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Over the past two decades, maritime transportation and container traffic 

worldwide has experienced rapid and continuous growth. With the increase in 

maritime transportation volume, the issue of greenhouse gas (GHG) emission 

has become one of the new concerns for port managers. Port managers and 

government agencies for sustainable development of maritime transportation 

considered "green ports" to balance between environmental impacts and 

economic interests. Therefore, this study aims to integrate the Berth 

Allocation and Quay Crane Assignment Problem (BACAP) with speed 

optimization and vessels emission considerations. Rajaee port, the most 

important port in Iran, was selected as the case study. A mathematical model 

is developed based on the main characteristics of this port and is solved by 

GAMS IDE/CPLEX software. Given the NP-hard complexity of the BACAP, 

exact solution approaches need huge time, even for small and medium 

problems. Hence, an adapted Non-Dominated Sorting Genetic Algorithm-II 

(NSGA-II) and a Multi-Objective Simulated Annealing (MOSA) algorithm 

are adopted to deal with the complexity of the proposed model. Sensitivity 

analysis is used to assess the applicability of the proposed model and evaluate 

the efficiency of the solution algorithms. 
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1. Introduction1 

Historically, humans have always strived to make 

good decisions and plan future actions to achieve the 

best results. This is an individual effort and a social 

endeavor [1]. During the first half of the twentieth 

century, commerce between regions in different 

continents experienced an upsurge with the 

development of diesel-driven cargo vessels, which 

increased maritime trade by improving freight 

transport efficiency. Moreover, the standardization of 

containers led to the construction of specialized 

vessels and ad hoc facilities at ports. Consequently, 

these infrastructures posed new operational planning 
 

 

 

problems, which began to be analyzed by 

management science. Maritime trade continues to 

grow in the twenty-first century, and the operations 

research (OR) community is increasingly interested in 

the mathematical analysis and formulation of the 

problems that container terminals encounter [2], [3]. 

Many of these problems consider the optimization of 

planning decisions so that scarce resources can be 

used efficiently. Thus, researchers attempt to tackle 

these problems by developing models and 

computational methods. 

Nowadays, maritime transportation is the most widely 

used, the safest, and the cheapest mode of 

international freight transportation, which handles 

over 90% of world trade by volume for developing 

countries [4]. With the increasing demand for 
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maritime trade, container shipping has become the 

core of modern logistics, and container terminals have 

become key nodes of international trading. One of the 

most important problems at the quayside of container 

terminals is the efficient allocation of quay space to 

the vessels berthing at the terminal over time, also 

known as the berth allocation problem (BAP). When 

ships berth at a quay, the quay cranes must be so 

assigned that vessel handling times are minimized. 

This leads to the quay crane assignment problem 

(QCAP). The BAP and QCAP are hard to be solved, 

even for medium and small-sized problems [5]. 

Therefore, artificial intelligence methods are 

employed to attain good solutions in reasonable 

computational times. In particular, this article 

addresses the integrated berth allocation and quay 

crane assignment problem (BACAP). This problem 

considers the assignment of berthing time and position 

(and QCs) to each vessel that is scheduled to arrive at 

anchorage at a certain time. Minimization of service 

time of vessels is the objective of the developed 

model. In formulating this problem, new and existing 

constraints arising in real-world cases, which give rise 

to interesting new variants, are taken into 

consideration. 

With the rapid growth of the global economy, 

maritime transportation has become the most 

important mode of international trade. Meanwhile, 

emissions from maritime transportation have 

increased significantly. Some studies indicate that 

shipping emissions have increased ambient 

concentrations of air pollutants over vast areas of land 

and sea, and they are responsible for increases in 

premature deaths related to cardiopulmonary diseases 

and lung cancer in these areas [6]. This is related to 

the fact that ships operate much closer to where 

people live and work more than previously 

recognized. Typically, about 70% of emissions from 

international shipping occur within 400 km of the 

coastline [7]. One of the major environmental effects 

of seaports is air pollution that ways of tackling this 

issue and reducing greenhouse gas (GHG) emissions 

of ships, heavy trucks, inland transportation 

equipment, etc., are among the issues that many 

seaports are considering. On the other hand, port 

managers usually cannot focus solely on 

environmental issues, and often, constructive 

interaction between economic and environmental 

goals has to be considered, which will lead to a multi-

objective decision making (MODM) problem. From 

the perspective of planning and optimization, the 

environmental sustainability of operations at ports 

requires appropriate models and approaches to 

consider and evaluate the environmental impacts of 

decision-making through various criteria. In 

particular, this research presents a multi-objective 

mathematical model and implements the augmented 

epsilon constraint (AEC), multi-objective simulated 

annealing (MOSA), and non-dominated sorting 

genetic algorithm-II (NSGA-II) methods to achieve 

Pareto solutions for the BACAP with speed 

optimization and air emission considerations. 

Compared to pioneering studies, this study contributes 

to literature in the following ways. First, the fuel 

consumption and emissions of vessels are considered 

in an integral model of BACAP. Therefore, a multi-

objective model is constructed for a tradeoff analysis 

between costs and environmental issues. Second, 

because the handling time of vessels at port markedly 

impact sailing times and speeds, the effects of quay-

crane assignment are incorporated into the proposed 

model. This inclusion increases the flexibility when 

adjusting the schedules of vessels. Third, to the best of 

our knowledge, emissions from vessels during 

mooring periods are first quantified in literature for 

BAPs. Thus, emissions from vessels are examined for 

while moored and sailing. Fourth, arrival times of 

vessels at ports are formulated as decision variables, 

such that sailing speeds and quay-crane utilization can 

be balanced by adjusting the berthing times of vessels. 

To optimize utilization of port resources and reduce a 

vessel’s fuel consumption and emissions, this work 

attempts to optimize operational schedule at ports and 

vessels’ shipping schedule. Moreover, service quality 

provided by port operators to vessels must not be 

reduced. This study applies a novel strategy for the 

hybrid berth and quay-crane allocation problem 

(BACAP), in which arrival times of vessels are 

formulated as decision variables of a nonlinear multi-

objective mixed-integer programming model. The 

nonlinear objective is transformed into a second-order 

cone programming (SOCP) model. Further, vessel 

emissions while moored are calculated based on two 

parameters: wait time and emission factors. Finally, 

resource utilization at a port, impact of the number of 

quay cranes on port operational cost, and a vessel’s 

fuel consumption and emissions are analyzed. 

The rest of the paper is organized as follows. Section 

2 provides a concise literature review on previous 

studies related to BACAP. Section 3 defines the 

problem and special assumptions of the BACAP. 

Besides, a multi-objective mathematical model and 

the relationships between fuel consumption and GHG 

emissions are presented in this section. The applied 

solution methods are investigated in Section 4. 

Section 5 demonstrates and analyzes numerical 

experiments using real data of Rajaee Port. Finally, 

Section 7 concludes the research and presents 

recommendations for future studies. 

2. Literature Review 

As noted, Maritime logistics as the primary type of 

transportation has become the heart of worldwide 

trade. The industrialization of the world has increased 

the importance of sea transport. The 
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standard of living has been improved by sea 

transportation of all kinds of products to people. 

Nowadays, the maritime industry has gained more 

importance than ever because the 

livelihoods of many people depend on it [8]. The main 

resource in seaports is the quay space (berths), which 

must be used efficiently by the port operators to 

provide a high-quality service to calling vessels. In 

container terminals, QCs also have to be assigned 

efficiently to moored vessels as they determine 

vessels' handling time and thus affect their schedules. 

Various versions of the BAP can be found in the 

literature depending upon the assumptions made on 

the spatial attribute, temporal attribute, handling time 

attribute, and performance measure. In particular, the 

alternatives for each attribute are as follows: 

 Spatial attribute. This concerns the 

characteristics of the quay layout, which can 

be: 

 Discrete (Disc). The quay is divided into 

several sections, called berths. In each berth, 

only a single vessel can be processed at a 

time. This partitioning may result from the 

actual layout of the quay or organizational 

criteria. 

 Continuous (Cont). The quay is treated as a 

continuous segment along which vessels can 

be moored. The planning, in this case, is more 

complex than in the discrete case, but it 

allows better utilization of the space. 

 Hybrid (Hyb). This is a discrete layout in 

which each berth may admit more than one 

vessel or vessels may occupy more than one 

berth under certain conditions. Here, there is 

also a special case of indented berths, in 

which two berths are opposite to each other. 

 Temporal attribute. This attribute concerns 

restrictions on berthing and departure times, 

which can be: 

 Static (Stat). No arrival times are given for the 

vessels or there are soft constraints. In the 

first case, it is considered that vessels are 

already waiting at the port, so they can berth 

at any time. In the second case, a vessel can 

berth before its expected arrival time at the 

expense of the cost of speeding up its arrival 

at the terminal. 

 Dynamic (Dyn). A fixed arrival time is given 

for each vessel, so it cannot be moored before 

that time. 

 Stochastic (Stoc). Arrival times are obtained 

from random distributions or may correspond 

to random scenarios. 

 Cyclic (Cyc). Vessels call at the terminal 

periodically in fixed time intervals. 

 Handling time attribute. The handling times 

of vessels can be: 

 Fixed. They are given in advance as input to 

the problem and cannot be changed. For each 

vessel, the handling time may derive from a 

prior estimate made by both the terminal and 

the vessel operators. 

 Position-dependent. The handling time of a 

vessel depends upon its berthing position. 

 QCAP-dependent. They are obtained by 

solving the QCAP jointly with the BAP. 

Thus, the handling time of a vessel depends 

on how many cranes have been assigned to it. 

 QCSP-dependent. They are obtained by 

solving the quay crane scheduling problem 

(QCSP) jointly with the BAP. Thus, the 

handling time of a vessel depends on the work 

schedules of the assigned cranes. 

 Stochastic. They are determined from random 

distributions. 

