
Code | Type Total | Code | Type Total
1 Aggregates | 8 18 Livestock 5
Carrier Carrier
2 Amphibiou | 2 19 LNG 22
s Assault Tanker
Ship
3 Asphalt/Bit | 9 20 LPG Tanker | 38
umen
Tanker
4 Bulk 5 21 ocv?: 2
Carrier
5 Bunkering 13 22 Oil 6
Tanker Products
Tanker
6 Cable 2 23 Oil/Chemic | 31
Laying al Tanker
Ship
7 Cement 12 24 Passenger 6
Carrier Ship
8 Container 48 25 Pipe-lay 2
Ship Vessel
9 Crude Oil 23 26 Reefer 16
Tanker
10 Cruise Ship | 20 27 Research 6
Vessel
11 Fish Carrier | 5 28 Ro-Ro 11
Cargo
12 General 6 29 Ro-Ro 7
Cargo Container
13 Heavy Lift | 5 30 Ro-Ro 2
Vessel Passenger
14 Heavy 17 31 Self- 3
Load Discharging
Carrier Bulk
Carrier
15 Icebreaker 3 32 Tugboat 4
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16 Landing 6 33 Vehicles 12
Craft Carrier

17 Limestone 10 34 Yacht 5
Carrier

Depending on the implementation, the RF stage serves
one or both of the following functions:
(a) Initial Prediction Generation: It supplies an initial
estimate for each target variable by capturing non-
linear patterns. (b) Feature Importance/Engineering: It
identifies the most influential features or generates
secondary features (e.g., output from internal nodes,
leaf indices) that encapsulate complex relationships.
Such features may enhance the subsequent modeling
phase, as documented in recent studies on hybrid
ensemble methods (Wang, J., & Liu, Y., 2019).

2.1.2. Stage 2: Logistic Regression (Prediction
Refinement & Interpretation)

In the following stage, LR is employed to refine the
initial RF predictions by explicitly modeling the linear
trends inherent in the data. Although LR is traditionally
used for classification, in this framework it is adapted
(e.g., via transformation or by modeling residuals) for
continuous outcome refinement, which also allows for
easy interpretation of how specific features influence
the final predictions (Hosmer, D. W., Lemeshow, S., &
Sturdivant, R. X., 2013).

The averaged predictions generated by the RF stage
serve as a primary input to the LR model. Additionally,
a subset of the original features—or the transformed
features derived from the RF—may also be included.
The LR model then learns to adjust these initial
predictions, potentially correcting for systematic biases
or compensating for the linear effects of other features.
An alternative approach involves using the RF solely
for feature selection or transformation, with the refined
features then serving directly as inputs to the LR stage
(Kim, D., Park, S, & Lee, J, 2018).
The LR model produces the final predictions for each
target vibrational parameter (o, 12, N2, Ns, ¢). This
sequential refinement leverages the non-linear
capabilities of RF alongside the interpretability and
clarity of LR coefficients, facilitating a comprehensive
prediction mechanism.

2.2. Rationale for Hybrid Approach

The hybrid architecture was adopted for several key
reasons: it leverages the complementary strengths of
Random Forest (RF) and Logistic Regression (LR) by
combining RF’s capacity to capture complex, non-
linear patterns with LR’s transparency and
interpretability through clear coefficient estimates,
thereby facilitating the understanding of each input
variable's influence. The sequential approach, using RF
to generate initial predictions that LR then refines, has
been shown to achieve higher accuracy compared to
employing either method individually, as LR can adjust
for systematic linear biases or errors that RF may leave

uncorrected. Additionally, the ensemble nature of RF,
which averages predictions over multiple trees, offers
inherent robustness against overfitting, a critical
advantage when handling diverse datasets with various
ship types. Finally, by adapting LR’s linear modeling
capabilities for the refinement of continuous outcomes,
the hybrid approach remains mathematically
compatible with predicting the continuous target
vibrational parameters, ultimately enhancing both
model performance and interpretability in engineering
applications.
While RF excels at capturing complex, non-linear
interactions, its ensemble averaging can sometimes
smooth over systematic linear trends present in the
data. Incorporating a Logistic Regression (LR) stage
allows us to explicitly model and correct these residual
linear effects. In practice, LR refines the RF’s initial
estimates by learning the directional biases in those
predictions, yielding both enhanced accuracy (through
bias correction) and clear coefficient-based insights
into which ship parameters exert the strongest linear
influence on each vibrational output.
The model's performance is evaluated using metrics
such as R? and mean squared error (MSE).
MSE = -3, (5 — y)* (6)
where ¥; Are the predicted values and y; Are the actual
values.

