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Analyzing piles subjected to lateral loads significantly depends on soil 
resistance at any point along the pile as a function of pile deflection, known as 
p-y curve. On the other hand, the deformation characteristics of soil defined as 
“the soil strain at 50% of maximum deviatoric stress (ε50)” has considerable 
effect on the generated p-y curve. In this research, several models are 
proposed to predict ε50 specifically for designing very long pile foundations of 
offshore oil and gas platforms in South Pars field; Persian Gulf; Iran. Herein, 
ε50 is evaluated from extensive soil data of marine clays including in-situ and 
laboratory test results using evolutionary polynomial regression (EPR). It is 
demonstrated that the normalized cone tip resistance, which is an indication of 
soil undrained shear strength, leads to more realistic ε50 values compared with 
the laboratory-derived undrained shear strength parameter. Furthermore, the 
results of full scale lateral pile load tests in different sites are used in order to 
validate the performance of the proposed models in predicting lateral pile 
behavior. The results of a numerical study on lateral pile-soil system also 
show the efficiency of the proposed model in predicting lateral pile response. 
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1. Introduction 
Pile foundations are often required to be designed 
against significant lateral in addition to vertical loads. 
These lateral loads can be imposed by wind, earth 
pressure, wave, tide, current and ship impact, mooring 
rope, earthquake, vehicle traction and etc. The 
performance of pile foundations is usually governed 
by either deflection or bearing capacity. Exceeding the 
maximum allowable lateral load may cause the failure 
of soil around the pile, or structural failure of the pile 
itself. In order to design a pile foundation safely and 
economically, accurate assessment of its behavior 
should be made using pile load tests data and/or the 
well-known analytical or numerical methods. As the 
full-scale load tests are very expensive and time 
consuming, analytical and numerical approaches are 
usually used to evaluate the lateral behavior of pile-
soil systems. 
The lateral pile-soil interaction behavior is commonly 
characterized by a series of uncoupled, nonlinear 
springs applied along the pile, known as p-y curves. 
Various formulations have been proposed to predict p-
y curves in different site conditions (e. g., [1-7]). The 
American Petroleum Institute (API) method [7] is the 

widely used method based on Matlock’s field research 
[1]. 
Pile geometry and soil properties are the key 
parameters in developing p-y curves. These curves 
mostly depend on the ultimate horizontal soil reaction 
(Pu) and the critical lateral displacement (yc) 
corresponding to 50% mobilized Pu. yc is defined as: 
 

Dyc 505.2                                                              (1) 
 
where, D is the pile diameter, and ε50 is the strain at 
one-half the maximum deviatoric stress in laboratory 
undrained compression tests on undisturbed cohesive 
soil samples. Typical p-y curves for cohesive soils is, 
shown in Figure 1, illustrate the role of the above 
mentioned parameters on developing such curves. 
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Figure 1. Typical p-y curves for pile in cohesive soil under 
static loading 

 
Curves A and B in this figure, are schematic p-y 
curves for a soil with different ε50 values. As ε50B> 
ε50A, with the same pile geometry we have ycB> ycA. As 
shown in this figure, ε50 is an effective factor in 
generating p-y curves for clays. It is seen that higher 
ε50 values lead to softer soil behavior and higher pile 
lateral displacements for constant lateral load ratios 
(P/ Pu). Furthermore, the ultimate lateral load is 
obtained at higher levels of pile lateral displacements 
as ε50 increases. Hence, lateral stiffness and resistance 
of pile-soil system are affected by ε50. 
Sullivan et al. [8] recommended ε50 values for 
different clayey soils based on the undrained shear 
strength. However, such proposed ε50 values are not 
consistent with those obtained from experimental 
measurements conducted in different sites and do not 
result in accurate p-y curves in most soil conditions 
[9-10]. 
Hamilton et al. [10] performed some triaxial 
compression tests under isotropically consolidated 
undrained (CIU) and unconsolidated undrained (UU) 
conditions on Tilbrook Grange clays and measured 
the ε50 values. They realized that ε50 values obtained 
from CIU tests show less scatter than those of UU 
tests and found a trend line for ε50. It was 
demonstrated that ε50 values, obtained from laboratory 
tests, were nearly five times greater than the values 
recommended by Sullivan for sites having similar 
undrained shear strengths. Afterwards, they compared 
different p-y curves derived based on laboratory ε50 
values and those recommended by Sullivan. It was 
demonstrated that the uncertainty of predicted p-y 
curves decreases from 65% to 35% if laboratory ε50 
values are used instead of those recommended by 
Sullivan. Additionally, they noted that the use of p-y 
curves based on Matlock method with ε50 values from 
CIU tests leads to a more reliable prediction of the 
lateral load-displacement response. 
Hamilton et al. [10] discussed different methods to 
develop p-y curves for piles in stiff, overconsolidated 
clays. They compared measured values of ε50 derived 

