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In this study, buckling analysis of panel types of marine and offshore 
structural components with initial imperfection under the combined action of 
lateral pressure and axial compression is carried out. The governing 
differential equations for thin and moderately thick shells are developed in 
terms of components of the displacement field. The governing ordinary 
differential equations are then discretized and reduced to a linear system of 
homogeneous equations employing the differential quadrature method. The 
results obtained by the present method are verified with results obtained by 
finite element method and those reported in the literature. Design rules of two 
classification societies, namely American Bureau of Shipping (ABS) and Det 
Norske Veritas (DNV) are briefly presented and results are compared with 
rules requirements of these societies. It is observed that DNV rules are more 
conservative than ABS rules for calculation of buckling loads of marine and 
offshore structures. Effects of several parameters including the curvature, 
initial imperfection, geometric ratios and loading conditions on the buckling 
behavior of a cylindrical shell and a curved panel are investigated. 
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1. Introduction 

Cylindrical shells and panels are common 
structural components in various types of marine, 
offshore and subsea structures. The widespread use of 
these structures in marine industry has encouraged 
several researches on the stability and failure analysis 
of these components and development of failure 
prevention methods. In the past and mainly due to 
lack of knowledge about the buckling phenomenon, 
ultimate strength was considered as the main design 
factor for marine structures. Now, by having done 
studies and researches on buckling behavior of 
structures, buckling strength has been regarded as the 
main factor in designing of shell structures.  
Since, several unexpected conditions may exist for 
offshore structures in marine environment, it is 
necessary to design these structures with higher level 
of safety. Imperfections are one of these unexpected 
conditions. The buckling strength of an offshore 
structural component is highly related to the amplitude 
and shape of the imperfections which are mainly 
produced during manufacturing, storage, 
transportation, installation processes or caused by 
corrosion pitting. Testing of a corroded member 
indicated that even nominal values of corrosion 
resulted in a lost load carrying capacity of up to 35% 

to 50% [1]. Therefore, special care should be taken in 
the buckling and ultimate strength assessments of 
corroded components in order to ensure that these 
structures are within acceptable level of safety. In the 
context of offshore design, the structural components 
are mainly made of steel and due to the method of 
fabrication, they may possess considerable inherent 
initial imperfections and residual stresses. Therefore, 
it is necessary to consider many other important 
factors such as collapse and post buckling modes and 
likely failure modes in general buckling analysis.  
Two types of formulations are basically considered 
namely the lower bound and the mean value [2]. The 
governing design equations for buckling strength 
assessment of shells related to marine structures are 
the rules requirements set by marine classification 
societies, e.g. American Bureau of Shipping (ABS) 
and Det Norske Veritas (DNV). DNV formulation can 
be considered as a lower bound one and characterised 
by the under prediction of the strength of offshore 
structures. The ABS rules for building and classing 
offshore installations [3], mobile offshore drilling 
units [4], and steel vessels [5], require that buckling 
strength be provided for the structure as a whole and 
for each structural member. 
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On the other hand, Mirfakhraei et al. studied the 
buckling behavior of tanks under seismic loading 
condition [6]. Buckling of long shells under three 
point bending was investigated by Redekop et al. [7]. 
Mirfakhraei and Redekop [8] used the differential 
quadrature method to study the buckling behavior of 
circular cylindrical shells. Shen and Chen [9-10] 
investigated the buckling behavior of cylindrical 
shells under the action of axial compression and 
lateral pressure using the boundary layer theory that 
was found to be very cumbersome in mathematical 
calculations for practical applications. 
In this study, three dimensional stability equations of 
the shell are developed on the basis of the second 
Piola–Kirchhoff stress tensor. The shell is assumed to 
be subjected to a combination of axial compression 
and lateral pressure loadings. The differential 
quadrature method is used to discretize the differential 
equations and to obtain the buckling load of thin 
cylindrical shells and panels. Numerical results are 
compared with finite element solutions and results 
reported in the literature. Effects of various 
parameters including the panel curvature, mechanical 
loading combinations and geometric ratios on the 
buckling load of the panel are investigated. The 
novelty of the present work is to obtain a benchmark 
solution for the critical buckling load of cylindrical 
shells. The main objective of the work is to present a 
new set of three dimensional formulations for 
buckling of the panel bounded by stiffeners and 
compare results with DNV and ABS rules for 
different cases of load conditions. Furthermore, we 
have tried to show similarities and differences in the 
prediction of the limit state by these two rules. 

