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ABSTRACT

This work addresses an autonomous underwater vehicle (AUV) for applying
nonlinear control which is capable of disturbance rejection via intelligent
estimation of uncertainties. Adaptive radial basis function neural network
(RBF NN) controller is proposed to approximate unknown nonlinear
dynamics. The problem of designing an adaptive RBF NN controller was
augmented with sliding mode robust term to improve trajectory tracking and
regulation in presence of uncertainties. Moreover, stability proof of proposed
control scheme was shown with Lyapunov theory. Furthermore, the control,
design and simulation results are provided without any simplification of the
entire system. Although the design approach of this paper is implemented on
REMUS this point of view can be applied on any AUV using the same

technique.

1. Introduction

Nowadays, in addition to pervasive AUVs
applications in a verity of industries such as scientific,
commercial and military, AUVs are taken into
consideration for hard nonlinearity, uncertainty and
unknown parameters in their dynamic modeling.
Furthermore, the complicated behavior of AUVs and
limitations on designing controllers for six-DOF
models of underwater vehicles leads to some
simplifications such as linearizing and decoupling to
overcome complexity. In the scope of this paper,
steering and diving control of an AUV are considered
for regulation and tracking problems.

An adaptive sliding mode heading control approach of
AUV is proposed by Chu and Zhu [1]. Geranmehr and
Rafee Nekoo presented a study on the fully coupled
control of AUVs in six degrees of freedom (DOF)
using the SDRE control approach [2], they also
investigated on SDRE and robust term for diving and
steering mode [3, 4]. Other research applied the
sliding mode control and the backstepping technique
for controlling underwater vehicles [5] and for
spacecraft attitude control [6]. At first, Lewis and et
al. developed adaptive RBF NN controller for serial-
link robot arm with sliding mode robust term to
guarantee tracking performance [7]. Recently, a radial
basis function neural network adaptive controller is
applied in different applications [8-11].

The main contribution of this work is: the control
problem of REMUS in position and attitude control
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for steering and diving autopilot modes are
investigated via adaptive radial based function neural
networks. In addition, underwater ocean current is
added to simulate practical environment and highlight
the impact of adaptive and robust term in control
design.

The remainder of the article is presented as follows: a
mathematical model of the AUV for steering and
diving is expressed in Section 2; structure of the
controller is presented in Section 3; implementation
control law for REMUS is presented in Section 4 and
the results of simulation are provided in Section 5;
finally, conclusions are expressed in Section 6.

2. Mathematical Model of AUV

Due to the fact that hydrodynamic drag, damping and
lift forces, Coriolis and centripetal forces, gravity,
buoyancy forces and thrust the system dynamics of
AUVs are highly nonlinear, coupled and time varying
[12]. A schematic view of an AUV with related
coordinate systems is presented in Fig. 1 to show a
six-DOF AUV model. As demonstrated, special
reference frames were established to describe motion
of the AUV and to set up a six-DOF nonlinear
mathematical model. The two reference frames
applied to the model were those of a fixed reference
frame (earth or inertial coordinate system) and a
motion reference frame (body-fixed coordinate
system).
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Figure 1. The schematic of the six-DOF model of AUV:
REMUS.

Based on this notation, the general motion of a marine
vehicle in six-DOF can be described by

= m] =[x v z ¢ 0 w[and
v=lv, v,J=[u v w p g r[. A general

description of six-DOF nonlinear equation of AUV
motion is introduced as follows [2, 12]:

n=Jm)v M
M(n)\'f +C(n,v)v+D(qv)v+G(n) =1
where M e R%® is the inertial matrix, C(v) e ®*®is
the matrix of Coriolis and centripetal terms,
D(v)eR®®is damping matrix, G(n) e R%%is the
vector of gravitational/buoyancy forces and moments,
e R%%is the vector of control inputs relating to the
forces and moments acting on the AUV.
A global frame of reference of the kinematics of the

AUV model is defined using Euler angles. The
kinematics equation is then expressed as:

n=Jmh={Rm) %“Mfﬂ, @

03><3 T(n) v,

where, R(n)is the rotation matrix from the body

frame to the inertial frame, and T(n)is the angular
velocity transformation from the body frame to the
inertial frame. The state vector is considered as
x=[% Yo 2z ¢ 6 y uv wpqrf
and the state-space representation of the system is
written in the following form:

X(t) =F(x(6) +9(x(O)u(), (3)

in which
J(m)v
f = ’
(x(t)) {_ M) (C(n, v)v + D(n, v)v + G(n))}
06><1
gwm»{me}

Comparisons between a coupled system and an
uncoupled system have demonstrated that we be able
to reduce the complexity of control design via
decoupling. The general six-DOF AUV can be
categorized according to lightly interacting or non-
interacting subsystems which can be described by
three uncoupled basic subsystems: speed, heading and
depth, [2, 12], as indicated in Table 1.

