Volume 16 - Summer and Fall 2021                   ijmt 2021, 16 - Summer and Fall 2021: 111-121 | Back to browse issues page

XML Print


1- Faculty of Marine Technology, Amirkabir University of Technology
Abstract:   (1170 Views)
The effects of critical microstructural features on the mechanical behavior of sandwich structures under bending loading are investigated using the finite element method (FEM). The sandwich structures are made of a thick foam core and two thin skins consisting of laminated composites. The numerical results are extracted in the presence of the skin/core delamination which is one of the major failure modes of sandwich structures. The microstructural features include different types of woven fabric (E-glass, Kevlar and carbon), fiber volume fraction, number and arrangement type of layers in the composite skins, thickness and material properties of core, fracture toughness of adhesive face and the debonding length. Also, the effect of addition of carbon nanotubes (CNTs) into the foam core on the flexural properties of sandwich panels is studied. Comparisons are made between the predictions of the FEM and experimental measurements for the sandwich beams involving the skin/core delamination. A reasonable agreement is observed between two sets of results. It is found that the increase of fiber volume fraction and number of layers leads to an enhancement in flexural stiffness and increase in the delamination threshold load. The flexural properties of sandwich structures can be improved by increasing the thickness and elastic modulus of core. The results indicate that using carbon fibers into the composite skin is an efficient way to postpone the delamination of the skin from the core. Adding the CNTs can significantly enhance the delamination threshold load.
Full-Text [PDF 899 kb]   (820 Downloads)    
Type of Study: Research Paper | Subject: Ship Structure
Received: 2022/07/21 | Accepted: 2022/11/20