 
2. Formulation of the problem 

A curved panel of length L, width S, curvature 
angle β, mid-surface radius a, and variable thickness 
h(x) is considered. The geometry and the coordinate 
system (r, θ, x) of the panel are shown in Figure 1.  
It is assumed that the shell has an axisymmetric and 
periodic imperfection in the axial direction and the 
thicknesses of the shell obey the following formula:  
 

0( ) (1 cos ( ))
2
Lh x h x

L


      (1)  
 
Where h0 is the thickness of a perfect cylindrical shell 
and ߝ is the non-dimensional parameter of 
imperfection. According to the presented formulation, 
the mid-surface radius a(x) varies in the axial 
direction while the inner radius R1 is assumed to be 
constant. The thicknesses of the shell at two ends of 
the shell are the same for all values of ߝ, i.e. h(x)=h0 at 
x=0,L and h(x)=h0(1-ߝ) at x=L/2.  
The corresponding displacement functions at the 
perturbed position for the buckling state are expressed 
as:  
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  

 (2) 

 
Where α is an infinitesimally small quantity; 

 0 , ,w r x ,  0 , ,v r x  and  0 , ,u r x  denote 
initial values of components of displacement field and 

 , ,w r x ,  , ,v r x  and  , ,u r x  denote values 
of components of displacement field in the disturbed 
position in the radial, circumferential and axial 
directions, respectively. 

 
Figure 1. Panel geometry and coordinates  

 
The stress-strain relations for an isotropic material are 
defined as: 
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 (3) 

 
Where λ and G are the Lame coefficients: 
 

    
( ) ( )( ) , ( )

2 1 1 1 2
E z E zG z z 

  


 
  

 (4) 

 
By substituting parameters of Eq. (2) into the linear 
strain-displacement equations and using Eq. (3), strain 
and stress components in the perturbed configuration 
can be obtained in terms of components of the 
displacement field.  
Equations of equilibrium are written in terms of the 
second Piola–Kirchhoff stress tensor σ, in following 
form [11]: 
 

( ) 0,Tdiv F F I rgadV    


 (5) 
 

Where F is the deformation gradient, V


 is the 
displacement vector and I is the unit tensor. For a 
three dimensional problem, Eq. (5) can be expanded 
in the radial, circumferential and axial directions. 
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Considering linear normal strains 0
ij ij ij        and 

rotations 0
ij ij ij      , as well as stresses and 

keeping the linear terms in α, a set of equations for the 
perturbed state is developed. The shear strain, shear 
stress and rotation are assumed to be zero in the initial 
condition, hence the corresponding terms are dropped 
from the equilibrium equations. Since, the non-zero 
normal strains are assumed to be much smaller than 1, 
i.e. ( 01 1rre  , 01 1e  , 01 1xxe  ) , a system of 
homogeneous differential equations are obtained 
which are linear in derivatives of w, v , u with respect 
to r, θ and x .  
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 (6c) 

 
3. Boundary conditions 
Boundary conditions of the shell are defined with the 
help of equilibrium equations using the second Piola –
Kirchhoff tensor σ as: 
 

( )F n t  
   (7) 

 
Where t


 is the traction vector and n  is the outward 

pointing unit normal vector. Applying the boundary 
condition as defined in Eq. (7) for the initial and 
perturbed equilibrium positions, the following 
relations for stress components at the lateral surface 
are obtained:  
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 (8) 

 

The stress components 0
rr  and 0

  at the outer and 
inner lateral surfaces of the shell due to the action of 
the lateral pressure p, are given by the well known 
expressions from the linear elasticity theory [12]:  
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 (9) 