Table 1. Decoupled subsystems of an underwater vehicle

Subsystem Description Control inputs
Speed u(t) n(t)
Steering v(t), r(t), w(t) dr(t)
Diving w(t), q(t), 0(t), z(t) 3s(t)
2.1. Steering

Usually, the heading subsystem presents the steering
motion of the AUV in the X-Y plane with

xO=ly v 1T state vector which the control input
commands the deflection of rudder planes (¢,), but in
this paper, the semi-coupled steering subsystem is
presented. The system state vector in this case is
considered as x(t)=[nt) vt)] where nt)=[x yJ

and YO =[u VI' The movement of AUV is controlled
by vertical rudder (s,) for translational movement
control (steering control). Moreover, the surge speed
control is managed by the propeller’s speed of rotation
(n).

Considering the mentioned states, according to the Eq.
(1), the dynamics model for semi-coupled steering
system is given as:

—L J(n) B
2| [cos(0) 0fw] (4)
_4_{0 1a]

M c(v)
m-X, O "W_+[0 0 }{W}
0 m-Y,ld] [0 -Yu]q
+{‘quml 0 __W}T ©)

0 —YV‘V‘|V|__q '

p(v)

where {x,,Y,} are added mass coefficients, v,, is
Coriolis and centripetal coefficients which can be
derived from hydrodynamic derivatives, {Xu‘u‘,YVM}

are nonlinear damping vortex shedding coefficients
that can be estimated by calculating the hull drag,
Y, is sway force coefficient for rudder

uus,

displacement, z_ is propeller’s thrust reduction factor,

p
and T, is thrust coefficient. The parameters are

expressed in [14].
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2.2. Diving
The diving subsystem presents depth motion of the
AUV in the X-Z plane. The control input commands

deflection of stern planes or bow planesd,. The
system state vector in this case is considered as

x®) =) v where nt)=[z 6[ and

vy=[w df .

Assuming a constant speed u for xc direction and
ignoring other states, according to the Eq. (1), the
dynamics model for diving is reduced as:

JL J(n) B
2] [cos(6) 0w 6)
BRI
M
m-2Z, —(Mmxg +Zq)}{w}+

—(mx+My) I, -M, |4
i cw)
i ~Z M ~Z, u—mu-maz [w

mu-M,,u+maqz, -M,u }{q}
+ —ZW‘W‘|W| _qu|qq{w}

- Mw\w\|w| - Mq\q\|q| q

p(v)

N I cos(6)(B-W) } ~

| —sin(0)(Bzg —Wz ) —cos(6)(Bxg ~Wxg) |

G(n)

()
where | y IS the moment of inertia about y-axis of the
body frame, {Z,,Z4,M,,,M4} are added mass
coefficients, {Z . Zuq Myw. Mo} are Coriolis and

centripetal coefficients which can be derived from
hydrodynamic derivatives, and {ZW‘W‘,Mq‘q‘} are

nonlinear damping vortex shedding coefficients that
can be estimated by calculating the hull drag [14].

3. Adaptive RBF NN Controller with Sliding
Mode Robust Term

3.1. RBF Algorithm

RBF neural network consists of three layers; input
layer, hidden layer, and output layer. Radial basis
function activates neurons at the hidden layer. The
hidden layer has an array of computing units called
hidden nodes. Each hidden node contains a center C
vector that is a parameter vector of the same
dimension as the input vector x; the Euclidean
distance between the center and the network input

vector X is defined by [x(t)-c;(t). The output of
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hidden layer can be produced through a nonlinear
activation function h;(t) as follows [7]:

h; (t) = exp —M, j=1,...m  (8)
2b:

where Xis input vector, bj notes a positive scalar

called a width, hj denotes the output of hidden layer

and m notes the number of hidden nodes. The output
layer is a linear weighted combination:

yi®=Ywh @), i=1,..n (©)
j=1

where w are the output layer weights, n notes the
number of outputs, and y notes the network output.