References
1. Gholamzadeh Babaki, M. H., & Shakouri, M. (2021). Free and forced vibration of sandwich plates with electrorheological core and functionally graded face layers. Mechanics Based Design of Structures and Machines, 49(5), 689-706. [DOI:10.1080/15397734.2019.1698436]
2. Arakaki, F. K., & de Faria, A. R. (2018). An engineering vision about composite sandwich structures analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(7), 1-12. https://doi.org/10.1007/s40430-018-1215-4 [DOI:10.1007/S40430-018-1215-4]
3. Smith, C. S. (1990). Design of marine structures in composite materials. London, New York , USA: Elsevier Applied Science, Elsevier Science Pub. Co.
4. Mitra, N., Patra, A. K., Mondal, S., & Datta, P. K. (2019). Interfacial delamination crack profile estimation in polymer foam-cored sandwich composites. Engineering Structures, 189, 635-643. https://doi.org/10.1016/j.engstruct.2019.03.076 [DOI:10.1016/J.ENGSTRUCT.2019.03.076]
5. Kapuria, S., & Ahmed, A. (2019). An efficient zigzag theory based finite element modeling of composite and sandwich plates with multiple delaminations using a hybrid continuity method. Computer Methods in Applied Mechanics and Engineering, 345, 212-232. https://doi.org/10.1016/j.cma.2018.10.035 [DOI:10.1016/J.CMA.2018.10.035]
6. Ma, M., Yao, W., & Chen, Y. (2018). Critical energy release rate for facesheet/core delamination of sandwich panels. Engineering Fracture Mechanics, 204, 361-368. [DOI:10.1016/j.engfracmech.2018.10.029]
7. Frostig, Y., Baruch, M., Vilnay, O., & Sheinman, I. (1992). HighOrder Theory for SandwichBeam Behavior with Transversely Flexible Core. Journal of Engineering Mechanics, 118(5), 1026-1043. [DOI:10.1061/(ASCE)0733-9399(1992)118:5(1026)]
8. Glenn, C. E., & Hyer, M. W. (2005). Bending behavior of low-cost sandwich plates. Composites Part A, 10(36), 1449-1465. [DOI:10.1016/j.compositesa.2005.04.007]
9. Imielińska, K., Guillaumat, L., Wojtyra, R., & Castaings, M. (2008). Effects of manufacturing and face/core bonding on impact damage in glass/polyester-PVC foam core sandwich panels. Composites Part B: Engineering, 39(6), 1034-1041. [DOI:10.1016/j.compositesb.2007.11.007]
10. Jen, Y. M., & Chang, L. Y. (2008). Evaluating bending fatigue strength of aluminum honeycomb sandwich beams using local parameters. International Journal of Fatigue, 30(6), 1103-1114. [DOI:10.1016/j.ijfatigue.2007.08.006]
11. Pilipchuk, V. N., Berdichevsky, V. L., & Ibrahim, R. A. (2010). Thermo-mechanical coupling in cylindrical bending of sandwich plates. Composite Structures, 92(11), 2632-2640. [DOI:10.1016/j.compstruct.2010.03.007]
12. Wang, Z. X., & Shen, H. S. (2011). Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations. Composite Structures, 93(10), 2521-2532. [DOI:10.1016/j.compstruct.2011.04.014]
13. Cernescu, A., & Romanoff, J. (2015). Bending deflection of sandwich beams considering local effect of concentrated force. Composite Structures, 134, 169-175. [DOI:10.1016/j.compstruct.2015.08.074]
14. Cao, J., Cai, K., Wang, Q., & Shi, J. (2016). Damage behavior of a bonded sandwich beam with corrugated core under 3-point bending. Materials & Design, 95, 165-172. [DOI:10.1016/j.matdes.2016.01.083]
15. D'Ottavio, M., Dozio, L., Vescovini, R., & Polit, O. (2016). Bending analysis of composite laminated and sandwich structures using sublaminate variable-kinematic Ritz models. Composite Structures, 155, 45-62. [DOI:10.1016/j.compstruct.2016.07.036]
16. Thai, C. H., Zenkour, A. M., Abdel Wahab, M., & Nguyen-Xuan, H. (2016). A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis. Composite Structures, 139, 77-95. [DOI:10.1016/j.compstruct.2015.11.066]
17. Li, D., Deng, Z., Xiao, H., & Jin, P. (2018). Bending analysis of sandwich plates with different face sheet materials and functionally graded soft core. Thin-Walled Structures, 122, 8-16. [DOI:10.1016/j.tws.2017.09.033]
18. Groh, R. M. J., & Tessler, A. (2017). Computationally efficient beam elements for accurate stresses in sandwich laminates and laminated composites with delaminations. Computer methods in applied mechanics and engineering, 320, 369-395. https://doi.org/10.1016/j.cma.2017.03.035 [DOI:10.1016/J.CMA.2017.03.035]
19. Caglayan, C., Gurkan, I., Gungor, S., & Cebeci, H. (2018). The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites. Composites Part A: Applied Science and Manufacturing, 115, 187-195. [DOI:10.1016/j.compositesa.2018.09.019]
20. Sayyad, A. S., & Ghugal, Y. M. (2017). Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature. Composite Structures, 171, 486-504. [DOI:10.1016/j.compstruct.2017.03.053]
21. Birman, V., & Kardomateas, G. A. (2018). Review of current trends in research and applications of sandwich structures. Composites Part B: Engineering, 142, 221-240. [DOI:10.1016/j.compositesb.2018.01.027]
22. Sun, Y., Guo, L. cheng, Wang, T. shu, Zhong, S. yang, & Pan, H. zhu. (2018). Bending behavior of composite sandwich structures with graded corrugated truss cores. Composite Structures, 185, 446-454. [DOI:10.1016/j.compstruct.2017.11.043]
23. Irfan, S., & Siddiqui, F. (2019). A review of recent advancements in finite element formulation for sandwich plates. Chinese Journal of Aeronautics, 32(4), 785-798. [DOI:10.1016/j.cja.2018.11.011]
24. Shipsha, A., Burman, M., & Zenkert, D. (1999). Interfacial fatigue crack growth in foam core sandwich structures. Fatigue and Fracture of Engineering Materials and Structures, 22(2), 123-131. [DOI:10.1046/j.1460-2695.1999.00148.x]
25. Nøkkentved, A., Lundsgaard-Larsen, C., & Berggreen, C. (2005). Non-uniform Compressive Strength of Debonded Sandwich Panels - I. Experimental Investigation. Journal of Sandwich Structures & Materials, 7(6), 461-482. [DOI:10.1177/1099636205054791]
26. Berggreen, C., & Simonsen, B. C. (2005). Non-uniform Compressive Strength of Debonded Sandwich Panels - II. Fracture Mechanics Investigation. Journal of Sandwich Structures & Materials, 7(6), 483-517. [DOI:10.1177/1099636205054790]
27. Balzani, C., & Wagner, W. (2008). An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Engineering Fracture Mechanics, 75(9), 2597-2615. https://doi.org/10.1016/j.engfracmech.2007.03.013 [DOI:10.1016/J.ENGFRACMECH.2007.03.013]
28. Benzeggagh, M. L., & Kenane, M. (1996). Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56(4), 439-449. [DOI:10.1016/0266-3538(96)00005-X]
29. ASTM C393 - 00, A Standard Test Method for Flexural Properties of Sandwich Constructions. (2000). ASTM International, West Conshohocken, PA, www.astm.org.
30. Xie, D., & Waas, A. M. (2006). Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Engineering Fracture Mechanics, 73(13), 1783-1796. [DOI:10.1016/j.engfracmech.2006.03.006]
31. Carlsson, L. A., & Kardomateas, G. A. (2011). Structural and Failure Mechanics of Sandwich Composites (Vol. 121). Dordrecht: Springer Netherlands. [DOI:10.1007/978-1-4020-3225-7]
32. Yas, M. H., & Heshmati, M. (2012). Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Applied Mathematical Modelling, 36(4), 1371-1394. https://doi.org/10.1016/j.apm.2011.08.037 [DOI:10.1016/J.APM.2011.08.037]
33. Joshi, P., & Upadhyay, S. H. (2014). Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite. Computational Materials Science, 87, 267-273. [DOI:10.1016/j.commatsci.2014.02.029]
34. Pan, Y., Weng, G. J., Meguid, S. A., Bao, W. S., Zhu, Z. H., & Hamouda, A. M. S. (2013). Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mechanics of Materials, 58, 1-11. [DOI:10.1016/j.mechmat.2012.10.015]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.