 
Since in the present work we consider curved panels 
between adjacent pairs of ring and stringers stiffeners, 
simply supported boundary conditions are defined for 
panel edges:  
 

 
4. Buckling load calculation 
Equations which are developed in the previous section 
include rotation and strain terms and can be used for 
general shells. Substituting components of the 
displacement filed into linear strain-displacement 
equations and applying the stress-strain relations i.e. 
Eq. (3), components of the stress field are defined in 
terms of components of the displacement field. 
Finally, by substituting the resulted expression in Eq. 
(6), the equilibrium equations in the buckled state are 
defined in terms of components of the displacement 
field. 
In the present study, a semi-analytical method called 
the differential quadrature method is used to discretize 
and solve the governing buckling equations. This 
method suggests that the first order derivative of the 
function f(x) can be approximated as a linear sum of 
all functional values in the domain: 
 

(1)

1

( )

1,2,...,

i

N

x x ij j
j

df w f x
dx
for i N




 



  (11) 

 
Where w(1)

ij is the weighting coefficient and N denotes 
the number of grid points in the domain. It should be 
noted that the weighting coefficients are different for 
different grid points, xi. The polynomial and Fourier 
expansion methods are commonly used to determine 
the weighting coefficients. In this study, the 
polynomial expansion based differential quadrature is 
used to approximate the first and second order 
derivations in the radial and the longitudinal directions 
[13]. 
Now, using unequal spacing scheme for sampling 
points in the domain and applying differential 
quadrature method for governing equations, we have: 
 

0 0,
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Where a(k)
ij, b(k)

ij and c(k)
ij denote weighting 

coefficients of the kth order derivative in the r, x and θ- 
direction, respectively; N, Q and M are grid point 
numbers in the r, x and θ- direction, respectively. 
For simplicity and ease of calculation, the perturbed 
displacement can be written in the periodic form for 
some specific boundary conditions. For example, 
considering simply supported condition for 
longitudinal edges, we have: 
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Where m is the circumferential half buckling mode 
number. 
The critical value of the external pressure, Pcr, i.e. the 
buckling load, is calculated by solving the set of 
equations which are transformed into the standard 
eigenvalue equation of the following form: 
 

      
        
  

1 1

1

( )

( )

0

T

T

DBG BB BD DDG

DB BB BD DD u v w

P u v w

 



 

  

  

 (14) 

 
Where sub-matrices [BB], [BD] and [DBG], [DD], 
[DB], [DDG] are resulted from the boundary 
conditions and governing equations, respectively. 
In order to compare buckling loads of cylindrical 
shells and curved panels obtained by the present 
method and those obtained by design rules set by 
classification societies, a brief explanation about these 
rules is given.  
According to DNV rules, the stability requirement for 
shells subjected to one or more loads is given by: 
 

,j sd ksdf   (15) 
 
Where σj,sd is the design equivalent von Misses stress 
that is obtained by membrane stresses created by 
axial, circumferential, bending and shear loading and 
fksd is the design buckling strength which is defined as: 
 

ks
ksd

M

ff


  (16) 

 
The characteristic buckling strength of shells, fks , is 
obtained by: 
 

41
y

ks

s

f
f





 (17) 
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where fy is yield strength of the material. The material 
factor, γM is given as: 
 

1.15 0.5

0.85 0.6 0.5 1

1.45 1

M s

M s s

M s

 

  

 

 

   

 

 (18) 

 
In above, s  is obtained by design stresses and elastic 
buckling strengths of curved panels and circular 
cylindrical shells subjected to different loading 
conditions [14]. In this work, buckling behavior of 
unstiffened or ring-stiffened circular cylindrical shells 
and unstiffened curved panels or panels bounded by 
two adjacent stiffeners are investigated. Therefore, 
cylindrical shell components with L/s<1 and panels 
with L/s>1 are considered. Elastic buckling stress for 
cylindrical shells and curved panels are defined in 
Eq.s (19) and (20), respectively. 