3.2. Adaptive RBF Algorithm

Online adaptive RBF neural network control method
is designed based on the Lyapunov stability theory to
estimate  unknown nonlinear  function.  As
demonstrated in Fig2. We use desired signal

e(t)=7,(t)-7(t) to build input vector as [e €] and
RBF to design f(x)for approximating f(x), the
output vector is [7]:

f (x) = W'h(x). (10)

Adaptive mechanism |-

r

f(x) RBFNN |

yd [ u y yd
’:t Controller Plan H({)t—

Figure 2. Block diagram of the control scheme.

3.3. Sliding Mode Control

sliding mode control, or SMC, is a nonlinear control
method that alters the dynamics of a nonlinear system
by application of a discontinuous control signal that
forces the system to "slide" along a cross-section of
the system's normal behavior. The control problem is
to get the state Xx= [x X x(”’l)] to track a
specific time-varying state x4 in the presence of

model imprecision on f(x) and g(x). A time-varying

v

surface s(t)is defined in the state space R" by
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equating the variable s(x,t), defined below, to zero
[15].

s(x,t)= (% + i)nli(t)

(11)

and A is a strictly positive constant, taken to be the
bandwidth of the system, and X(t)=x(t)—x,(t) is the
error in the output state. The simplified, 1st-order
problem of keeping the scalar S at zero ( now be
achieved by choosing the control law u of Eq. (11)

such that outside of s(t)
(12)

where 7 is a strictly positive constant. take the
control law as:

u(t)=1ad(t)—k(x,t)sgn(s(t))

By choosing k(xt)
k(xt)=F(xt)+n

(13)

large enough such as

4. Implementation
Consider dynamic equation of AUV and tracking
error e(t)=7,(t)-7(t) and sliding mode function as

s=é—Ae where A=A"=[4 4 .. 4[>0
such that s"'+A4 ,s"%+..+4 is Hurwitz.
According to sliding surface:
Ms = M(ijy — i + A¢)
=M, + Aé)—MI(Hy
(g +A&)-M(#) 14)

=M(ijy + Aé)+C+G+14 -7
=—Cs—t+f(x)+ 1,

where  f(x)=Mij, +Cq, +G, %, =1, +Ae. The
goal is to design a stable robust controller without any
modeling information. In this section, we use RBF to

approximate f(x). Consequently, f—f=WTh+z¢,
W=W-W, and ||W||F£Wmax. Eventually, the

input  of RBF should be chosen as
x=le" ¢ W A il
Control law

Control law for the dynamic equation of AUV Eg. (1)
with robust term v = (g, +b, )sgn(s) proposed as:
1=f(X)+K s-v, (15)
The corresponding RBF adaptive law is designed as:
r=r">0

W =Ths', (16)

Replacing (14) yields
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Mi=—(K, +Ck+§ (17)

where ¢, = V~VTgo+(a+‘rd)+v.

4.1. Stability Analysis
The closed system stability proof was shown with two
steps as follows. Firstly, define Lyapunov function as

L= lsTMs + 1tr(\/~VTl“’l\/~V)
2 2

o, (18)
= L:sTMS+%sTI\'/Is+tr(WTFlW)
Secondly, inserting (17) into above yields
L= —sTKVs+lsT(l\'/l ~2Ck
2 (19)

+trwT (Fl\TV +hs” )+ s'(e+Ty+v)

Since the skew-symmetric characteristics of AUV
dynamic; a) (M —20)5:0, b) tr(WThsT):sTWTh,
and c) L=-s"K,;s+s"(e+14+V) 50
L=-s"K,s+s"(e+1, +v)Moreover

s'(e+1, +v):sT(£+'rd)—||S||(aN +b,)<0 ,

eventually L<-s"K s<0.

5. Simulation Results

5.1. Steering
The initial condition and reference circular planar
trajectory are chosen as x(t)=[1.0 0 005 0.05] and

Xges =10%€08(0.2t) +1, Y, =10xsin(0.2t) , respectively.