 Performance measure. This concerns the 

factors taken into account in the objective 

function that is to be optimized. In most cases, 

the objective is to minimize a function 

comprising, for each vessel, such elements as 

waiting time before berthing, handling time, 

completion time, delay, speed-up cost, 

deviation from the desired position on the 

quay, or usage of equipment and manpower. 

Different weights are commonly used to set 

priorities between the elements considered and 

the vessels. In general, the time spent by each 

vessel at the terminal is usually considered in 

one way or another since it is a crucial factor 

in terminal competitiveness. 

Many studies in the past have focused on the BAP and 

QCAP, among which optimization models have been 

widely used to analyze and plan the operations and 

events of container terminals. For a detailed review of 

research on the BAP and QCAP, see [9], [10], [11], 

and [12]. A brief classification of the previous berth 

allocation optimization models is presented in Table 

1. With respect to the objective function, waiting and 

handling times are taken into account in most studies, 

and penalties related to delays and deviations from 

preferred positions are also common. Around 75% of 

the solution methods proposed are metaheuristics, 

whereas the remaining are exact approaches, based 

generally on integer linear models implemented on 

solvers. Exact methods are able to solve instances 

with a few vessels to optimality, while metaheuristics 

usually obtain good solutions in both small and large 

instances in very short computation times. These 

studies did not consider the impact of quay-crane 

allocation on fuel consumption and emissions. 

Moreover, emissions while moored are not considered 
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in current formulations. To overcome these 

limitations, this work formulates a novel BACAP 

model that considers fuel consumption and emissions 

by vessels, and analyzes the impact of number of 

allocated quay cranes on port operational cost, and 

fuel consumption and emissions by vessels. In 

addition to integration of the BAP and the QCAP, 

using both exact and metaheuristic solution methods 

and considering environmental issues (fuel 

consumption and emissions) in the objective function 

of the presented model, as well as new realworld 

aspects (including time window service deadlines), 

are among the distinguishing features of this paper 

compared to previous studies. 

In the standard BAP, handling times are usually 

assumed to be fixed and known in advance. However, 

in the seaside of container terminals, QCs are also a 

scarce resource that may affect the service time of 

vessels. The number of cranes simultaneously serving 

a vessel is often restricted between a minimum and a 

maximum number, for either technical or contractual 

reasons, and several vessels may be concurrently 

handled at the quay, so an efficient assignment of the 

cranes is also required to reduce the delays and the 

costs incurred by the terminal. Given that the handling 

time of a vessel depends on how many QCs have been 

assigned to it, and the handling time is taken into 

account in the BAP to berth ships, reaearchers are 

developing models by simultaneously considering 

these two problems. In the combined BACAP, in 

addition to time and berthing position, some cranes 

have to be assigned to each vessel. Moreover, two 

versions of the BACAP, i.e., a time-invariant version 

and a variable-in-time version, have been considered 

in the literature. In the time-invariant version, the 

number of cranes assigned to each vessel is fixed 

throughout its handling, while in the variable-in-time 

version, this number may change in each period. At 

any rate, the present study addresses the time-

invariant BACAP. For more information, interested 

readers can see [13], [14], [15], [16] and [5]. 

3. Problem Definition and Formulation 

Managers in many container terminals attempt to 

reduce costs by efficiently utilizing resources, 

including human resources, berths, container yards, 

container cranes, and various yard equipment [17]. 

Among all resources, berths are the most important 

resource whose good schedules will improve 

customers' satisfaction and increase port throughput, 

leading to higher revenues of the port. Port managers 

usually schedule the usage of berths by an intuitive 

trial-and-error method supported by a schedule board 

or a graphic user interface in a computer system [9]. 

This article attempts to satisfy various constraints for 

berthing container vessels by using a mixed-integer 

second-order conic programming (MISOCP) model. 

The BACAP is the optimization problem of assigning 

berth position, cranes, and berthing time to calling 

vessels and minimizing the total assignment cost. As 

well, in the BAP, vessels are called to the available 

terminals over time and terminal planners assign a 

berthing position along the pier and a berthing time on 

the planning horizon for each vessel. The main reason 

is that the vessels can leave as soon as possible and 

the next vessels can be deployed to the dock. 

 

 

 

 

 

Table 1. Summary of related articles 

Case Study 

or 

Real Data 

Solution Approach (s) 

(Algorithms) 

Objective (s) 

(Minimization) 

Type of 

Formulation 

Type of 

Problem 
Articles 

-- 

Lagrangean relaxation 

and the subgradient 

optimization procedure, 

the dynamic programming 

technique 

The weighted summation of 

handling cost of containers,  the 

penalty cost incurred by berthing 

earlier or later than the expected 

time of arrival, and the penalty cost 

of departure time  

Integer 

Programming 

(IP) 

BQCSP 

Cont, Stat 
[18] 

-- 
GA and maximum flow 

problem-based algorithm 

Total service time (including wait 

and handling times) 
MIP 

BCAP Disc, 

Dyn 
[19] 

-- GA 

The sum of the handling time, the 

waiting time, and the delay time for 

every vessel 

MIP 
BCSP 

Disc, Stat 
[20] 

-- GA 

The total service time,the delayed 

departures, the total emissions, and 

the fuel consumption. 

MIP 
BSP 

Disc, Dyn 
[21] 
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Port of Gioia 

Tauro, Italy 
CPLEX, Tabu search 

The housekeeping costs generated 

by transshipment flows between 

vessels 

MILP 

& 

MIQP 

BACAP 

Disc, Dyn 
[22] 

 

 

Hybrid simulation-

optimization approach, 

C++ programming 

language 

Operational expenditures, fuel cost, 

demurrage and cancellation 

penalties, dispatch credits 

MIP 
BAP 

Disc, Dyn 
[23] 

 
Rolling horizon 

framework 

The total handling time of vessels, 

the deviation from the preferred 

berthing location, the change in the 

number of cranes assigned to a 

vessel during its service 

MILP 
BACAP 

Cont 
[24] 

-- Meta heuristics, VNS Earliness/ Tardiness MIP 
BAP 

Hyb 
[25] 

-- CPLEX 
Minimizing the weighted sum of 

turnaround times of vessels 
MIP 

BAP 

Disc 
[26] 

-- 

MA 

(integrated simulation and 

optimization method) 

The trade-off between time-saving 

and energy-saving 
MIP 

BACAP 

Disc 
[27] 

-- GAMS, CPLEX 
Total handling cost and average 

handling time per vessel 
MIP 

BAP, QCAP 

Cont, Dyn 
[28] 

-- 

Hybrid CP/IP (integer 

programming) 

algorithmic procedures 

Makespan, departure delay 

Constraint 

Programming 

(CP) 

BAP 

Disc, Dyn 
[29] 

-- 
Rolling horizon & 

structural decomposition 
The weighted turnaround times MIP --- [30] 

-- 
Column generation 

solution approach 

The waiting time of vessels and the 

delay of vessels' departure 
MIP Disc & Cont 

[31] 
 

-- ALNS algorithm 

The overall costs (including 

speeding, tardiness cost, and costs 

related to the QCs) 

MIP Cont [32] 

-- 
RHH & branch and cut 

approach 
The service completion time MIP 

BAP, QCSP 

Cont 
[33] 

-- 
Reactive, 

RHOA 
The recovery cost  MIP 

BACAP 

Disc 
[34] 

-- 

CPLEX, GAMS 

(novel collaborative 

agreement) 

Time, Cost, Demand MINLP --- [35] 

-- 
Metaheuristic algorithms 

& competitive heuristic 
Cost, Time  MIP 

BAP 

Disc, Dyn 
[36] 

-- 
SA based simulation 

optimization 
Makespan of handling all vessels MIP, MINLP 

BAP, QCSP 

Hyb, Dyn 
[37] 

-- 

Combining the two-stage 

iterative algorithm and 

fuzzy logic method based 

on the epsilon-constraint 

method 

Optimize sailing routes and speeds 

within and outside the emission 

control areas (ECAs) while 

minimizing the total fuel cost and 

SO2 emissions 

MIP --- [38] 

-- Iterative heuristic 

The total cost of  speed, delay, the 

penalty of vessels, and operational 

cost 

MIP 
BAP 

Disc 
[39] 

-- Meta-heuristic algorithms Fuel, Emissions MINLP --- [40] 

 

Port 

Administration of 

Paranaguá and 

Genetic algorithm and a 

dynamic programming 

method 

Total service time and  quay 

occupation 
MIP 

BAP 

Dyn 
[41] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

5-
05

-0
9 

] 

                             5 / 23

https://ijmt.ir/article-1-798-en.html


 

Sadegh Sharifi et al. / A new multi-objective model for berth allocation and quay crane assignment problem with speed optimization and air emission considerations 

 

Antonina 

(APPA), 

Brazilian coast 

-- 

Robust optimization, 

exact solution approach 

based on the EC method, 

SA and MOSA based 

metaheuristics and a 

pareto simulated 

annealing (PSA) approach 

The deviations from target berthing 

locations and times as well as 

departure delays of all vessels. 

MIP 

BSP and 

QCSP 

(BQCSP), 

Stoc 

[42] 

-- 
Exact decomposition 

algorithm 

The worst-case of the expected sum 

of delays with respect to a set of 

possible probability distributions of 

the handling times 

MIP BAP, Stoc [43] 

-- 
CPLEX, Genetic 

algorithm 

Aims to assign proper number of 

berths for serving vessels of various 

liner clusters 

MILP, MINLP 

Berth 

assignment 

and 

allocation 

problem 

(BAAP) 

[44] 

-- 

Lexicographic methods, 

Fuzzy epsilon-constraint 

method 

The total waiting time of vessels 

and the makespan of the wharf 

operation 

Fully fuzzy 

multi-objective 

linear 

programming 

(FFMOLP) 

BAP, Stoc  [45] 

-- 
Multi-stage heuristic 

algorithm, CPLEX solver 

The baseline schedule cost in the 

deterministic situation and the 

recovery cost in the disruption 

scenarios 

Integer 

Programming 

(IP) 

BAP [46] 

 

Rajaee port, Iran 
AEC, MOSA, NSGA-II 

Port's operational costs, Vessel's 

fuel consumption, GHG emissions 

MILP, 

MISOCP 

BACAP 

Hyb, Dyn 
This article 

 

The traditional aim of the BAP is to serve all vessels 

so that their handling times are minimized as much as 

possible and berthing constraints are satisfied too. In 

fact, in the BAP, planning of how to use the berth by 

arriving vessels at a specified time is decided. At 

different ports, the operators of each terminal are 

faced with this problem and according to the above 

definition, the terminal operator must determine the 

time and location of each vessel's berthing under the 

existing physical and time constraints [47]. This 

article aims to minimize operating costs at terminals 

and for shipping companies. On the other hand, the 

reduction of total fuel consumption and consequently, 

the reduction of the emissions at the port, which is 

produced by vessels, has also been considered in this 

formulation. Based on the scheme provided by [48], 

this problem can be classified as Hyb/Dyn/BAP +
 QCAP / ∑  Operational Costs  (wait. tard and tariff ) +
Fuel Consumption + Emissions. 