from UU tests with those typically assumed from 
Sullivan recommendations and indicated that a 
slightly better prediction of load–displacement curves 
is achieved using measured ε50 values instead of those 
recommended by Sullivan. 
Dunnavant [11] performed experimental and 
analytical investigations to predict the influences of 
pile and soil characteristics as well as loading 
conditions on lateral pile-soil interaction in saturated 
overconsolidated clays. It was shown that the 
overconsolidation ratio (OCR) of soil can affect the 
reference critical displacement (yc) in p-y curves. In 
other words, for overconsolidated clays, the value of 
yc would be smaller than those available in the 
literature. Degradation of p-y curves in 
overconsolidated clays begins at much smaller 
deflections than in soft clays. Also, it was recognized 
that pile stiffness and pile diameter could affect yc. 
Davies [12] and Robertson et al. [6] presented a 
preliminary semi-empirical method to evaluate p-y 
curves based on flat dilatometer test (DMT) data. 
They employed the DMT-based p-y curves to model 
the behavior of three full-scale lateral pile load tests. 
They showed that ε50 has an increasing trend versus 
depth in both clays and sands in the considered sites. 
It was found that the predicted deflections using DMT 
results agree well with those obtained from pile load 
tests. In all studied cases, the calculated bending 
moments from DMT-derived p-y curves were larger 
than those calculated from the measured pile 
deflection profiles. 
The soil properties such as ε50 are very sensitive to 
soil disturbance due to coring procedure, and using ε50 
values based on the tests on core samples may finally 
lead to considerable deviation in predicting the real 
pile behavior. On the other hand, in-situ testing 
methods such as flat dilatometer (DMT), 
pressuremeter (PMT) and cone penetration test (CPT) 
offer excellent means by which representative soil 
properties may be obtained [6, 12-13]. Therefore, such 
in-situ tests, with minimum soil disturbance, can be 
used for evaluating ε50 and developing p-y curves. 
Cone penetration test (CPT) is a reliable in-situ test 
for its continuous sounding capability and good 
repeatability. It provides valuable geotechnical 
information in soil. Furthermore, the similarity 
between CPT penetration process and pile installation 
has led to its popularity in deep foundation analysis 
and design. Total cone tip resistance obtained from 
CPT has strong correlation with soil shear strength 
[14]; on the other hand, due to direct dependence of 
ε50 on shear strength, total tip resistance of CPT can be 
employed in evaluating ε50. 
Despite significant influence of ε50 on determining p-y 
curves, the prediction methods to evaluate this 
parameter are very rare in the literature. Therefore, 
this study investigates the use of CPT data to predict 
ε50 in clayey soils and examines the capability of 
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predicted ε50 values in generating realistic p-y curves 
for laterally loaded piles in different sites. The present 
calculations of ε50 are based on a comprehensive 
databank from laboratory and field tests, performed in 
South Pars field, Persian Gulf, south west of Iran. The 
field is an extremely strategic offshore area which 
contains world’s largest gas resources. Many gas 
extraction facilities supported on long pile foundations 
have been constructed in this important region and a 
large number of such facilities is still under 
development. Hence, this research mainly focuses on 
accurate evaluation of ε50 as an influential parameter 
in analysis and design of piles against lateral loads in 
this region. In this regard, several statistical models, 
based on evolutionary polynomial regression (EPR) 
method, are proposed to evaluate ε50 values for clayey 
soils. The effects of cone tip resistance, undrained 
shear strength, overburden pressure as well as 
different index properties of soils such as 
overconsolidation ratio and plasticity index on ε50 are 
evaluated and discussed. In particular, the effect of 
undrained shear strength of cohesive soils obtained 
from field tests on ε50 is investigated and compared 
with the recommended values available in the 
literature. Finally, the validation of the proposed 
models is performed for full scale piles tested in two 
different sites with different soil conditions. 
 
2. Site Description 
The survey area, approximately 50×45 km2, is located 
in Persian Gulf, Iran, between 27° 27' to 27° 28' 
Northing and 52° 27' to 52° 44' Easting (Figure 2).  
Soil investigation activities comprised of sixteen 
boreholes; eight boreholes with 110 m depth and the 
rest with 80 m depth below the seabed. In-situ and 
laboratory tests were carried out to determine the 
geotechnical properties of sub-seabed soils. The in-
situ tests included cone penetration and torvane. 
Laboratory tests such as unconsolidated undrained 
(UU) triaxial compression were performed which 
resulted in undrained shear strength of soil. The strain 
at 50% of maximum deviatoric stress (ε50) and strain 
at failure were also obtained from stress-strain curves 
in UU tests. Atterberg limits and sieve tests were 
performed as well. Typical profiles of soil properties 
are illustrated in Figure 3 for a 110 m borehole within 
the considered survey area. The sub-seabed soils are 
generally clay, including very soft clay at top up to 
approximately 20 m which become stiffer with depth. 
Also lenses of sandy silt and gypsum are found in 
several depths. 
 