In addition, underwater ocean current modeled as
disturbance

Ugs = V¢ COS 8
Vgis = V¢ SIN S

where v, =+u?+Vv? is current speed and  is angle
between the heading and the direction of the wave
(rad). The time of simulation is set at 100 seconds
meanwhile the needed time for one circle is 85
seconds. Number of the hidden node is 7 and we
chose control law parameters given as b=1,
A=2l,,, K,=100l,,,, & =0.75, b, =0.25, and

5[—1.5 -1 -05 0 05 1 1.5}
c=0.0

-15 -1 -05 0 05 1 15

Other constants of the AUV are shown in [14]. the 2D
path is presented in Figure 3. States that represent
position and velocity of the AUV are expressed in
Figure 4 and Figure 5. The estimation of f(x) is
shown in Figure 6.The control signals are illustrated
in Figure 7.

(20)
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Although precision tracking can be achievable
through greater sliding gain robust term, greater
sliding gain leads to high control effort which cannot
implement in practical test. Furthermore, we can reach
accurate estimation of f(x) with increasing of b but

it enhances tracking error also tracking error reduces
with decreasing of b.

40
ideal position for x

20 :l\ """"" position tracking for x

Position tracking for x
o

0 20 40 60 80 100
5.1. Diving time(s)
The initial condition is xt)=[0.6 03 05 05[. :
Number of the hidden node is 5 and we chose control
law parameters given as b=3, A=2I,,,
K, =100I,,, ¢, =0.5, b, =0.1, and

-1 -05 0 05 1
-1 -05 0 05 J

States that represent position and velocity of the AUV
are expressed in Figure 8 and Figure 9. The estimation

of f(x) is shown in Figure 10.The control signals are

)]
o

ideal position for y

/ ---------- position tracking for y ’-\

20 40 60 80 100
time(s)

Position tracking for y
g o

o

c= 0.05{

Figure 4. states of the position of REMUS.

illustrated in Figure 11. 40 . . : :
As depicted in Figures, on the contrary of optimal ideal speed for
control method such as SDRE, proposed control 206 e speed tracking for u

method regulate to desired depth because of sliding
mode robust augmented term and guarantee
appropriate trajectory tracking due to hybrid
disturbance rejection mechanism. The simulations 0 20 40 60 80 100
illustrate the positive aspects of the approach, as well time(s)

Speed tracking for u

as some of the potential drawbacks which can be > .
compensated by carefully choosing control gains and 85 ideal speed for v ‘
parameters N N speed tracking for v
. 2 .
% 3
30 . . . . : g 0
simulation ]
------- desire 8
20 L i Q_ _5 1 1 1 1
0 20 40 60 80 100
time(s)
10 1
Figure 5. linear velocities of REMUS.
- 0 ] ey
80 ideal fx
""""" estimation of fx
-10 1
-20 1
£
©
Cc
_30 L L L L L E
-20 -10 0 10 20 30 40
Figure 3. 2D steering generated path of REMUS model.
0 20 40 60 80 100
time(s)

Figure 6. Estimation of f(x).
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Figure 7. control signals.
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Figure 8. Diving states of REMUS
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Figure 9. Linear and angular velocities of REMUS in diving
mode
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Figure 10. Estimation of f(x) in diving mode
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Figure 11. Control efforts in diving mode

6. Conclusions

In this work presents a generic approach for designing
of nonlinear control via the adaptive radial based
function with robust term. REMUS was selected for
implementing the control law. Adaptive radial basis
function neural network with sliding mode robust
term is applied for several reasons such as; reaching to
exact dynamic model of AUVs is not possible, a
mathematic model of AUV includes high
nonlinearities and complex behavior, and AUVs work
in unknown environment so can be affected by
circumstances. Consequently, adaptive RBF NN is
used to estimate f(x) and sliding mode robust term is
used to overcome uncertainty in AUV modeling. The
simulation results show that this method can control
the steering and diving autopilot system in point-to-
point motion (regulations). The last but not the least,
stability proof of suggested control scheme is
demonstrated for autonomous underwater vehicles by
Lyapunov theory.

This contribution provides an extension to the current
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results, but is restricted to the types of trajectories it
can

track especially complex 3D trajectory which deserves
attention. Another research option is to account for
fully coupled dynamic model of 6-DOF AUVs while
designing the proposed control method then have
comparative study between trajectory tracking error
and energy consumption of decoupled dynamics and
coupled dynamics.
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