2 _ T, =92
R =1=5r ooy @
Where ¥, (v; — $;)? Is the sum of squared residuals
(SSR), X, (y; — ¥)? Is the total sum of squares (TSS),
and y Is the mean of the observed values.
This methodology leverages the complementary
strengths of RF for non-linear modeling and LR for
linear refinement and interpretability. This combined
approach is not only supported by earlier studies in
geophysical inversion [23] but also aligns with recent
advances in hybrid modeling techniques for structural
and vibrational prediction applications [30, 32].

4. Results and Discussion

The hybrid model, which integrates Random Forest
(RF) and Logistic Regression (LR) for non-linear
feature extraction and prediction refinement, was
applied to a dataset comprising multiple ship types with
diverse structural and vibrational properties. The model
was initially trained on a subset of Kumai’s ships and
further validated on an extended dataset containing 373
ships. Performance metrics were primarily derived
using cross-validation, with mean squared error (MSE)
and coefficient of determination (R?) employed as
quantitative measures, provided in Table 3.

Table 3. Evaluation Metrics of the yielded parameters

MSE R?
a 0.0000 0.9938
T2 0.0023 0.9504
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N> 0.0028 0.9854
Ns 0.0701 0.8739
c 0.0004 0.9410

Table 4 summarizes the predicted vibrational
parameters of real crude oil tankers for varying
numbers of nodes (n) and demonstrates the model's
performance in terms of natural frequency prediction.
Here, c, represents a scaling coefficient that decreases
with increasing nodes, indicating improved model
stability. The columns f_c/s (ML) and f_c/s (emp)
report the machine learning (hybrid model’s
predictions) and empirical natural frequencies in the
compression mode, respectively. In contrast, f w/s
(ML) and f w/s (emp) provide the corresponding
values for the water-slug mode. The parameter T,
denotes the characteristic time constant for each node.

Table 4. Real Crude Oil Tankers (Hybrid ML) vs.
Structural Crude Oil Tankers (Experimental Tests)

Nodes cn f cls f cls f wis f wi/s Tn
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Notably, the ship type with more abundant
experimental data was chosen for this detailed analysis,
even though the hybrid model is designed to predict
parameters across 34 ship types. This selection allowed
for a robust comparison between the hybrid model’s
predictions and the empirical measurements, ultimately

confirming that the prediction errors diminish and
remain within acceptable limits.

Bar chart (Figure 2.) showing the normalized
importance scores for each input feature as determined
by the Random Forest. Ship length (L), displacement
(A), and block coefficient (Cb) emerge as the top three
predictors of vibrational parameters, collectively
accounting for over 60 % of the model’s explanatory
power. Lesser but still significant contributions come
from midship shear rigidity and radius of gyration.
These importance scores guided our feature-selection
strategy in the subsequent Logistic Regression
refinement.

Feature Importance from RF Stage

0.330

e
by

0.142

Average Importance

010

0.05

0.00

Type L (m) Afton) Ch
Features

Figure 2. Feature Importance from the Random Forest
Stage

Scatter plots (Figure 3.) comparing the hybrid model’s
predictions (y-axis) against measured values (x-axis)
for each target vibrational parameter: (a) hull
coefficient o, (b) resistance factor 1., (c) natural
frequency N, (d) natural frequency Ns, and (e) average
coefficient ¢. The 45° reference line (dashed) indicates
perfect agreement. High R2 values (0.99-0.87) and
tight clustering around the line demonstrate the
model’s ability to capture both non-linear patterns and
linear trends across all parameters.
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Figure 3. Scatter plots of the Predicted vs. Actual
Vibrational Parameters

The tight clustering of points around the 45° line in
Figure 3. confirms that the hybrid RF + LR model
maintains low bias across the full range of vibrational
parameters. A residual-versus-prediction plot (not
shown) further reveals homoscedastic errors, indicating
consistent variance at both low and high values. Slight
underestimations at the upper extremes suggest that
augmenting the training set with additional high-
frequency cases could further refine model accuracy.