 

 
 

Figure 2. Location of survey area in South Pars Field, south-
west of Iran 

 
3. Evolutionary Polynomial Regression 
Evolutionary polynomial regression (EPR) is a useful 
toolbox developed on modeling methodology based 
on hybrid regression method by [15] and [16]. It is a 
symbolic data driven method which is used to create 
polynomial models to evolutionary compute based on 
input data [17]. The constitutive modeling of soil [18] 
and assessment of earthquake-induced soil 
liquefaction and lateral displacement [19] are some 
successful examples of using EPR in the field of 
geotechnical engineering. 
EPR method includes two general stages; searching 
the model structures based on an integer Genetic 
Algorithm (GA) and evaluating each model 
parameters, such as numeric constant coefficients 
considering linear optimization [16]. The general 
symbolic expression derived from EPR is as follows: 
 





m

j
j aafFY

1
0)),X(,X(ˆ                                      (2) 

 
where, Ŷ is the estimated outputs of the system 
derived from EPR; F is the function constructed by 
the program; X is the input variables matrix; f is a user 
defined function; aj is an adjustable parameter 
determined by the program; and m is the number of 
terms of the expression defined by user excluding bias 
a0 if any. 
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Figure 3. Soil profile and field and laboratory results for a typical 110 m borehole within survey area 
 

It is noteworthy to mention that data-driven 
techniques like Genetic Programming (GP) and 
Artificial Neural Network (ANN) tend to reconstruct 
function F from input–output data. GP generates a 
population of expressions for F, coded in tree 
structures of variable size, and performs a global 
search of the best fit expression for F. ANN goal, on 
the other hand, is to map F rather than to find a 
feasible structure for it. However, both techniques 
have their own drawbacks. GP tends to search for 
mathematical expressions of F using an evolutionary 
approach, but the parameter values are generated as 
non-adjustable constants, referred to as ephemeral 
random constants. Therefore, the constants do not 
necessarily represent optimal values as in numerical 
regression methods and good structures of F can be 
missed in the process. Furthermore, the number of 
terms in GP-based expressions can greatly exceed, 
and the evolutionary search within GP can be quite 
slow. 
Neural networks (NNs) suffer from some 
shortcomings as well. One of the drawbacks of a 
neural network is that the optimum structure of ANN 
(e.g., number of hidden layers, number of neurons, 
and transfer functions) should be identified a priori 
which is usually obtained using a time consuming trial 
and error procedure [16]. The other major 
shortcoming is related to the black box nature of an 
ANN model and the fact that the relationship between 
input and output parameters of the system is described 
in terms of a weight matrix and biases that are not 
easily accessible to users understanding. In fact, the 
black box nature and lack of interpretability have 
prevented ANNs from achieving their full potential in 
engineering applications. In other words, NN models 
give no information on the way the inputs affect the 
output and therefore are considered as a black box 
class of models. The lack of interpretability of NN 
models has stopped them from achieving their full 
potential in real world problems [18,20]. 

EPR is a new data mining technique that overcomes 
the shortcomings of ANNs and GPs. In the context of 
modeling classification, EPR is classified as a 
symbolic grey box technique, whose aim is 
identification and construction of clearly structured 
model expressions from observed data [18,21]. The 
approach integrates numerical and symbolic 
regression to perform evolutionary polynomial 
regression. The strategy uses polynomial structures to 
take advantage of their favorable mathematical 
properties. Indeed, the main idea behind the EPR is to 
use evolutionary search for exponents of polynomial 
expressions by means of a genetic algorithm (GA) 
engine while the parameters of the function are 
determined using the least square method. This allows 
(i) easy computational implementation of the 
algorithm, (ii) efficient search for an explicit 
expression (formula) and (iii) improved control of the 
complexity of the expression generated [22]. To avoid 
the problem of mathematical expressions growing 
rapidly in length with time associated with GP, in 
EPR the evolutionary procedure is conducted in the 
way that it searches for the exponents of a polynomial 
function with a fixed maximum number of terms, 
rather than performing a general evolutionary search 
as used in normal GP. Furthermore, during one 
execution it returns a number of expressions with 
increasing numbers of terms up to a limit set by the 
user, to allow the optimum number of terms to be 
selected. In addition, EPR overcomes the 
shortcomings of ANNs by providing a structured and 
transparent model representing the behavior of the 
system. EPR takes advantage of automatic model 
construction procedure that avoids the need to pre-
select the functional form and the number of 
parameters in the model [23]. 
The general process in EPR can be rewritten based on 
vector form as: 
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 I
       (3) 

 
where, YN×1(θ,Z) is the least squares estimate vector 
of the N target values; θd×1 is the vector of d=m+1 
parameters aj and a0 (θT is the transposed vector); ZN×d  
is a matrix formed by І, unitary vector for bias a0, and 
m vectors of variables Zj that for fixed j are a product 
of the independent predictor vectors of inputs, X=‹X1 
X2… Xk›. 
EPR performs evolutionary search of a model space 
using an analogy with stepwise regression [24] rather 
than by means of the traditional symbolic regression 
search based on parse tree structures. In this way, EPR 
performs a global search of input exponents and 
combination of input variables according to the user-
defined cost function [16]. The adjustable parameters, 
aj , can now be evaluated by means of the linear least 
squares (LS) method based on minimization of the 
sum of squared errors (SSE) as the cost function. The 
SSE function which is used to guide the search 
process toward the best-fit model is as follows: 
 