In the problem addressed here, the pier has been 

considered a set of quay sections, each one admitting 

a limited number of vessels under special conditions 

(hybrid variant), and the number of quay cranes that 

serve a vessel is not changed after they are once 

assigned to the vessel during its handling. 

Furthermore, the maximum and the minimum number 

of cranes that it can admit and an estimate of its 

handling time for each number of cranes are known in 

advance. Vessels can be moored along the quay within 

a given time horizon, while QCs can move along the 

quay to serve the vessels provided that they do not 

cross each other. A berth plan can be rendered as a 

space-time diagram in which the vertical axis 

represents the position along the wharf and the 

horizontal one represents the time axis. Also, each 

vessel is shown with a rectangle. The handling 

(loading or unloading) time of the corresponding 

vessel is displayed with the length of a rectangle 

whereas the vessel length is represented by the height 

of a rectangle, as in the case of the BAP, now 

considering the number of cranes assigned to each 

vessel, too (Figure 1). The number of cranes for 𝑣1 =
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3, 𝑣2 = 2, 𝑣3 = 2, and 𝑣4 = 3. As shown in Figure 1, 

each vessel has an optimal coordinate point for the 

mooring. The y-axis and the x-axis of the lower-left 

corner of a rectangle represent the berthing position 

and time of the corresponding vessel, respectively. 

The main purpose is to determine this place and time 

so that the existing conditions and restrictions are not 

violated. 

 
Figure 1. An example of a space-time diagram for the 

BACAP solution with 4 vessels and a quay 400m long 

3.1. Assumptions        

In general, the expected arrival time of a vessel is 

earlier than its berthing time. When a vessel is at the 

port, its auxiliary machinery will still operate, which 

will increase the fuel consumption of the vessel at the 

port. Generally, vessels' arrival times are optimized to 

achieve two objectives: (a) minimizing total fuel 

consumption and emissions hourly produced by all 

vessels during sailing and mooring periods, and (b) 

minimizing delayed departures of vessels. The main 

assumptions of this study are the following: 

- Time: 

 The planning horizon whose time unit is one 

hour is divided into multiple equal time 

segments. 

 Containerships are to be moored within the 

planning horizon. 

 Time windows can be of two types including 

an entering and a leaving window. At the 

entering windows, vessels can only pass 

through the channel one-way from the outer 

sea (or anchorage) to the inner terminals and 

one-way from the inner terminals to the outer 

sea during leaving windows. In other words, 

vessels are only allowed to arrive at the berth 

during entering windows and leave the berth 

during leaving windows. 

 The minimum length of a time window is 

larger than the maximum time taken for a 

vessel to pass through the channel. 

- Quay: 

 Each position on the quay can accommodate 

one vessel at a time. 

 There are some physical or technical 

restrictions such as container vessel and berth 

length, container ship draft, and water depth. 

- Vessels: 

 When a vessel is moored, the berthing position 

is kept unchanged in its entire handling 

process. 

 Once the handling of a vessel has started, it 

cannot be interrupted (to avoid additional 

costs). 

 The handling time of each vessel is considered 

to be independent of its berthing position. This 

assumption is reasonable if the quay has 

enough machinery and workers for container 

transportation between the yard and the quay at 

any moment. Hence, the cranes serving each 

vessel do not need to wait for vehicles. The 

increased transportation cost produced if the 

position of the vessel deviates from its desired 

position is included in the objective function. 

 The handling time of each vessel is a function 

of cranes assigned to it. No specific relation is 

assumed between them, so it can be either 

linear or non-linear. 

 The time for docking and undocking 

maneuvers is considered to be included in the 

vessel handling time. 

 Vessels may have different relative 

importance. Therefore, cost coefficients are 

specific to each vessel. It means vessel 

priorities may be reflected by setting 

coefficients in the objective function for the 

waiting and delay costs. 

 The inter-ship clearance is included in the 

vessel length. In general, for vessels longer 

than 130m, this clearance corresponds to 10% 

of its length. For small vessels, the minimum 

clearance is 10m. 

- Cranes: 

 The total number of QCs available at the quay 

(container terminal) is fixed, and all the cranes 

have the same characteristics. 

 All QCs can move along the whole length of 

the quay, but they cannot cross each other. 

 Each quay crane can be assigned to one vessel 

at most, in each time period. 
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 The number of quay cranes that have been 

assigned to a vessel does not change during its 

berthing time. 

 The number of cranes that can be assigned to a 

vessel has a certain minimum and maximum.  

 The emissions and working energy 

consumption of each QC per move have been 

ignored. In other words, the impact of quay 

crane allocation on fuel consumption and 

emissions is not considered in this article. 

3.2. Relationship between Fuel Consumption and 

Sailing Speed 

There is a nonlinear relationship between vessel speed 

(sailing speed) and fuel consumption [49]. Since there 

is a direct relationship between fuel emissions and 

fuel burnt, it is relevant to optimize sailing speed from 

the carrier and environmental perspective. The 

International Maritime Organization (IMO) has had a 

lot of considerations on measures of speed 

optimization, speed reduction, or slow steaming in 

recent years [50]. So, the aspects and effects of 

different measures have been subject of several 

studies. When designing a berth plan, the terminal 

planner considers the fuel consumption of vessels 

sailing to the ports during the berth planning period 

(e.g., a week). It is assumed that the berth planning 

time starts at time zero, and the distance from vessel 𝑖 
to terminal 𝑘 is 𝑚𝑘𝑖 . The fuel consumption of vessel 

𝑖, therefore, can be calculated by Equation (1) [51]: 
 

𝐹𝑘𝑖 = 𝑐𝑖
0 × 𝑎𝑘𝑖 + 𝑐𝑖

1 × 𝑚𝑘𝑖
𝜇𝑖 × 𝑎𝑘𝑖

1−𝜇𝑖 
 

(1) 

 

where 𝑐𝑖
0, 𝑐𝑖

1 > 0 are the regression coefficients and 

𝜇𝑖 ∈ [52]. It is assumed that 𝜇𝑖 = 3.5 for feeder 

containerships (𝑉𝐹), 𝜇𝑖 = 4 for medium-sized 

containerships (𝑉𝑀), and 𝜇𝑖 = 4.5 for jumbo 

containerships (𝑉𝐽) in this article. Meanwhile, 

Equation 1 is non-linear (𝑎𝑘𝑖
1−𝜇𝑖), which significantly 

challenges the branchandbound solvers during 

computation. The compromise methods such as linear 

regression provided by [53] and speed discretization 

by [23] and [54] may result in calculation 

inaccuracy. Not avoiding this nonlinearity, it will 

be demonstrated that 𝐹𝑘𝑖 can be equivalently 
transformed to a linear objective subject to some 

second-order cone programming (SOCP) constraints, 

which makes it easy to solve the model to optimality 

in a reasonable time [55].  

This work attempts to cast the non-linear fuel 

consumption equation 𝐹𝑘𝑖 as a linear objective subject 

to a group of SOCP constraints by substituting the 

term 𝑎𝑘𝑖
1−𝜇𝑖 with an auxiliary variable 𝑄𝑘𝑖

′  as presented 

in Equations 2-4 and obtain a computationally 

tractable MISOCP model where ‖‖2 denotes the 

Euclidean norm, 𝑢𝑘𝑖1, 𝑢𝑘𝑖2, 𝑢𝑘𝑖3, 𝑢𝑘𝑖4 ≥ 0, and 𝑎𝑘𝑖, 

𝑄𝑘𝑖
′  > 0. 

 

 

𝑢𝑘𝑖1
2 ≤ 𝑎𝑘𝑖 . 1 ⇒ ‖(2𝑢𝑘𝑖1, 𝑎𝑘𝑖

− 1)‖2

≤ 𝑎𝑘𝑖 + 1 

  

𝑢𝑘𝑖2
2 ≤ 𝑢𝑘𝑖1. 𝑄𝑘𝑖

′ ⇒ ‖(2𝑢𝑘𝑖2, 𝑢𝑘𝑖1

− 𝑄𝑘𝑖
′ )‖

2

≤ 𝑢𝑘𝑖1 + 𝑄𝑘𝑖
′  

 

 
 

 

𝑖 ∈ 𝑉𝐽  

𝑜𝑟  
𝜇𝑖 = 4.5 

 

𝑢𝑘𝑖3
2 ≤ 𝑢𝑘𝑖2. 𝑎𝑘𝑖 ⇒ ‖(2𝑢𝑘𝑖3, 𝑢𝑘𝑖2

− 𝑎𝑘𝑖)‖2

≤ 𝑢𝑘𝑖2 + 𝑎𝑘𝑖 

 

(2) 

𝑢𝑘𝑖4
2 ≤ 𝑢𝑘𝑖1. 1 ⇒ ‖(2𝑢𝑘𝑖4, 𝑢𝑘𝑖1

− 1)‖2

≤ 𝑢𝑘𝑖1 + 1 

 