 

2

2 ( )
12(1 )E

E hf C
L







 (19) 

2

2 ( )
12(1 )E

E hf C
s







 (20) 

 
where C is the reduced buckling coefficient: 
 

21 ( )C 
  


 (21) 

 
where ρ, ψ and ξ are buckling coefficients which are 
dependent on the loading conditions. 
According to ABS rules, critical buckling stress for 
unstiffened cylindrical shells subjected to external 
pressure may be defined as: 
 

C R E R     (22) 
 
Where Φ is the plasticity reduction factor and σEθR is 
the elastic hoop buckling stress and defined as: 
 

( 0.5 )CE R
E R R

q a h K
h


   


  (23) 

 
In above equation, ρθR is the lower bound knock-down 
factor, Kθ is a coefficient to account for the effect of 
the ring stiffener and elastic buckling stress, qCEθR is a 
function of E, h, a, υ and L [15]. For the axial loading 
case the same set of equations are applied. 
 
5. Numerical results 
In this study, material properties of the shell are 
assumed to be isotropic. The material properties of the 

shell i.e. the Young’s modulus E, and the Poisson's 
ratio, υ are assumed to be 200 GPa and 0.3, 
respectively. 
At first, accuracy of the presented method is validated 
against results reported in the literature. The 
normalized results of stability equations for an 
isotropic moderately thick cylindrical shell under the 
action of pure axial compression obtained by 
differential quadrature method are presented in Table 
1. For this specific case the Young’s modulus E, of 
the shell is considered to be 14 GPa. The results are 
validated against the results reported by Kardomateas 
[16], Timoshenko [17] and Flugge [18]. It is observed 
from the table that results are in good agreement with 
reported results for moderately thick shells. The 
results for buckling loads of a thin perfect cylindrical 
shell under the lateral pressure are presented in Table 
2 that indicates a good agreement with finite element 
solutions, however the difference between presented 
results and those reported by Mirfakhraei increases as 
the ratio L/a increases or a/h decreases. 
Also buckling mode shapes obtained by Ansys 
software for complete shells with a/h=300 and 
different values of L/a are presented in Figure 2. It can 
be seen that buckling modes in circumferential 
direction have periodic form as considered in relations 
(13). 

 
Table 1. Critical pure axial compression load of a cylindrical 

shell  
E=14 GPa, 0.3=ݒ, R2=1 m,  L/R2=5   Critical Load:

 2 2
2 2 1/ ( )f FR Eh R R   

 

Ref. [18] Ref. [17] Ref. [16] Present R2/R1 

0.4525  
(2,1) 

0.4348  
(2,1) 0.4426  (2,1) 0.4334 1.05 

0.4019  
(2,1) 

0.3865  
(2,1) 0.3910  (2,1) 0.3739 1.10 

0.4710  
(2,1) 

0.4373  
(2,2) 0.4547  (2,1) 0.4158 1.15 

0.4620  
(2,2) 

0.4184  
(2,2) 0.4371  (2,2) 0.4088 1.20 

 
Table 2. Critical pure lateral pressure (kPa) of a clamped-

clamped cylindrical shell  
E=200 GPa , 0.3=ݒ 

 

% error Present FEM Mirfakhraei [8] m a/h L/a 

2.18 175.03 159.77 166.54 13 300 
1 1.53 54.48 43.67 46.993 15 500 

0.93 10.45 8.04 8.415 18 1000 
3.15 88.134 79.84 84.79 9 300 2 
5.11 35.76 29.45 32.9 6 300 5 
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L/a=0.5 L/a=1 

  
L/a=5  L/a=5 

 
Figure 2. Buckling mode shapes for a thin complete shell 

 
To study the accuracy of the present method against 
finite element solutions for thin and moderately thick 
shells, results for two cases of shells, i.e. a complete 
cylindrical shell and a curved panel with β=π/2 are 
shown in Table 3. It is clearly shown that two sets of 
results are in good agreement.  
 