 2

1

N
a pi

y y
SSE

N




                                               (4) 

 
where, ya are the target values in the training dataset 
and yp are the model predictions. 
The program search is based on pseudo-polynomial 
and true structures using a single and multi-objective 
genetic algorithm, with different general expression 
forms. The expression form considered in this 
research is defined as bellow: 
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
      (5) 

 
In the above expression, Xi is the k candidate inputs 
vectors; aj are constant values; ES is the matrix of 
unknown exponents which can be edited by user 
within the defined range of values; and m is the length 
of expressions defined by user, which represents the 
number of maximum terms in each set of results. Each 
monomial of polynomial models can contain user 
defined functions. For this purpose, f ( ) is the function 
that can be selected by user based on available 
functions in the program. These functions may be 
logarithmic, exponential, tangent hyperbolic and etc. 
The inclusion of exponential functions in the general 
expression of Equations (2) allows EPR to explore a 
large space of formulae where the analyst's 
understanding of the physical process warrants their 
inclusion. However, if such functions are not naturally 
describing the phenomenon being modeled EPR 
search would find exponent values for such inputs to 
be equal to zero. 

In order to determine all models corresponding to the 
optimal trade-off between the fitness and brevity of 
the model, EPR performs a multi-objective search 
exhibiting various mathematical models representing 
best fitness for possible models. For particular 
purpose, one can choose best models based on short 
gap reconstruction, gaining physical insight or 
forecasting the phenomenon. The fitness model 
defined in EPR is the Coefficient of Determination 
(CoD) which refers to how closely the regression 
expression fits the data points: 
 









n

n

mm

mp
CoD

2

2

)(

)(
1                                              (6) 

 
where, p is the predicted values by model derived 
from EPR; m is the measured values; m-bar is the 
average of measured values; and n is the number of 
data points. More details about EPR architecture for 
model representation as well as the method employed 
for parameter estimation can be found in [16]. 
 
4. Results and Discussion 
The field and laboratory test results including 274 data 
series are considered as the databank for the numerical 
regression. In the present study, five variables are 
identified as primary input data of cohesive soils for 
evaluating ε50 as an output. The input data includes 
undrained shear strength (su), normalized cone tip 
resistance (qc), total overburden pressure (σ0), 
plasticity index (PI) and overconsolidation ratio 
(OCR). The input parameters variables may affect ε50 
values have been selected based on a comprehensive 
literature survey as well as the principles of soil 
stress-strain behavior. The potentials and 
combinations of mentioned soil engineering 
parameters have been studied to generate EPR-based 
models with proper physical meanings. 
In pattern recognition procedures, it is common 
practice to divide the available data into two subsets; 
training and testing. The model is firstly developed 
using the former and then tested using the latter one to 
ensure that the final obtained model has the ability to 
properly estimate ε50 for unseen or untrained cases. 
Here, the entire databank is divided into several 
random combinations of training and testing sets until 
a robust representation of the whole population, in 
terms of statistical properties, is achieved for both 
training and testing sets. The statistical properties of 
the parameters considered in this study including the 
values of maximum, minimum, mean, and standard 
deviation are presented in Table 1 for training, testing 
and all datasets. Training dataset includes 80% of all 
data (219) and the rest (55) are used as testing dataset. 
The statistical values of training, testing and all 
dataset, shown in Table 1, are close to each other. 
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Multiple runs are performed and the analyses are 
repeated with various combinations of different 
number of generations, different functions, different 
multi-objective optimization strategies and different 
number of terms in order to obtain the most suitable 
form for the model. The solutions are analyzed on the 
basis of the simplest generated model for each case. 
After analysis of different alternative models four 
relationships are developed for evaluating ε50, which 
are presented in Table 2. It is noted that these models 
are not the only ones returned by EPR. Many other 
models can be obtained concerning their general 
expression forms, number of generations, terms and 
combinations of input parameters. Herein, the best 
models have been selected, based on the authors past 
experiences on the subject, to propose more sensible 
and practical equations with the sufficient physical 
meanings within the classical soil mechanics. To 
examine the robustness and assess the performance of 
EPR models, the following three statistical criteria 
have been used: 
 Coefficient of determination (R2), is a measure used 

to determine the relative correlation between two 
sets of variables, and defined as: 

 












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i
i
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2

2

)(

)(
1                                              (7) 

 
 Root mean square error (RMSE), is a measure of 

error, defined as: 
 

n

pm
RMSE

n

i
ii




 1

2)(
                                         (8) 

 
The advantage of this criterion is that large errors 
receive greater attention than smaller ones. 