1 ≤ 𝑢𝑘𝑖3. 𝑢𝑘𝑖4 ⇒ ‖(2, 𝑢𝑘𝑖3

− 𝑢𝑘𝑖4)‖2

≤ 𝑢𝑘𝑖3 + 𝑢𝑘𝑖4 

  

   

𝑢𝑘𝑖1
2 ≤ 𝑎𝑘𝑖 . 𝑄𝑘𝑖

′ ⇒ ‖(2𝑢𝑘𝑖1, 𝑎𝑘𝑖

− 𝑄𝑘𝑖
′ )‖

2

≤ 𝑎𝑘𝑖 − 𝑄𝑘𝑖
′  

 
𝑖 ∈ 𝑉𝑀  

𝑜𝑟  
𝜇𝑖 = 4 

 

 
(3) 

1 ≤ 𝑎𝑘𝑖 . 𝑢𝑘𝑖1 ⇒ ‖(2, 𝑎𝑘𝑖 − 𝑢𝑘𝑖1)‖2

≤ 𝑎𝑘𝑖 + 𝑢𝑘𝑖1 

 

 

𝑢𝑘𝑖1
2 ≤ 𝑎𝑘𝑖 . 1 ⇒ ‖(2𝑢𝑘𝑖1, 𝑎𝑘𝑖 −

1)‖2 ≤ 𝑎𝑘𝑖 + 1 

 

 
𝑖 ∈ 𝑉𝐹   

𝑜𝑟 

 𝜇𝑖 = 3.5 

 

𝑢𝑘𝑖2
2 ≤ 𝑢𝑘𝑖1. 𝑄𝑘𝑖

′ ⇒ ‖(2𝑢𝑘𝑖2, 𝑢𝑘𝑖1

− 𝑄𝑘𝑖
′ )‖

2

≤ 𝑢𝑘𝑖1 + 𝑄𝑘𝑖
′  

 
(4) 

 

1 ≤ 𝑎𝑘𝑖 . 𝑢𝑘𝑖2 ⇒ ‖(2, 𝑎𝑘𝑖 − 𝑢𝑘𝑖2)‖2

≤ 𝑎𝑘𝑖 + 𝑢𝑘𝑖2 

 

3.3. Mathematical Formulation        

This study establishes two novel models for the 

BACAP with variable and constant arrival time: i.e. a 

model with variable arrival time (VAT) and a model 

with constant arrival time (CAT). It is worth noting 

that with this BACAP formulation, terminal planners 

allocate the berthing positions and times to the vessels 

based on their expected arrival times. That is to say; 

the terminal operator regards the arrival time of each 

vessel as a constant known a priori. Similar to [56], 

this berth allocation strategy is referred as a CAT 

strategy. However, considering the arrival time of a 

vessel as a decision variable will provide the 

convenience of optimizing fuel consumption and 

emissions. This new berth allocation strategy is 

referred to as a VAT strategy. The numerical 

experiments, which are presented later in this study, 

reveal that the VAT strategy significantly outperforms 

the CAT strategy when taking fuel consumption and 

vessel emissions into account. The notations used in 

the mathematical model are listed below. 

Sets:  
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𝑉 = {1. 2. … . 𝑖} The set of container ships under 

consideration in the berth plan 

𝑄 = {1. 2. … . 𝑘} The set of container terminals under 

consideration in the berth plan 

𝑁 = {1. 2. … . 𝑛} The set of pollutants (CO2, NOx, and 

SOx) 

𝑇 = {1. 2. … . 𝑡} The set of time periods in the planning 

horizon 

𝐶 = {1. 2. … . 𝑐} The set of quay cranes under 

consideration in the planning horizon 

Parameters: 

𝑅𝑘𝑖 The requested departure time of vessel i at terminal k 

𝑃𝑐𝑘𝑖  Specific handling time (estimated time of unloading 

and loading) of vessel i if crane c is assigned to it at 

terminal k 

𝑙𝑖 The length of vessel i (including the safe distance 

between adjacent vessels for mooring) 

𝐿 The total length of the container terminal 

𝐷𝑘 The water depth of terminal k 

𝐿𝑘 The length of terminal k (terminal endpoint 

coordinates) 

𝑑𝑖
" The draft of vessel i 

𝑚𝑘𝑖 The distance from vessel i to terminal k 

𝑠𝑝𝑖  The sailing speed of vessel i 

𝐿𝐹 The load ratio of average power used during normal 

operations to maximum rated power 

𝑃𝑂𝑖  The rated power of the engine of vessel i 

𝐴𝐶𝑘𝑖 The average activity time of each engine of vessel i 

at terminal k 

𝐸𝐹𝑖𝑛 The emission factor of the nth pollutant for vessel i 

(in sailing periods) 

𝐸𝐹𝑖𝑛
′  The emission factor of the nth pollutant for vessel i 

(in mooring periods) 

𝐹𝐶𝐹𝑛 The fuel correction factor of the nth emission factor 

to reflect changes in fuel properties over time 

𝐸𝑁𝑖 The number of engines of vessel i 

𝐶𝐴𝑃𝑖 The capacity of vessel i (quantity of vessels' cargo) 

𝐷𝐸𝑀𝑘 Maximum warehouse capacity at terminal k 

(maximum freight required for delivery/discharge at 

terminal k) 

𝐷𝐸𝑁𝑘 Minimum warehouse capacity at terminal k 

(minimum freight required for delivery/discharge at 

terminal k) 

𝑈𝑇𝑘  The upper bound of the time windows at terminal k 

𝐿𝑇𝑘 The lower bound of the time windows at terminal k 

𝑓𝑐𝑘𝑖 The tariffs of terminal k for vessel i 

𝑀𝑎𝑥𝑖  The maximum number of quay cranes that can be 

assigned to vessel i 

𝑀𝑖𝑛𝑖 The minimum number of quay cranes that can be 

assigned to vessel i 

𝑤𝑖  The weight of vessel i (the "weights" reflect the unit 

waiting costs of vessels) 

𝐼𝐶𝑘𝑖  The idleness cost of vessel i at terminal k 

𝑀 Big-M, a sufficiently large constant 

Decision variables: 

𝑎𝑘𝑖  Arrival time of vessel i at terminal k 

𝑠𝑘𝑖  Time at which vessel i berths at terminal k on the 

space-time diagram (berthing start time) 

𝑓𝑘𝑖 The berthing position of vessel i at terminal k on 

the space-time diagram (berthing position) 

𝑟𝑘𝑖  Time at which vessel i leaves terminal k 

(departure time of vessel i at terminal k) 

𝜀𝑡𝑘𝑖 Positive integer variable; total number of quay 

cranes assigned at time period t to vessel i at 

terminal k 

𝐼𝐼𝑘𝑖𝑗  Binary variable; 𝐼𝐼𝑘𝑖𝑗 = 1 indicates that vessel i is 

positioned below vessel j at terminal k, 𝐼𝐼𝑘𝑖𝑗 = 0, 

otherwise. Or when vessel i is positioned earlier 

than vessel j in the space-time diagram, 𝐼𝐼𝑘𝑖𝑗 = 1; 

otherwise, 𝐼𝐼𝑘𝑖𝑗 = 0. 𝑖. 𝑗 ∈ 𝑉. 𝑖 ≠ 𝑗 

𝐼𝐼𝐼𝑘𝑖𝑗 Binary variable; 𝐼𝐼𝐼𝑘𝑖𝑗 = 1 indicates that vessel i 

is positioned left of vessel j along the wharf at 

terminal k, 𝐼𝐼𝐼𝑘𝑖𝑗 = 0, otherwise. 𝑖. 𝑗 ∈ 𝑉. 𝑖 ≠ 𝑗 

𝑥𝑘𝑖  Binary variable; 𝑥𝑘𝑖 = 1 if vessel i berths at 

terminal k, 𝑥𝑘𝑖 = 0, otherwise. 

𝜕𝑡𝑐𝑖 Binary variable; 𝜕𝑐𝑖 = 1 if quay crane c at time 

period t assigned to vessel i, 𝜕𝑐𝑖 = 0, otherwise. 

The final model that is presented in the study is as 

follows: 

𝑀𝑖𝑛 𝑓1  ∑ ∑ 𝑤𝑖 × (𝑠𝑘𝑖 + ∑ ∑(𝜕𝑡𝑐𝑖

𝑐∈𝐶𝑡∈𝑇

. 𝑝𝑐𝑘𝑖) − 𝑅𝑘𝑖)

𝑖∈𝑉𝑘∈𝑄

+ ∑ ∑ 𝐼𝐶𝑘𝑖 × (𝑠𝑘𝑖 − 𝑎𝑘𝑖)

𝑖∈𝑉𝑘∈𝑄

+ ∑ ∑ 𝑓𝑐𝑘𝑖 × 𝑥𝑘𝑖

𝑖∈𝑉𝑘∈𝑄

 

(5) 

𝑀𝑖𝑛 𝑓2  ∑ ∑ 𝑐𝑖
0 × 𝑎𝑘𝑖 + 𝑐𝑖

1 × 𝑚𝑘𝑖
𝜇𝑖 × 𝑄𝑘𝑖

′

𝑖∈𝑉𝑘∈𝑄

 (6) 

𝑀𝑖𝑛 𝑓3  ∑ ∑ ∑ 𝐹𝑘𝑖 × 𝐸𝐹𝑖𝑛

𝑛∈{𝐶𝑂2,𝑁𝑂𝑥,𝑆𝑂𝑥}𝑖∈𝑉𝑘∈𝑄

 

        + ∑ ∑ ∑ 𝑥𝑘𝑖

𝑛∈{𝐶𝑂2,𝑁𝑂𝑥,𝑆𝑂𝑥}𝑖∈𝑉𝑘∈𝑄

× (𝑃𝑂𝑖 × 𝐴𝐶𝑘𝑖 × 𝐿𝐹 × 𝐹𝐶𝐹𝑖𝑛 × 𝐸𝑁𝑖)

× 𝐸𝐹𝑖𝑛
′  

 

(7) 

Subject to: SOCP constraints (2)-(4) and:  