Table 3.  Compare variation of buckling pressure (kPa) with 

geometric ratios 
 

FEM Present 

a/h β=90 β=360 β=90 β=360 

1.02E+06 8.69E+05 1.14E+06 7.83E+05 10 
5.38E+05 4.73E+05 6.40E+05 4.38E+05 12.5 
1.50E+05 1.40E+08 1.94E+08 1.13E+05 20 
4.20E+04 3.77E+04 4.60E+04 3.47E+04 30 
2.00E+03 2.33E+03 2.33E+03 2.08E+03 100 
3.90E+02 4.11E+02 4.21E+02 3.50E+02 200 

 
Variation of critical loads with the curvature angle β 
for a moderately thick shell subjected to pure external 
pressure loading is presented in Figure 3. It is 
assumed that the panel is clamped at two side edges 
and simply supported at the upper and bottom edges. 
It is revealed from the figure that the critical load for 
higher values of β approaches an asymptotic value, i.e. 
the buckling load for a cylindrical shell 

 
Figure 3.  Variation of buckling pressure with curvature angle 
 
The effect of the distance between ring stiffeners, i.e. 
the length of curved panel on its critical load for 
various curvature angles is shown in Figure 4. The 
panel is assumed to be subjected to uniform lateral 
pressure. It is realized from Figure 3 that as the value 
of L increases, the buckling load decreases and 
approaches to an asymptotic value. It is also revealed 
from this figure that buckling load variation is less 
sensitive to the length L of the panel with small 
curvature angel, β. In other word, as the number of 
straight stiffeners used for a cylindrical shell increases 
the dependency of local buckling pressure on the 
length or distance of ring stiffeners is reduced.   
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Figure 4.  Variation of buckling pressure with length for 

different curved panels 
 

To study the buckling behavior of a shell with 
imperfection, the quantity namely, λ denoting the ratio 
of the buckling load of the imperfect shell to that of 
the perfect shell is  considered: 

 
( )

( )

imper
cr

per
cr

P
P

    
(24) 

 
The buckling load reduction parameter λ for pure 
external pressure loading cases of isotropic shells with 
L/a=1 and considering imperfection are presented in 
Figure 5. The results of this figure propose the same 
pattern as the one presented by Nguyen et al. [19]. 
 

 
Figure 5.  Variation of Buckling load reduction λ with ߝ and a/h 

 
Next, results of the present method are compared with 
results obtained by classification societies rules 
requirements. A complete thin cylindrical shell 
subjected to pure external pressure loading is 
considered. Variation of buckling pressures obtained 
by the present method for different values of a/h and 
L/a are shown in Tables 4 and 5. Also the effect of the 
imperfection parameter on the buckling pressure of 
these shells is considered. It is evident from these 
tables that DNV and ABS rules present high factor of 
safety, especially for thin and long shells. 
Imperfections can reduce the buckling pressure 

significantly. It can be found that the buckling load 
ratio, i.e. the ratio of the buckling load of the 
imperfect shell to the perfect shell reduces linearly for 
small values of the imperfection factor. As shown in 
tables, for small values of a/h and L/a, the ABS rule 
gives lower value of the factor of safety for the design 
of imperfect cylindrical shells. 
 

Table 4. Variation of buckling pressure (KPa) with a/h for 
thin shell under pure lateral pressure 

 

1000 800 500 300 200 100 a/h 
8.04 12.7 43.67 159.77 411.3 2334 FEM 
10.45 17.9 54.48 175.03 374.8 2089 ε=0 

Present 
9.4 16.27 49 158.7 343 1921.9 ε=0.05 
8.4 14.48 43.58 142.1 307.7 1692.1 ε=0.1 
7.42 12.6 38.14 122.5 273.6 1483.2 ε=0.15 
4.8 8.5 27.79 101.3 283.6 1667 ABS 
46 47.5 51 58 75.66 79.8 (ABS/Present)*100 

2.45 4.3 14.12 51.63 144.1 856.5 DNV 
23.4 24 26 29.5 38.4 41 (DNV/Present)*100 

 
Table 5. Variation of buckling pressure (KPa) with L/a ,  

a/h=200 under pure lateral pressure 
 

20 10 5 3 2 1 L/a 
23.3 41.2 81.1 129.7 187.6 374.8 ε=0 

Present 
20.78 37.08 73.64 117.38 177 343 ε=0.05 
18.54 32.96 65.37 104.64 152.3 307.7 ε=0.1 
16.15 28.84 56.93 90.92 134.1 273.6 ε=0.15 
11.63 24.36 52.29 89.24 135.7 283.6 ABS 