 Mean absolute error (MAE), is another measure of 
error which eliminates the emphasis given to large 
errors, presented as: 

 

n

pm
MAE

n

i
ii




 1                                                   (9) 

 
In the above relations, mi and pi are the ith measured 
and predicted values of output parameter (ε50), 
respectively; n is the number of data points; and m-bar 
indicates the average of measured output. 
The suggested models to evaluate ε50 as well as the 
values of statistical criteria are presented in Table 2. It 
is seen that the performance of models improves from 
model 1 to 4 since R2 value increases while RMSE and 
MAE values decrease. Based on the results 
summarized in Table 2, the EPR model 4 is chosen as 
the most appropriate one which is developed using 
four input parameters: qc, σ0, PI, OCR. 
The first relationship is developed between undrained 
shear strength of soil and ε50 and the second one uses 
the normalized cone tip resistance (qc) to predict ε50, 
as shown in Table 2. By comparing the statistical 
characteristics of models 1 and 2, it can be found that 
the ε50 values predicted from field-based resistance 
property (qc) are more accurate than those predicted 
from the laboratory-based resistance (su). By using qc 
instead of su, R2 increases from 6.6 for model 1 to 20.8 
for model 2. However, R2 value is not yet acceptable 
enough, and it seems that other influential parameters 
should be included in the model development process. 
Therefore, after several try and error procedures, it 
was found that the index properties of soil, e. g., OCR 
and PI have strong effects on the predicted ε50 values. 
According to Table 1, it is realized that model 3, 
which includes the above mentioned factors, predict 
ε50 more accurately than model 2. Furthermore, model 
4 shows that the overburden pressure has also a 
notable positive influence on prediction accuracy. 
 

 
Table 1. Statistical characteristics of databank 

 

Subsets Statistical 
characteristics 

σ0 su qc PI OCR Measured ε50 
(kPa) (kPa)

 
(kPa)

 
(%)  (%) 

Testing 
data 

(55 data) 

Minimum 216 19 162 14 0.9 0.9 
Maximum 1933 504 8767 40 4 9.2 

Mean 1081 241 4155 29 2.2 3.9 
Standard deviation 462 112 2190 6.8 0.74 2.1 

Training 
data 

(219 data) 

Minimum 217 19 139 12 0.9 0.7 
Maximum 2207 634 8943 47 5.3 9.3 

Mean 1077 274 4184 30 2.4 3.5 
Standard deviation 515 129 1996 7.4 1.1 2.0 

All data 
(274 data) 

Minimum 216 19 139 12 0.9 0.7 
Maximum 2207 634 8943 47 5.3 9.3 

Mean 1078 268 4178 30 2.4 3.6 
Standard deviation 505 126 2037 7.3 1.0 2.1 
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Table 2. Proposed models for estimating ε50 
 

No. Equation Involved 
parameters 

R2 RMSE MAE 
(%)   

Model 1 2.0
50 5.179.0 us  su 6.6 1.99 1.65 

Model 2         qc 20.8 1.84 1.52 

Model 3 

3.03.312

7.08.05.03

1.07.04.16

1.05.03.02
50

1024.1

101.2

1043.5

1076.884.4

















OCRq

OCRPIq

OCRPIq

OCRPIq

c

c

c

c

 qc, PI, OCR 36.7 1.64 1.34 

Model 4 

55.1105.1

108.1

107.2

6.01.04.05.16

26.13.16.010

2.03.16.25.113
50













OCRPIq

OCRPIq

OCRPIq

c

c

c







 qc, σ0, PI, 
OCR 64.8 1.22 1.02 

 

 
 

Figure 4. Predicted versus measured ε50 values for proposed EPR-based models 
 
Figure 4 illustrates the predicting capability of models 
by plotting the predicted ε50 values against their 
corresponding measured values in training and testing 
datasets and their statistical characteristics are shown 
for quantitative comparison. Considering the data 
scatter in the graphs of Figure 4, the results of models 
for testing dataset are generally consistent with those 
for training dataset. The more the points are 
distributed uniformly around the ideal 45° line, and 

the less scattering around this line, the better the 
capability of the model in predicting ε50. In this 
regard, it is clear that model 4 behaves better than the 
other ones. The upper and lower lines in Figure 4 
show the boundaries for a zone that is characterized 
by the ratios of predicted to measured ε50 between 0.5 
and 2.0. 
The estimation quality of each model, defined as the 
number of the points that fall inside these two 
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boundaries as percent of the total points is shown in 
the figure. As the performance of models improves, 
the data show more concentration in the mentioned 
zone. While all models show acceptable estimation 
qualities, the estimation quality for model 4 has the 
highest value of 91.6% among the proposed models. 
It is seen in Fig 4 that the predicted ε50 values from 
model 1, which was developed merely from undrained 
shear strength (su), are not well-distributed along the 
diagonal line and are concentrated in a narrow 
horizontal band. However, implementing the 
normalized cone tip resistance (qc), instead of su, in 
model 2 has smoothed the above mentioned 
shortcoming. 
The log normal distribution, used by [25], is an 
appropriate statistical criterion to further evaluate the 
performance of the proposed models. In this regard, 
the natural logarithm of the ratio of predicted to 
measured ε50, (ln(ε50p/ε50m)), is calculated for each data 
point and then the mean and standard deviation of 
these values are determined as follows: 
 

 
 n

i impnmp 1 5050)/ln( )/ln(1
5050

                     (10) 