𝑠𝑘𝑖 + ∑ ∑(𝜕𝑡𝑐𝑖

𝑐∈𝐶𝑡∈𝑇

. 𝑝𝑐𝑘𝑖) 

≤ 𝑠𝑘𝑗 + 𝑀(1 − 𝐼𝐼𝑘𝑖𝑗) 

∀ 𝑖. 𝑗 ∈ 𝑉 & 𝑖 ≠ 𝑗 

& 𝑘 ∈ 𝑄 

(8) 

𝑓𝑘𝑖 + 𝑙𝑖 ≤ 𝑓𝑘𝑗 + 𝑀(1 − 𝐼𝐼𝐼𝑘𝑖𝑗) ∀ 𝑖. 𝑗 ∈ 𝑉 & 𝑖 ≠ 𝑗 

& 𝑘 ∈ 𝑄 

(9) 

𝐼𝐼𝑘𝑖𝑗 + 𝐼𝐼𝑘𝑗𝑖 + 𝐼𝐼𝐼𝑘𝑖𝑗 + 𝐼𝐼𝐼𝑘𝑗𝑖  

≥ 2 × (𝑥𝑘𝑖 + 𝑥𝑘𝑗 − 1) 

∀ 𝑖. 𝑗 ∈ 𝑉 & 𝑖 < 𝑗 

& 𝑘 ∈ 𝑄 

(10) 

𝐼𝐼𝑘𝑖𝑗 + 𝐼𝐼𝑘𝑗𝑖 + 𝐼𝐼𝐼𝑘𝑖𝑗 + 𝐼𝐼𝐼𝑘𝑗𝑖  

≤ 𝑥𝑘𝑖 + 𝑥𝑘𝑗 

∀ 𝑖. 𝑗 ∈ 𝑉 & 𝑖 < 𝑗 

& 𝑘 ∈ 𝑄 

(11) 

∑ 𝑥𝑘𝑖 = 1

𝑘∈𝑄

 ∀ 𝑖 ∈ 𝑉 (12) 

�̱�𝑘𝑖 ≤ 𝑎𝑘𝑖 ≤ �̄�𝑘𝑖 ∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 (13) 
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𝑠𝑘𝑖 ≥ 𝑎𝑘𝑖  ∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 (14) 

𝑠𝑘𝑖 = ∑ ∑ 𝜕𝑡𝑐𝑖 × 𝑡

𝑐∈𝐶

≤ 1

𝑡∈𝑇

 
∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 (15) 

𝑠𝑘𝑖 + ∑ ∑(𝜕𝑡𝑐𝑖

𝑐∈𝐶𝑡∈𝑇

. 𝑝𝑐𝑘𝑖) ≤ 𝑟𝑘𝑖  
∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 (16) 

𝑟𝑘𝑖 ≤ 𝑠𝑘𝑗 + 𝑀(1 − 𝐼𝐼𝑘𝑖𝑗) ∀ 𝑖. 𝑗 ∈ 𝑉 & 𝑖 ≠ 𝑗 

& 𝑘 ∈ 𝑄 

(17) 

𝑓𝑘𝑖 ≥ 𝑥𝑘𝑖 × 𝐿𝑘−1 ∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 

& 𝑘 > 0 

(18) 

𝑓𝑘𝑖 + 𝑙𝑖 ≤ ∑ 𝑥𝑘𝑖 × 𝐿𝑘

𝑘∈𝑄

 
∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 (19) 

(𝑑𝑖
′′ − 𝐷𝑘) × 𝑥𝑘𝑖 ≤ 0 ∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 (20) 

𝐷𝐸𝑁𝑘 ≤ ∑ 𝐶𝐴𝑃𝑖  × 

𝑖∈𝑉

𝑥𝑘𝑖

≤ 𝐷𝐸𝑀𝑘 

∀ 𝑘 ∈ 𝑄 (21) 

𝑠𝑘𝑖 − 𝑀(1 − 𝑥𝑘𝑖) ≤ 𝑈𝑇𝑘 ∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 (22) 

𝑠𝑘𝑖 + 𝑀(1 − 𝑥𝑘𝑖) ≥ 𝐿𝑇𝑘 ∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 (23) 

∑ ∑ 𝜀𝑡𝑘𝑖

𝑖∈𝑉

≤ 𝐶

𝑐∈𝐶

 ∀ 𝑡 ∈ 𝑇 (24) 

∑ ∑ 𝜕𝑡𝑐𝑖

𝑐∈𝐶

≤ 1

𝑡∈𝑇

 ∀ 𝑖 ∈ 𝑉 (25) 

𝑀𝑖𝑛𝑖 ≤ ∑ ∑ 𝜕𝑡𝑐𝑖

𝑐∈𝐶𝑡∈𝑇

= 𝜀𝑡𝑘𝑖

≤ 𝑀𝑎𝑥𝑖 

∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 (26) 

𝐼𝐼𝑘𝑖𝑗 , 𝐼𝐼𝐼𝑘𝑖𝑗 , 𝑥𝑘𝑖 , 𝜕𝑐𝑖 ∈ {0,1} ∀ 𝑖. 𝑗 ∈ 𝑉 & 𝑖 ≠ 𝑗 

& 𝑘 ∈ 𝑄 & 𝑐 ∈ 𝐶 

(27) 

𝑠𝑘𝑖 , 𝑓𝑘𝑖 , 𝑎𝑘𝑖 , 𝑟𝑖 , 𝑄𝑘𝑖
′ ≥ 0 ∀ 𝑖 ∈ 𝑉 & 𝑘 ∈ 𝑄 (28) 

In this formulation, port operational cost is defined as 

the objective function (5), which includes three 

components. The first statement is to minimize the 

total departure delay of all vessels, which is a typical 

measure of the service level of container terminals and 

popularly adopted by terminal planners. The second 

statement minimizes the cost of idleness time, and the 

third statement minimizes port and maritime service 

tariffs. The objective function (6) minimizes vessel 

fuel consumption. The first statement of the objective 

function (7) minimizes the volume of total GHG 

emissions when sailing to terminals, and the second 

term minimizes the volume of emissions during 

mooring. The set of constraints (8) to (11) enforce the 

non-overlapping conditions among vessels in the 

space-time planning diagram. Constraint (12) ensures 

that each vessel is berthed at only one terminal. 

Constraints (13) and (14) are related to the arrival time 

of vessels and mean that a vessel cannot be berthed 

before its arrival time. Constraints (15) link the 

berthing time of a vessel to variable 𝜕𝑡𝑐𝑖 to prevent 

inconsistencies. Constraints (16) and (17) are related 

to the calculation of the completion time of each 

vessel and state that vessels are not allowed to berth 

earlier than the time of departure of previous vessels 

at a terminal. Constraints (18) and (19) ensure that all 

vessels are berthed within the boundaries of the wharf; 

in other words, if the stern of vessel 𝑖 is in terminal 𝑘, 

the bow of vessel 𝑖 must also be in terminal 𝑘. 

Constraint (20) ensures that the draft of vessels is less 

than or equal to the water depths of terminals. 

Constraint (21) indicates the cargo capacity of the 

vessels, as well as the minimum and maximum cargo 

required by the terminals. Constraints (22) and (23) 

indicate the time windows of the terminals for the 

berthing of vessels. As such, they represent the upper 

and lower boundaries of these time windows, 

respectively. The set of constraints (24) to (26) are 

related to the assignment of quay cranes to vessels. 

Thus, constraint (24) indicates the limitation of the 

maximum number of available quay cranes. 

Moreover, the number of cranes assigned to vessels in 

each time period cannot be greater than the total 

number of cranes available at the quay due to 

constraints (24). Constraint (25) indicates the 

necessity or non-necessity of assigning a quay crane 

to a vessel (the handling of each vessel starts only 

once and with a fixed number of cranes) and 

constraint (26) indicates the minimum and the 

maximum number of quay cranes required to be 

assigned to a vessel. Finally, constraints (27) and (28) 

specify the domains and type (nature) of the variables 

used. 

4. Solution Method 
The presented mathematical model is solved by the 

solver of GAMS IDE. Meanwhile, due to the 

complexity of the formulated mathematical model, an 

adapted NSGA-II and a MOSA algorithm are 

employed. Given that all the local search procedures, 

rely on the constructive algorithm to obtain feasible 

solutions, valid solutions for the BACAP can also be 

obtained from other machine learning methods such as 

Artificial Neural Networks (ANNs) and Support 

Vector Regression (SVR). To understand the 

capabilities of the methods of machine learning, refer 

to [57] and [58]. First of all, the concept of multi-

objective optimization that is necessary for this work 

is discussed. 

4.1. Multi-objective Optimization  

A single-objective optimization problem has only one 

objective function. But in a multi-objective 

mathematical programming (MOMP) problem, the 

number of objective functions that are optimized 

simultaneously is more than one. Assume 𝑀 

uncorrelated objectives to be minimized. Equation 29 

represents the mathematical definition of a multi-

objective optimization problem: 

𝑚𝑖𝑛 𝑧 = (𝑓1(𝑥). 𝑓2(𝑥). … .  𝑓𝑚(𝑥)) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑋 

(29) 

where 𝑋 is the set of feasible solution space, 𝑥 is a 

feasible solution, and 𝑓1(𝑥) is the first objective 
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function value of solution 𝑥. Objective functions are 

often in contradiction so that the improvement of one 

leads to the deterioration of the other. Thus, a binary 

relationship of dominance acts as a comparative 

function between feasible solutions. It means that if 

the solution 𝑥1 is better than the solution 𝑥2 for all 

objectives, it is said that 𝑥1 dominates 𝑥2 and it is 

written as 𝑥1 ≺ 𝑥2. But, in optimization problems, it is 

aimed to find a non-dominant solution (or solutions) 

that cannot be dominated by other feasible solutions. 