50 59.1 64.6 68.6 72.33 75.66 (ABS/Present)*100 
6.7 13.4 26.86 45.04 68.3 144.1 DNV 
28.8 32.5 33.1 34.72 36.4 38.4 (DNV/Present)*100 

 
Buckling loads for thin curved panels between 
adjacent pairs of ring and stringers stiffeners with 
β=π/2 are listed in Table 6 and compared with results 
obtained by DNV rules. It is evident from this table 
that for curve panels as the imperfection parameter 
increases, the buckling load ratio reduces linearly as 
shown in figure 5.  
 

Table 6. Variation of critical pressure (KPa) with a/h for 
curved panel with L/a=1and β=π/2 

 

1000 800 500 300 200 100 a/h 
11.2 17.37 65 193 421.2 2329 ε=0 

Present 
10.3 15.8 59.5 177.7 386.2 2142.7 ε=0.05 
9.1 14.2 53.1 156.3 343.53 1909.8 ε=0.1 
8.2 12.5 47.1 140 307.5 1653.6 ε=0.15 

2.47 3.82 14.38 53.4 139.8 829 DNV 
22 22 22.1 27.7 33.2 35.6 (DNV/Present)*100 

 
For the axial loading case, variation of critical forces 
for a thin shell, with the ratio of a/h are presented in 
Table 7. The effect of the initial imperfection is also 
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considered. The results are compared with referred 
design rules. It can be observed from this table that the 
safety factor given by presented rules are higher for 
the axial loading case in comparison with that for the 
pure external pressure loading. It is shown that as the 
imperfection parameter ߝ increases, buckling load 
reduces and this reduction is smaller than the external 
pressure loading case. The results for the critical axial 
force of curved panels for different values of panel 
width are given in Table 8. 
 

Table 8. Variation of buckling axial force (KN) with s for 
curved panel with L/a=2 and h=0.003 mm 

 

1 0.8 0.7 0.5 0.4 0.3 s(m) 
823 750 709 561 472 404 FEM 
795 722 667 528 425 368 Present 

324.3 265.7 236.2 177.46 147.53 119.35 ABS 
186 149.1 130.8 95.17 78.7 65 DNV 

 
Table 7. Variation of buckling force (KN) with a/h for thin 

shell under axial compression 
 

1000 800 500 300 200 100 a/h 
784.5 980.6 3136.9 8702.6 19386.3 67824 ε=0 

Present 
778.2 969.8 3130.6 8624.3 19172.7 67484 ε=0.05 
964.1 960 3074.1 8511.1 18901.6 65789 ε=0.1 
946.1 944.3 3042.8 8415.4 18707.8 65111 ε=0.15 
141 225.6 759.9 2435.4 4515.5 10569.4 ABS 
14.5 23 24.2 28 23.3 15.6 (ABS/Present)*100 
94 160.7 482.3 1448.5 3008 7797.6 DNV 
12 16.4 15.4 16.6 15.5 11.5 (DNV/Present)*100 

 
6. Conclusions 
In this paper, a set of stability equations of cylindrical 
shells and panels related to marine structures are 
obtained using three-dimensional elasticity theory. 
The resulting differential equations are discretized and 
solved by differential quadrature method. Buckling 
analysis of cylindrical shells and panels under the 
action of different types of mechanical loadings is 
carried out. It is assumed that curved panels bounded 
by adjacent pairs of rings and stiffeners have simply 
supported boundary condition at all panel edges. 
Effects of the curvature angles, shell geometric 
parameters, initial imperfection and loading 
conditions on the buckling behavior of these structures 
are investigated. Numerical results for buckling loads 
of thin and cylindrical shells are presented and 
compared with classification rules of ABS and DNV 
classification societies. It is shown that the 
requirements set by DNV is more conservative and 
provides higher factor of safety in comparison with 
ABS in designing marine and offshore structures.  
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