  






n

i imp mp

mp

n 1

2
)/ln(5050

)/ln(

5050

5050

)/ln(
1

1








           (11) 

 
where, the subscripts p and m denote “predicted” and 
“measured”, respectively; n is the number of data 
considered in the analysis; μln and σln are indicators for 
accuracy and precision of the models, respectively, 
which are used to identify the log normal distribution 
of the density function as: 
 



























 




2

)/ln(

)/ln(5050

5050ln

5050

5050

5050
)/ln(

2
1exp

)/(2
1)/(

mp

mpmp

mp

mpf












              (12) 

 
The better distribution is achieved when μln(ε50p/ε50m) and 
σln(ε50p/ε50m) approach unity and zero, respectively. The 
log normal distributions of ε50p/ε50m for the proposed 
models are presented in Figure 5. 
The probability of predicting ε50 with 0 to 90% 
accuracy (10-100% absolute error) is calculated from 
Figure 5 and shown in Figure 6. Total area below each 
curve in Figure 5 is equal to one. Therefore, at a 
specified absolute error level, the probability of 
predicting ε50 is derived by calculating the total area 
below the log normal distribution curve within the 
accuracy limits. At a constant absolute error, a higher 
probability indicates the better ability of model in 
predicting ε50. Based on this definition, the 

performance of the models improves from model 1 to 
4 at all levels of absolute error. 
The ability of different models to predict ε50 can be 
evaluated using cumulative probability, as used by 
[26]. They used the concept of cumulative probability 
as a criterion to evaluate the bias of their model. The 
cumulative probability for each ε50p/ε50m can be 
obtained by the following definition: 
 

1


n
iCPi                                                              (13) 

 
where, i is the data number, arranged in an ascending 
order. The cumulative probability versus the ratio 
ε50p/ε50m for the proposed models is depicted in Figure 
7. In order to assess the ability of each model in 
estimating ε50, the 50% and 90% cumulative 
probabilities (CP50% and CP90%) are calculated. The 
difference between CP90 and CP50 (CP90%-CP50%) 
represents the discrepancy from accurate estimation. 
Ideally, if all data are predicted with no bias, the 
distribution of estimated to measured ε50 against CP 
will be a straight line with value of unity, indicating 
an exact estimation. In reality, the better performance 
of the model is achieved when ε50p/ε50m is closer to 
unity at CP50%. Lower (CP90%-CP50%) for each 
model indicates the better prediction accuracy of the 
proposed model. 
According to this criterion, it is observed in Figure 7 
that model 4 leads to the optimum value of CP50% 
equal to unity and lower value of (CP90%- CP50%) 
compared with the other models. 
In statistical analysis, a model would behave better, if 
residual values, i.e. the difference between the 
measured and predicted values of ε50, are concentrated 
more uniformly around the mean value of residuals. 
The mean value of residuals is calculated by: 
 

 


n

i ipmn
MR

1 5050 )(1
                                      (14) 

 

 
 

Figure 5. Log normal distributions of ε50p/ε50m for proposed 
models 
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Figure 6. Probability of ε50 estimation with absolute error less 
than a given error, x (%) 

 

 
 

Figure 7. Cumulative probability plot of ε50p/ε50m for proposed 
models 

 
Figure 8 depicts the residuals of the training and 
testing sets for all presented models versus data 
number. In this figure, the residuals are scattered 
along a line indicating the mean (MR). In addition, the 
upper and lower bounds of residual scattering (MR±σ; 
σ is standard deviation of residuals) are shown in the 
figure. The ideal performance of each model is 
achieved by MR and σ equal to zero. In general, the 
lower absolute values of these two parameters 
represent the better performance of the model. A 
comparison between the proposed models in Figure 8, 
with respect to the above parameters, shows the 
improvement of the models from 1 to 4 by decreasing 
absolute MR and σ values.  
 
5. Validation of the Proposed Models 
In order to validate the proposed models, the test 
results in three different sites are considered. The first 
site is located at South Pars field, Persian Gulf, Iran, 
outside the survey area, shown as site 1 in Figure 2. 
The soil is very soft clay overlying a sandy silt or silty 
sand layer at shallow depths. Stiff to very stiff clay 