A set of non-dominated solutions is called Pareto set 

(or Pareto front) [59, 60]. In these cases, the decision-

makers seek the "most preferred" solution versus the 

optimal solution. In MOMP, the concept of optimality 

is substituted with that of Pareto optimality or 

efficiency. The Pareto optimal (or efficient, non-

dominated, non-inferior) solutions refer to the 

solutions that are impossible be improved in one 

objective function unless their performance in at least 

one of the rest is deteriorated [61]. 

4.2. AEC Method 

A well-organized technique for solving MOMP 

problems, in which the main objective function is 

identified among all other objective functions, is 

known as the epsilon constraint (EC) method, which 

has several important advantages over the traditional 

weighting method. Despite its advantages over the 

weighted method, the EC method has two limitations 

that need attention. At first, the scope of the objective 

functions is not optimized more than the efficient set, 

and to solve this problem, the lexicographic 

optimization technique is presented. Secondly, the 

optimal Pareto solutions produced using the EC 

method may be dominant or ineffective. To overcome 

this defect, the augmented epsilon constraint (AEC) is 

presented, which is a new version of the EC method 

and prevents the production of weak Pareto optimal 

solutions. As a result, by preventing redundancies, the 

whole process is accelerated. In general, the AEC 

method leads to the most optimal Pareto optimal 

solution [62]. Interested readers are referred to [63] 

and [64] to learn more about the AEC method. 

4.3. MOSA 
Simulated annealing (SA) is a meta-heuristic 

algorithm that in an optimization problem, provides 

solutions using a probabilistic method. The algorithm 

starts from a desired solution in the problem space and 

then selects another solution in the neighborhood of 

the current solution. The algorithm then decides on the 

basis of a probability-based method whether to stay in 

the current solution or move to the neighboring 

solution. The algorithm, in order to escape from the 

local minimum and reach to the global minimum, 

investigates the problem space by imitating the metal 

annealing process and reducing the temperature to a 

low temperature [65]. Applications of SA can be seen 

in the parallel machine scheduling problem [66] or the 

problem of task scheduling in heterogeneous 

distributed computing systems [67].   
The pseudo-code of SA is shown in Figure 2. In this 

pseudo-code, 𝑠0 contains the solution, and 

minimization is assumed. This algorithm generates 

local solutions in the neighborhood of the current 

solution and accepts a new solution based on a 

function depending on the current temperature "t". 

The number of iterations to apply the algorithm 

(ITER) and the cooling schedule (CS) are considered 

as two main parameters of SA that have a significant 

effect on the performance of the algorithm. [52]. 

The use of SA in multi-objective (called "Multi-

Objective Simulated Annealing", or MOSA in short) 

optimization was initially proposed by [68]. The work 

proposes to use a target-vector approach to solve a bi-

objective optimization problem (several possible 

transition rules are proposed). A solution 𝑥′ is 

generated in the neighbourhood of the current solution 

𝑥. If 𝑓(𝑥′) is non-dominated with respect to 𝑓(𝑥), it is 

accepted as the current state, and a set of non-

dominated solutions is also updated. This is the basic 

approach used with local search procedures. The set or 

archive of non-dominated solutions constitutes the 

memory of the approach and allows the generation of 

several elements of the Pareto optimal set in a single 

run. Notice, however, that in this case, only local non-

dominance is used to fill up the archive of solutions, 

and a further filtering procedure is required to reduce 

the number of non-dominated solutions presented to 

the decision-maker. 

1. Select an initial (feasible) solution 𝑠0 

2. Select an initial temperature 𝑡0 > 0 

3. Select a cooling schedule 𝐶𝑆 

4. Repeat 

         Repeat 

              Randomly select 𝑠 ∈ 𝑁(𝑠0) // 𝑁 = neighborhood 

structure 

              𝛿 = 𝑓(𝑠) − 𝑓(𝑠0) // 𝑓 = objective function 

              If 𝛿 < 0 then  

                   𝑠0 ← 𝑠 
              Else 

                   Generate random 𝑥 // uniform distribution in the 

range (0,1) 

                   If 𝑥 < exp (−𝛿/𝑡) then 

                        𝑠0 ← 𝑠 

         Until 𝑚𝑎𝑥. 𝑛𝑢𝑚 of iterations 𝐼𝑇𝐸𝑅 reached 

         𝑡 ← 𝐶𝑆(𝑡) 

5. Until stopping condition is met   

Figure 2. Simulated annealing pseudo code [69]. 

4.4. NSGA-II        

NSGA-II is a generic non-explicit building-block 

multi-objective evolutionary algorithm (BB-MOEA) 

applied to multi-objective problems (MOPs) based on 
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the original design of NSGA. As shown in Figure 3, it 

builds a population of competing individuals, ranks 

and sorts each individual according to non-domination 

level, applies evolutionary operations (EVOPs) to 

create a new pool of offspring, and then combines the 

parents and offspring before partitioning the new 

combined pool into fronts. NSGA-II then conducts 

niching by adding a crowding distance to each 

member. It uses this crowding distance in its selection 

operator to keep a diverse front by making sure each 

member stays a crowding distance apart. This keeps 

the population diverse and helps the algorithm to 

explore the fitness landscape [70], [71]. This MOEA 

is currently used in most MOEA comparisons. It has 

also been used as a foundation for other algorithm 

designs. 

5. Numerical Experiments 

In order to evaluate the performance of the proposed 

model, numerical experiments are executed. Because 

most articles in the literature use data generated 

randomly in their experiments, making comparisons 

between researches difficult, the data set for model 

validation in this article are generated by using the 

benchmark instances presented in [51]. All 

calculations are performed in GAMS software version 

25.1.2 and on a PC with a 64-bit operating system, 4 

GB RAM, 2.20 GHz CPU, and Intel (R) Core (TM) 

i3-2330M. 

 
Figure 3. Flow diagram that shows how the NSGA-II 

works. Pt is the parents' population and Qt is the 

offspring population at generation t. F1 are the best 

solutions from the combined populations (parents and 

offspring). F2 are the second-best solutions and so on 

5.1. Validation        
To validate the proposed model, a set of 10 different 

vessels, 3 terminals, and 22 quay cranes are assumed. 

Each terminal can serve at least two containerships 

together and allocate a maximum of 4 to 6 and a 

minimum of 1 to 3 quay cranes per vessel. The total 

length of the wharf (𝐿) is 1200 meters, and the 

planning horizon is one week (168 hours). The 

idleness coefficient or the cost of one hour of idleness 

at the terminal (𝐼𝐶𝑘𝑖) is $200. The speed of vessels in 

terms of engine power and the amount of their cargo 

is calculated by uniform distribution between 8 and 28 

knots (unit of speed in knots equal to 6076.12 feet per 

hour) and also the earliest and latest arrival times of 

vessels, the requested departure time of vessels, the 

distance between vessels and terminals (in nautical 

miles, 1 nautical mile is equal to 1852 meters), the 

cost of tariffs for each terminal to serve each of the 

incoming vessels, and the average activity time of 

each engine of vessels are as follows (time parameters 

are in hours): 

𝐴𝐶𝑘𝑖 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [10,30] �̄�𝑘𝑖 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [51,240] 

𝑅𝑘𝑖 = 𝑎𝑘𝑖 + 𝑝𝑘𝑖 × 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [1,2] 𝑚𝑘𝑖 = 𝑎𝑘𝑖 ×
𝑠𝑝𝑖

2
 

𝑓𝑐𝑘𝑖 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [100,200] �̱�𝑘𝑖 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [0,50] 

The constant regression coefficients 𝑐0 and 𝑐1 for all 

vessels are 699 and 0.004238, respectively. The load 

ratio (𝐿𝐹) is 0.5, and the number of engines per vessel 

(𝐸𝑁𝑖) is 4 since most sea-going vessels have 4-stroke 

auxiliary engines. The fuel correction factors of CO2, 

NOx, and SOx are 1, 0.948, and 0.04, respectively. 

Other relevant parameters are presented in Tables 2-4. 

The AEC method has been coded in GAMS, a widely 

used modeling language [72]. To apply the AEC 

method, this study considers the first objective 

function (minimizing total operational cost 𝑓1) as the 

main goal and the second objective (minimizing fuel 

consumption 𝑓2) as the minor goal. Besides, it limits 

the third objective (minimizing environmental effects 

𝑓3) to different amounts of epsilon. The 

implementation results of the proposed model (VAT 

and CAT) are summarized in Figure 4 and Table 5. 

 
Figure 4. A feasible solution to the problem using the 

AEC method 

Since the BACAP is NP-hard in general, it could be 

solved to optimality only for small instances, and 

many metaheuristics were used for large-scale 

instances. For more information, refer to [73]. In this 

section, large-scale instances are solved using 

metaheuristic algorithms of MOSA and NSGA-II, 
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which are briefly explained below. All numerical 

experiments are formulated in MATLAB (ver. 

R2019b) environment using the computer system 

described above. 

As was previously mentioned, the scale and nature of 

the research model at large terminals often makes it 

impossible (NP-hard) for the decisions made to be 

optimal. The exact solution of the AEC method is 

used in GAMS software for small and medium-size 

instances. Figure 5 shows a comparison of the model 

solution presented in this article using the three 

solution methods presented (in small scales). As can 

be seen, metaheuristic algorithms (MOSA and NSGA-

II) have provided solutions close to the exact solution 

(AEC). Therefore, the outputs of these algorithms can 

be trusted to solve large BACAP problems with time 

budget and other limitations. 

5.2. Case Study        

Rajaee Port is located on the north shores of the 

Hormuz Strait and 23 kilometers west of Bandar 

Abbas, the capital of Hormozgan Province, in 

southern Iran. It is around 1500 kilometers (933 miles) 

southeast of Tehran, the capital of Iran. With 12 

wharves, Rajaee Port is Iran's biggest multipurpose 

port, so over half of Iran's commercial trading is 

carried out at Rajaee. The port complex also accounts 

for over 90% of all container throughput in Iran. The 

Rajaee Port Complex has seen a spectacular jump in 

private sector investment, which has been 

unprecedented in the last 20 years. The stated port is 

interacting with more than 80 other ports in the world 

and has the highest rate of cargo transit throughout 

Iran. A large volume of cargo being shipped towards 

Central Asia passes through this port. The 

development plan for the port is composed of three 

phases to add berths capable of berthing largest 

modern vessels. Detailed descriptions of the Rajaee 

container terminal and its different modes of operation 

are provided by [74] and [75]. The general schematic 

of Rajaee Port is depicted in Figure 6. 