5. Conclusions

This study presents a transformative approach to ship
vibration analysis by integrating classical semi-
empirical formulations with advanced machine
learning (ML) techniques, offering a robust framework
for predicting vibrational parameters across diverse
vessel types. Building on the foundational work of
Kumai (1967), the hybrid model synthesizes Random
Forest (RF) for non-linear feature extraction and
Logistic Regression (LR) for linear refinement,
effectively addressing the limitations of traditional
finite element and experimental methods. By
leveraging a dataset encompassing 373 ships across 34
types, including historical trial data and modern
operational records, the model demonstrates
exceptional predictive accuracy for critical parameters
such as the hull coefficient (o), resistance factor (tz),
natural frequencies (N2, Ns), and average coefficient
(c). Key performance metrics, including R2 values of
0.9938 for a and 0.9504 for 12, alongside minimal mean
squared errors (MSE of 0.0000 for a), underscore the
model’s reliability. Notably, natural frequency
predictions for crude oil tankers exhibited errors below
3% when compared to empirical measurements,
validating the model’s generalizability and precision.
The hybrid architecture capitalizes on RF’s ability to
capture complex interactions between structural
features, such as ship length (L), displacement (A), and
block coefficient (Cb), and LR’s interpretability,
enabling transparent insights into linear relationships.
Feature importance analysis revealed that A and L
dominate vibrational behaviour, aligning with classical
theories of hull resonance and critical speed thresholds.
This dual capability not only enhances predictive
accuracy but also provides actionable insights for
engineers, facilitating informed decisions in ship
design and maintenance. By reducing reliance on costly
simulations and experimental trials, the framework
offers a scalable, cost-effective solution for optimizing
structural integrity and operational safety.
Furthermore, the study highlights the broader
implications of hybrid ML models in advancing
maritime sustainability. Accurate vibration prediction
contributes to fuel efficiency optimization, emission
reduction, and the development of digital twins for
real-time structural health monitoring. Future research
should explore integrating real-time sensor data from
loT-enabled Structural Health Monitoring (SHM)
systems and expanding the model’s applicability to
emerging vessel designs, such as autonomous and
hybrid-powered ships. Additionally, incorporating
advanced uncertainty quantification (UQ) techniques
could further enhance resilience against environmental
variability.

Building on the hybrid RF + LR framework presented
in this study, it is planned to incorporate real-time
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Structural Health Monitoring (SHM) data to enable
truly proactive vibration management. Live sensor
feeds, such as accelerometers, strain gauges, and laser-
Doppler vibrometers, would be streamed into the
model to continuously recalibrate predictions and
detect subtle shifts in vibrational behaviour. This
dynamic updating mechanism could trigger automated
alerts for maintenance crews, optimize inspection
schedules, and ultimately extend service life by
preempting damage before it becomes critical.

In conclusion, this work bridges the gap between
classical engineering principles and modern data-
driven methodologies, establishing a paradigm shift in
maritime vibration analysis. By harmonizing empirical
rigour with computational innovation, the proposed
framework paves the way for safer, more efficient, and
environmentally sustainable maritime operations,
setting a benchmark for future interdisciplinary
research in naval architecture and marine engineering.
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8. List of Symbols (Optional)

Ao Cross-sectional area at the midship
section.

c Average coefficient computed

Cn Variable section coefficient for the n-th
node.

A Ship displacement (in tons).

Elo Bending stiffness (flexural rigidity) of the
midship section.

g Acceleration due to gravity (m/s?).

| Second moment of area.

Io Reference the second moment of area.

k'GAo Shear rigidity of the midship section.

L Ship length (m).

m Average mass per unit length.

N_cpm Natural frequency (cycles per minute).

N2, Ns Natural frequencies at vibration nodes 2
and 3.

n Number of vertical vibration nodes in the
ship hall.

Yo Radius of gyration of the midship section.

y Vertical displacement function.

y Second derivative of the vertical
displacement function

o Hull coefficient, defined as o =
(Elo)/(k'GAo L?).

B Dimensionless parameter, defined as § =
(re?)/(L2).

T Resistance factor in the vibration model.
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