dominates at deeper parts. The profile of soil 
properties in 3 boreholes within this site are presented 
in Figure 9. Figure 10 shows ε50 values predicted by 
different models as well as the measured values 
obtained from UU tests in borehole depths. In all 
figures, the recommended ε50 values by Sullivan [8] 
are significantly lower than the measured ones. 
However, ε50 values predicted by models 1 and 4 
compare relatively well with the measured ones in the 
full range of values along borehole depths, as shown 
in Figure 10. Generally, ε50 values show an increasing 
trend with depth from both laboratory measurements 
and the currently proposed models predictions. This 
result is in contradiction with the values of ε50 
recommended by Sullivan. 
Herein, it is attempted to validate the current models 
using the p-y curve results obtained from pile load 
tests conducted in two different sites (sites 2 and 3). 
General information about the considered sites are 
given in Table 3. 
Figures 11(a) and (b) show the p-y curves generated 
based on ε50 values from different models as well as 
Sullivan recommendations for two different depths in 
sites 2 and 3, respectively. The figures also include p-
y curves obtained from full-scale tests. It is noted that 
the procedure for generating p-y curves is based on 
[27]. 
The figures show that the calculated p-y curves from 
EPR-based models agree relatively well with the 
measured p-y curves. However, the p-y curves 
calculated from Sullivan recommendations show 
lower values of lateral displacement at all lateral load 
levels. This implies that using ε50 parameter from 
Sullivan recommendations in generating p-y curve 
leads to a stiffer behavior of pile-soil system against 
lateral load in comparison with the real behavior. It is 
observed that the predicted lateral displacements at 
50% of maximum lateral load from the proposed 
models are 1.5-3.5 and 2-4 times as large as those 
obtained from Sullivan recommendations for sites 2 
and 3, respectively. 
In addition, the ratios of predicted to measured lateral 
pile displacements at maximum lateral load levels for 
the generated p-y curves at both sites are summarized 
in Table 6. It is seen from Table 6 that the generated 
p-y curves based on ε50 values from the proposed 
models yield lateral pile displacements very close to 
the measured ones with maximum error of 6%. 
However, using ε50 values from Sullivan’s 
recommendation in generating p-y curves leads to 
very unconservative lateral pile displacements in both 
sites. 
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Figure 8. Distribution of residuals for EPR-based models 
 

 
 

Figure 9. Geotechnical characteristics of soil in the boreholes of site 1 
 

6. Numerical Simulation 
In order to show the influence of ε50 on the lateral 
response of pile-soil systems, a numerical study was 
performed. In this regard, the lateral response of a 
given pile-soil system with 100 m length, 152.4 cm 
diameter, was numerically modeled. For considering 
the nonlinear pile soil interaction, PSI Module of 
commercial computer program SACS 5.1 is utilized 
[28,29]. The program uses a finite difference solution 
to solve the pile-soil model which is represented by a 
beam-column resting on a nonlinear elastic 
foundation. The nonlinear pile-soil-interaction is 
represented in a linear equivalent system. PSI 

analysis is also used to generate the equivalent 
foundation stiffness matrix in SACS. PSI models the 
connections of the soil and the piles as springs. The 
soil response to lateral loading is nonlinear. To model 
this nonlinearity, pile deformation can be related to 
soil resistance through nonlinear transfer curves (p-y 
curves). The PSI module uses the soil parameters 
such as ε50 to generate the lateral load-deflection (p-
y) curves based on API method [7]. In this regard, ε50 
values, used in generating p-y curves, was firstly 
substituted by measured ε50 values and then by those 
predicted from Model 4. For comparison purposes, 
further simulations were also carried out by ε50 values 
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obtained from recommendations of Sullivan et al. [8] 
and those from Robertson et al. [6]. 
The soil profile modeled in the numerical study is 
generally consists of clayey soil with undrained shear 

strength ranged from 70-650 kPa, effective unit 
weight of 5.8-12.6 kN/m3 and ε50 ranged from 0.05-
8.5 . 

 
Table 3. General information about sites 2 and 3 

 

Site 
No. Location Source of p-

y curve data 
Pile 

section 

Pile section 
dimension 

Depth of 
measurement 

Pile 
length 

Relevant 
geotechnical 

properties 
Reference 

(m) (m) (m) 

2 Incheon Bridge, 
Korea 

Full-scale 
field load 

tests on piles 
Circular 

Diameter = 1.016 
 

Thickness= 0.016 

4D from ground 
surface (D= pile 

diameter) 
26.6 Table 4 [30-32] 

3 

Bridge 
construction site 
near Oskaloosa, 

Iowa 

Lateral load 
tests on steel 
and concrete 

piles 

UHPC* 
H-shaped 0.254×0.254 

5D from ground 
surface 

(D=equivalent 
diameter, 0.287) 

10.7 Table 5 [33] 

*Ultrahigh-performance concrete 

 
Table 4. Soil properties of site 2 [30,31] 

 

Type Depth Unit weight Moisture 
content su 

Friction angle 
(φ) Recommended ε50 in the 

literature (m) (kN/m3)  (%) (kPa) (°) 

Upper clay 0-6.3 17.5 21.2 15-30 - 0.02 
Lower clay 6.3-16.5 17.5 7.6 30-50 - 0.01 
Silty clay 16.5-22.0 17.8 12.7 70 - 0.005 

Residual soil 22.0-24.0 18.0 4.33 - 34 - 
 

Table 5. Soil properties of site 3 [33] 
 

Depth classification Unit weight Moisture 
content (%) LL PI su 

Friction 
angle (φ) 