5.3. Input Data 
This subsection presents the data format collected 

from Rajaee Port (Table 6) and compares the 

performance of each of the applied algorithms. 

Unemployment costs at all berths are fixed (200$ per 

hour). There is also a penalty of 300$ per hour of 

delay (suspension) at the berths for vessels with a 

tonnage of less than 1000 TEU and 400$ for other 

vessels. 𝑓𝑐𝑘𝑖 ($/hours) for problems (1) to (6), (7) to 

(12) and (13) to (20) using uniform distribution are 

equal to [100, 200), [200, 250) and [250, 400), 

respectively. Furthermore, the constant regression 

coefficient 𝑐0 are [477.4, 719.9], [580.7, 718.6] and 

[491.7, 709.2] and the constant regression coefficient 

𝑐1 are [0.0151, 0.0245], [0.003709, 0.004299] and 

[0.000864, 0.000972] for feeder, medium, and jumbo 

vessels, respectively. 

5.4. Parameter Tuning 

The performance and quality (best response, solution 

time, etc.) of any meta-heuristic algorithm for 

optimizing a problem is strongly influenced by its 

parameter configuration. This study uses the Taguchi 

method for the configuration parameters [76]. The 

following effective parameters were configured for 

the MOSA and NSGA-II, respectively: temperature 

(T), temperature reduction or damping rate (R), 

repository size or archive size (MaxA), population 

size (nPop), maximum number of iterations (MaxIt), 

maximum number of inner iterations, or number of the 

implementation of the neighborhood structure on each 

solution of the population (nMove), percentage of 

crossover (PC), percentage of mutation (PM), and 

mutation rate (MU). The final configurations of 

parameters for the two algorithms are summarized in 

Table 7. 

 

 

Table 2. Specifications of berths 

𝑼𝑻𝒌 

(hours) 

𝑳𝑻𝒌 

(hours) 

𝑫𝑬𝑴𝒌 

(TEU) 

𝑫𝑬𝑵𝒌 

(TEU) 

𝑫𝒌 
(meter) 

𝑳𝒌 

(meter) 
No. of 

berths 

168 12 1300 20 18 250 Berth 1 

168 24 950 20 14 450 Berth 2 

168 72 1150 20 24 850 Berth 3 

Table 3. Specifications of vessels 

𝑷𝒌𝒊 

(hours) 

𝒅𝒊 

(meter) 

𝒍𝒊 

(meter) 

𝑾𝒊 
($) 

𝑷𝑶𝒊 
(horsepower) 

𝑪𝑨𝑷𝒊 

(TEU) 
𝝁 Type 

No. of 

vessels 

16 11 40 4 60 60 3.5 Feeder Vessel 1 

19 23 80 1 400 140 4.5 Jumbo Vessel 2 

17 18 90 4 125 120 4 Medium Vessel 3 
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16 22 50 4 90 105 3.5 Feeder Vessel 4 

18 18 60 8 320 135 4.5 Jumbo Vessel 5 

13 10 100 2 200 105 4 Medium Vessel 6 

14 12 150 4 350 145 4.5 Jumbo Vessel 7 

20 13 75 1 230 95 4 Medium Vessel 8 

27 19 120 3 270 70 4.5 Jumbo Vessel 9 

20 13 75 1 230 95 4 Medium Vessel 10 

Table 4. Reference values of emission factors 

2CO XNO XSO Unit Emission factors 

 

3110 

 

87 

 

60 

𝑔

𝑘𝑔 − 𝑓𝑢𝑒𝑙
 Emissions while sailing (𝐸𝐹𝑖𝑛) 

683 13 12.3 
𝑔

𝑘𝑤 − ℎ
 

 

Emissions while mooring (𝐸𝐹𝑖𝑛
′ ) 

 

Table 5. The results of the AEC method with two strategies of VAT and CAT 

Fitness obj 3 Fitness obj 2 Fitness obj 1 Parameters Solver Type  

5.826427×108 158207.361 439284.410 VAT CPLEX MISOCP 1 

7.131858×109 2175022.739 561470.207 CAT CPLEX MIP 2 

 

 
Figure 5. Validation of research algorithms 
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Figure 6. A general schematic of the Rajaee Port 

Complex 

In general, the quality of the approximated sets has 

to be measured with a quantitative metric. There 

are several quantitative measurement approaches 

to compare different sets of Pareto solutions in the 

multi-objective literature. This article used four 

indices (performance criteria) proposed by [77] as 

follows: diversity or diversification matrix, the 

closeness between Pareto solution and ideal point 

(0,0) or mean ideal distance (MID), the spread of 

non-dominance solution (SNS), and the rate of 

achievement to three objectives simultaneously 

(RAS). The values obtained are shown in Table 8. 

According to the results in Table 8, the NSGA-II 

algorithm has given better results than the MOSA 

in both MID and RAS evaluation metrics, and the 

MOSA algorithm is better in terms of Diversity 

and SNS criteria. Also, they are equal in terms of 

examining the average of the algorithms, and each 

of the two indices is superior to the other 

algorithm. To validate this superiority, it is 

necessary to use analysis of variance (ANOVA), 

which is discussed below. Also, Minitab software 

was used to check the normality of the data (𝑃 −
𝑉𝐴𝐿𝑈𝐸 ≥ 0.01) (Figures 7 and 8). 

 

  

  

Figure 7. Graphical representation of the differences between the two algorithms (Diversity & MID)
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Figure 8. Graphical representation of the differences between the two algorithms (SNS & RAS) 

 

In addition to the above metrics, to further investigate the algorithms, the solution time metric can also be 

included to conclude which algorithm performs better. 

Table 6. Input data (mostly based on the data collected from Rajaee Port). 

𝑨𝑪𝒌𝒊 

 

(hours) 

𝑷𝒌𝒊 

 

(hours) 

𝑷𝑶𝒊 

 

(horsepower) 

𝒔𝒑𝒊 

 

(Knots) 

𝑪𝑨𝑷𝒊 

 

(TEU) 

𝒅𝒊
" 

 

(meter) 

𝒍𝒊 

 

(meter) 

Vessels 

* 

Berths N
o

 o
f 

ex
p

er
im

e
n

ts
 S

iz
e 

o
f 

ve
ss

el
s

 

[6,12) [6,30] [50,100) [10,24] [50,200) [5,8) [45,100) 10  ×2 (1) 

F
ee

d
er

 

[6,12) [6,30] [50,100) [10,24] [50,200) [5,8) [45,100) 10 × 3 (2) 

[6,12) [6,30] [50,100) [10,24] [50,200) [5,8) [45,100) 10 × 4 (3) 

[6,12) [6,30] [50,100) [10,24] [200,500) [5,8) [45,100) 15 × 3 (4) 

[6,12) [6,30] [50,100) [10,24] [200,500) [5,8) [45,100) 15 × 4 (5) 

[6,12) [6,30] [50,100) [10,24] [200,500) [5,8) [45,100) 15 × 5 (6) 

[12,20) [10,54] [100,250) [12,28] [500,800) [8,12) [100,170) 20 × 6 (7) 

M
e
d

iu
m

 

[12,20) [10,54] [100,250) [12,28] [500,800) [8,12) [100,170) 20 × 7 (8) 

[12,20) [10,54] [100,250) [12,28] [500,800) [8,12) [100,170) 25 × 7 (9) 

[12,20) [10,54] [100,250) [12,28] [500,800) [8,12) [100,170) 25 × 8 (10) 

[12,20) [10,54] [100,250) [12,28] [500,800) [8,12) [100,170) 30 × 8 (11) 

[12,20) [10,54] [100,250) [12,28] [500,800) [8,12) [100,170) 30 × 9 (12) 

[20,30) [20,38] [250,425) [14,30] [800,1000) [12,15) [170,230) 35 × 10 (13) 

J
u

m
b

o
 

[20,30) [20,38] [250,425) [14,30] [800,1000) [12,15) [170,230) 35 × 11 (14) 

[20,30) [20,38] [250,425) [14,30] [800,1000) [12,15) [170,230) 35 × 12 (15) 

[20,30) [20,38] [250,425) [14,30] [1000,1500) [12,15) [230,300) 40 × 10 (16) 

[20,30) [20,38] [250,425) [14,30] [1000,1500) [12,15) [230,300) 40 × 12 (17) 

[20,30) [20,38] [250,425) [14,30] [1000,1500) [12,15) [230,300) 40 × 13 (18) 

[30, ∞) [20,38] [250,425) [14,30] [1500, ∞) [12,15) [300, ∞) 45 × 14 (19) 

[30, ∞) [20,38] [250,425) [14,30] [1500, ∞) [12,15) [300, ∞) 50 × 15 (20) 
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Table 7. Tuned values of the parameters by the Taguchi method 

NSGA-II MOSA 

Values Parameters Values Parameters 
150 MaxIt 100 T 

60 nPop 0.99 R 

0.7 PC 50 MaxA 

0.25 PM 80 NPop 

0.02 MU 150 MaxIt 

-- -- 8 nMove 

 

Table 8. A comparison of evaluation metrics (Diversity, MID, SNS, and RAS) 

