Winter and Spring 2021                   Back to the articles list | Back to browse issues page

XML Print

1- School of Mechanical Engineering, Sharif University of Technology
Abstract:   (301 Views)
In this paper, we present experimental results of one optical fiber acoustic sensor in shallow water. Output trend of sensor is investigated primarily comparing with the change of acoustic amplitude of transmitter and then the frequency response of sensor is determined. The results show that, the optical fiber sensor has linear trend comparing with a standard hydrophone and its frequency response is similar to that of hydrophone. The results show that the optical fiber sensor output has equal trend comparing to a standard hydrophone. The results also show that, the frequency response trend of optical fiber sensor at 0.7- 5 kHz range is similar to that of a standard hydrophone.
Full-Text [PDF 483 kb]   (90 Downloads)    
Type of Study: Research Paper | Subject: Environmental Study
Received: 2020/07/21 | Accepted: 2021/03/6

1. G. Rajen, Optical Fiber Sensors, Vols. I, CRC Press, 2015.
2. K. T.V. Grattan and B. T. Meggitt Wolfoeis, Optical Fiber Sensor Technology, Springer Press, 2000. [DOI:10.1007/978-1-4757-6081-1]
3. C. K. Kirkendall and A. Dandridge, Overview of high performance fibre-optic sensing, J. Phys. D. Appl. Phys., vol. 37, no. 18, pp. R197-R216, Sep. 2004. [DOI:10.1088/0022-3727/37/18/R01]
4. E. Udd an W.B. Spillman. Fiber Optic Sesnors, Vols. I and II. Boca Raton, FL: WILEY Press, 2011. [DOI:10.1002/9781118014103]
5. Y. Zhang, D. Feng, Z. Liu, Z. Guo, X. Dong, K. S. Chiang, B. C. B. Chu. High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating,IEEE Photon. Technol. Lett., 13(6), 618-619, 2001. [DOI:10.1109/68.924043]
6. G.B. Hocker, Fiber optic acoustic sensors with increased sensitivity by use of composite structures, Opt. Lett. 4 (10) (1979) 320-321. [DOI:10.1364/OL.4.000320]
7. N. Lagakos, T.R. Hickman, P. Ehrenfeuchter, J.A. Bucaro, A. Dandridge, Planar flexible fiber-optic acoustic sensors, J. Lightwave Technol. 8 (9) (1990) 1298-1303. [DOI:10.1109/50.59156]
8. X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, K. Xu, Dual Michelson interferometers for distributed vibration detection, Appl. Opt. 50 (22) (2011) 4333-4338. [DOI:10.1364/AO.50.004333]
9. H. Moradi, F. Hosseinbalam and S. Hassanzadeh, "Simulation and experimental investigation about interferometric optical fiber acoustic sensor for sensitivity enhancement", Measurement 137(c), 556-561 (2019). [DOI:10.1016/j.measurement.2019.01.073]
10. J.L. Rivera, M.P. Sánchez, A. Miridonov, S. Stepanov, Adaptive Sagnac interferometer with dynamic population grating in saturable rare-earthdoped fiber, Opt. Exp. 21 (4) (2013) 4280-4290. [DOI:10.1364/OE.21.004280]
11. E. Udd, Fibre-optic acoustic sensor based on the Sagnac interferometer, Proc.SPIE 425 (1983) 90-95. [DOI:10.1117/12.936219]
12. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, et al., High-sensitivity Fabry-Pérotinterferometric pressure sensor based on a nanothick silver diaphragm, Opt.Lett. 37 (2) (2012) 133-135. [DOI:10.1364/OL.37.000133]
13. H. Moradi, F. Hosseinbalam and S. Hassanzadeh, "improving signal to noise ratio in Fiber-Optic Fabry-Pérot Acoustic Sensor ", Laser Physics Letters 16 (6), 065106 (2019). [DOI:10.1088/1612-202X/ab1840]
14. M. Prashil, A finite element analysis of fiber optic acoustic sensor mandrel for acoustic pressure with increased sensitivity. American journal of Engineering Research, Volume 02, Issue 09, pp 01-07, 2013.
15. Sh. Yin, P, Ruffin. Fiber Optics sensor, Scientific American, CRC Press, 2008.21
16. N. Zhang, Z. Meng, S. Xiong, and Q. Yao, Heterodyne demodulation scheme for fiber-optic hydrophone arrays, Spie, vol. 7853, p. 78530R-78530R-8, Nov. 2010. [DOI:10.1117/12.870444]
17. M. J. Connelly, Digital synthetic-heterodyne interferometric demodulation, J. Opt. A Pure Appl. Opt., vol. 4, no. 6, pp. S400-S405, 2002. [DOI:10.1088/1464-4258/4/6/387]