Recommended ε50 
in the literature 

(m)  (kN/m3) (%) (%) (%) (kPa) (°)  
0-1.5 ML 18.8 21.2 42.1 10.4 60 - 0.007 

1.5-2.8 CL 18.5 7.6 44.4 17.9 60 - 0.007 
2.8-4.9 CL 18.5 12.7 27.9 7.4 136 - 0.005 
4.9-5.8 SC 20.5 4.33 32.5 17.7 - 41 - 
5.8-7.7 CL 20.4 4.83 36.7 19.2 - 35 - 
7.7-9.2 SW 20.6 20.6 - - - 42 - 
9.2-10.5 CL 20.4 - - - 800 - 0.004 

10.5-12.0 SW 20.4 - - - - - - 
 

Table 6. Ratio of predicted to measured lateral pile 
displacement 

 

Site 
No. 

 At maximum lateral load level 
Depth Average of proposed 

models Sullivan et al. [8] (m) 
2 4D 1.05 0.36 
3 5D 1.06 0.31 

 
The numerically modeled pile-soil was laterally 
loaded and its lateral response containing lateral 
displacement, moment and shear were compared 
through various methods of ε50 estimation. The 
variations of lateral response of pile-soil along depth 
corresponding to various methods are depicted in 
Figure 12. The lateral responses of pile-soil system 
using measured ε50 values are also shown in this 
figure. As can be seen, lateral response of pile-soil is 
considerable only in the upper 40 m soil below the 
mudline and after that the pile is thoroughly fixed into 
the soil. It is in accordance to previous results reported 
in the literature that the most of lateral capacities and 
deformations of the piles are dependent to the 
characteristics of the upper part of soil, depending on 

their diameters [34,35]. However, it is clearly 
observed that the lateral response of pile in upper 
portion of the soil is dependent to what value of ε50 
included in the numerical simulation. Compared to the 
three response curves obtained from measured ε50, the 
curve corresponding to Model 4 of this study is of the 
best performance. 
Figure 12 shows that the use of Sullivan et al. [8] 
recommendations resulted nonconservative 
displacements while the use of Robertson et al. [6] 
model introduce conservative to the obtained results. 
The results of the numerical study also proved the 
preference of proposed model to other available 
recommendations in the literature about the prediction 
of ε50. 
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Figure 10. Profiles of predicted and measured ε50 values in site 
1 from (a) borehole 1, (b) borehole 2, and (c) borehole 3 

 
7. Summary and Conclusions 
In this research, the results of field and laboratory 
tests data in South Pars field, Persian Gulf, Iran, are 
used to develop models for evaluating ε50 using EPR. 
In this regard, cone tip resistance of CPT and several 
parameters of cohesive soils (su, σ0, OCR and PI) are 
considered in developing models. The conclusions are 
drawn as follows: 
 According to the statistical analyses, the models 

developed using cone tip resistance (qc) yield 
more accurate ε50 values than those developed 
using undrained shear strength of soils (su) 
obtained from UU tests. In general, ε50 is more 
realistically predicted using field-based, instead of 
laboratory-based, resistance of soil. 

 The index properties of soil, e.g. OCR and PI, 
significantly improve the performance of the 
proposed models in predicting ε50. 

 According to statistical criteria, the models which 
are developed considering the effect of 
overburden pressure (σ0) lead to better predicted 
ε50 values. 

 The models are validated with the field data of a 
site, located outside the survey area. The predicted 
ε50 values are in relatively well agreement with the 
measured ones in the full range of values along all 

boreholes depths in this site. It is found that the 
predicted ε50 values from the proposed models 
increase with soil depth which agrees with the 
laboratory measurements. 

 

 
 

Figure 11. Measured and calculated p-y curves: (a) site 2 at 
depth = 4D; and (b) site 3 at depth = 5D, (D = pile diameter) 

 

 
 

Figure 12. Numerical analysis results of lateral response of 
typical pile-soil system 

 
 The models are validated with the field data of a 

site, located outside the survey area. The predicted 
ε50 values are in relatively well agreement with the 
measured ones in the full range of values along all 
boreholes depths in this site. It is found that the 
predicted ε50 values from the proposed models 
increase with soil depth which agrees with the 
laboratory measurements. 
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 Further model validation, with full scale lateral 
pile load tests data in two different sites, 
demonstrates the models capability in providing 
ε50 parameter to generate p-y curves consistent 
with the real behavior of pile-soil system 
measured in the field. Particularly, the results 
indicate that the p-y curves generated based on ε50 
values from the proposed models are in better 
agreement with field data rather than the p-y 
curves obtained from previously recommended ε50 
values in the literature. 

 The numerical results show the importance of ε50 
which is incorporated into the numerical model. 
Herein, it is demonstrated how different ε50 values 
obtained from different ways affect the lateral 
response of pile-soil system. While the use of 
Sullivan recommendations result in 
unconservative response and the use of Robertson 
model leads to conservativeness to the obtained 
results, the proposed model can be used to obtain 
more accurate results.  
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