Criteria 

Problems 
RAS SNS MID Diversity 

NSGA-II 
2-10× 

MOSA 
2-10× 

NSGA-II 
1210× 

MOSA 
1210× 

NSGA-II 
1110× 

MOSA 
1110× 

NSGA-II 
1110× 

MOSA 
1110× 

0.429 0.721 2.98 2.95 25.8 24.1 60.1 60.1 1 

0.7456 1.7154 5.14 5.56 12.5 12.5 20.2 20.7 2 

0.685 1.9923 2.61 2.02 11.0 11.1 8.59 6.22 3 

0.3777 2.6113 3.49 1.10 50.6 53.6 9.51 3.54 4 

0.9543 3.1839 6.72 8.95 34.7 36.8 2.13 2.78 5 

2.1955 3.665 1.80 8.79 60.7 20.3 6.51 4.33 6 

1.6503 3.3867 8.83 1.00 20.5 20.8 4.35 3.50 7 

4.3481 7.8306 1.19 1.99 38.2 78.0 44.1 63.0 8 

9.8297 17.5578 2.49 4.90 34.3 17.3 9.46 1.60 9 

2.6933 8.2249 1.77 1.42 21.6 45.0 0.616 5.12 10 

5.5774 32.9588 7.89 2.76 1.67 81.3 0.250 1.02 11 

1.9675 8.0849 2.95 2.36 15.1 16.3 0.103 0.849 12 

4.5169 16.0245 1.38 2.96 8.19 1.60 4.54 8.94 13 

1.1907 3.9118 3.45 1.69 95.8 96.9 1.34 39.7 14 

2.7473 12.5912 5.05 1.14 6.45 43.1 1.68 355 15 

2.3323 15.5374 2.85 2.35 5.14 10.7 1.02 66.0 16 

2.4078 6.0602 6.90 4.13 16.1 17.3 3.17 135 17 

4.5965 6.7014 3.06 8.64 18.4 41.3 7.70 231 18 

1.919 5.814 6.60 3.78 4.93 12.7 2.86 136 19 

1.4732 10.5791 3.18 5.40 4.05 21.9 1.75 1.56 20 

2.6319 8.4576 4.02 3.69 24.3 33.1 9.5 57.3 Average 

 

 

 

According to Figure 9, it can be inferred that 

NSGA-II (average time solution = 15.3 min) 

performed better and achieved the optimal solution 

in less time than MOSA (average time 

solution=18.8 min). 
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Figure 9. The solution time of each of the algorithms 

5.5. Sensitivity Analysis        
In this subsection, the parameters affecting the 

proposed mathematical model are changed to allow 

observing and examining the behavior of each in 

changing the output results. For this purpose, the 

critical parameters that are selected for sensitivity 

analysis (in which all other parameters, except for 

the parameter under consideration, are considered 

constant) are the speed of each containership, the 

type of port arrival time parameter, the cost of each 

time period waiting for mooring after entering the 

harbor, and the number of quay cranes. 

5.5.1. The Effect of Speed on Fuel Consumption      
As can be deduced from Figure 10, the optimum 

speed of movement for container vessels 

considered in this study is approximately 16 knots. 

Therefore, vessels with a current speed of more 

than 16 knots (less than 16 knots) must reduce 

(increase) their speed to save fuel. 

 
Figure 10. The relationship between fuel 

consumption and speed 

5.5.2. Comparison Between VAT and CAT 

Strategies        

This subsection evaluates the effects (performance) 

of the VAT and CAT strategies on the presented 

model. The focus is first placed on investigating 

the economic benefits for fuel consumption and the 

environmental benefits for vessel emissions. Then, 

some experiments are conducted on the number of 

QCs to further assess the berth utilization. 

5.5.2.1. Operational Costs and Fuel 

Consumption    

According to Table 9, as the number of container 

vessels increases over the planning horizon (one 

week), it is obvious that the port operating cost and 

the fuel consumption of the vessels will also 

increase. It can also be inferred from Table 9 that 

the values of operating costs and fuel consumption 

(kgallons) in the VAT mode have significantly 

decreased compared to the CAT mode. So, the 

VAT strategy has provided a better output in terms 

of reduction in the first and second objective 

functions. In addition, these analytical results show 

that there is comprehensive cooperation between 

port operators and shipping companies by setting 

the arrival time of vessels as a critical decision 

variable. In other words, port operators can suggest 

the arrival time of a vessel to the relevant shipping 

company. Having ample opportunity to improve 

the productivity of berths and quay cranes, and 

conversely, to adjust the speed of their vessels 

(sailing) by shipping companies according to the 

arrival time announced by port operators will lead 

to more currency and fuel savings. 

5.5.2.2. GHG Emissions of Vessels During 

Sailing and Mooring        

As shown in Table 10, the VAT strategy results in 

a more dramatic reduction in GHG emissions 

during sailing and mooring than the CAT strategy, 

so the environment of ports will be healthier in this 

mode. 

5.5.2.3. Relationships of Operational Costs, Fuel 

Consumption, and the Number of Quay Cranes 

A negative correlation exists between port 

operating costs and fuel consumption. In other 

words, as 𝑓1 increases, 𝑓2 decreases, and vice 

versa. Hence, the two parties involved (the port 

operator and the shipping company) seek to reach a 

balance point to reduce their costs through 

comprehensive cooperation. The number of quay 

cranes mainly affects the loading and unloading 

time, the departure time of a vessel, and berth 

utilization. Table 11 shows the impact of the 

number of quay cranes on port operational cost and 

fuel consumption when the number of incoming 

0
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vessels in the planning horizon is 15. As shown in 

Table 11, the optimal number of cranes to service 

15 containerships during the one-week planning 

horizon (considered in this study) is 22. If this 

number is less than 22, some vessels will not be 

serviced by the cranes available in a short time 

(increasing waiting time for mooring and 

increasing operating costs). Moreover, numerical 

experiments show that the port operational cost 

increase returned by solving CAT is greater than 

that of VAT when the number of available QCs 

decreases. These analytical results indicate that 

cooperation between port operators and shipping 

companies is beneficial. A vessel's arrival time is 

regarded as a decision variable to provide a 

concrete method for cooperation between port 

operators and shipping companies. Port operators 

can suggest the arrival time for a vessel to its 

shipping company to maximize berth and quay-

crane utilization. Conversely, a shipping company 

can adjust the vessel's sailing speed according to 

the suggested arrival time. 

5.5.3. Time Window Sensitivity Analysis        

To investigate the effect of sailing time on the 

speed optimization results, the fuel consumption 

and the operational costs of vessels with the 

increase or decrease in speed are calculated under 

different time windows. Figures 11-13 show the 

fuel consumption, the vessel operating costs, and 

the emissions under the influence of the time 

window, respectively. As is shown in Figures 11-

13, the fuel consumption, operating costs, and 

emissions gradually decrease with an increase in 

the time window. In the case of deceleration, the 

fuel consumption decreased from 12.7409×107 

kgallons at 96 h to 6.3200×107 kgallons at 480 h. 

Increasing the time by 384 h resulted in a fuel 

consumption approximate reduction of 200% and a 

reduction in vessel operating cost by 431,450 

$/hour. 
 

 
Figure 11. The effect of the time window on the main 

engine fuel consumption 

As the time window increases, the differences in 

all three parameters of fuel consumption, operating 

costs, and emissions between the two cases 

(acceleration and deceleration) gradually decrease. 

The difference in fuel consumption decreased from 

1.8092×107 kgallons at 96 h to 0.4630×107 

kgallons at 480 h, the operating cost decreased 

from 1.2281×105 $/hour to 0.5056 $/hour and the 

emissions decreased from 0.6918×107 g to 

0.2112×107 g. If the time window continues to 

increase, the difference in fuel consumption, the 

difference in operating costs, and the difference in 

emissions between the two cases will gradually 

disappear because the sailing speed of the two 

cases gradually becomes equal. Accordingly, the 

sailing speed optimization delicately varies with 

the time window, so speed can potentially be 

reduced and vessel energy efficiency can be 

enhanced with a larger time window constraint. 

 

Table 9. A comparison of operating costs and fuel consumption according to the type of vessels' arrival time 

Numerical difference CAT VAT 

No of vessels 𝒇𝟐
′ − 𝒇𝟐 

710× 

𝒇𝟏
′ − 𝒇𝟏 

510× 

𝒇𝟐
′  

710× 

𝒇𝟏
′  

510× 

𝒇𝟐 
710× 

𝒇𝟏 
510× 

0.2880 2.8312 3.2437 4.5674 2.9557 1.7362 10 

0.4050 0.4518 4.9450 3.2407 4.5400 2.7889 15 

0.4661 2.5739 7.1400 5.9714 6.6739 3.3975 20 

0.5755 2.2321 8.8702 7.8643 8.2947 5.6322 25 

0.7830 3.1238 10.1200 10.5689 9.3370 7.4451 30 

1.0278 3.3872 12.2090 12.4800 11.1812 9.0928 35 

0.8589 3.2950 14.5560 15.1209 13.6971 11.8259 40 

0.6622 5.3937 15.7035 18.4108 15.0413 13.0171 45 
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0.8995 4.0716 18.1030 19.3210 17.2035 15.2494 50 

 

Table 10. A comparison of GHG emissions between the VAT and CAT strategies 

Numerical 

difference 
CAT VAT 

 

N
o

 o
f 

ve
ss

el
s

 

 

𝒇𝟑
′ − 𝒇𝟑 

Average 

emission 

reduction 

for a 

vessel 

(g) 

Total 

waiting 

time for 

berthing 

(hours) 

𝒇𝟑
′  

 

sailing 

+ 

Mooring 

Average 

emission 

reduction 

for a 

vessel 

(g) 
 

Total 

waiting 

time for 

berthing 

(hours) 

𝒇𝟑 

 

sailing 

+ 

Mooring 

410×0.0671 116.4 0 410×0.1164 49.3 0 410×0.0493 10 
510×0.2910 6453 5 510×0.9680 4513 3 510×0.6770 15 
610×2.5351 256895 14 610×5.1379 130140 0 610×2.6028 20 
710×1.0074 1117080 22 710×2.7927 714120 1 710×1.7853 25 
810×6.69809 23103000 24 910×0.6931 776366 8 710×2.3291 30 

810×8.7347 29314285 44 1010×0.1026 4358000 4 810×1.5253 35 
910×9.2139 237575000 56 1010×0.9503 7227500 9 810×2.8910 40 
1010×2.49976 598666000 72 1110×0.2694 43164000 1 910×1.9424 45 
1010×3.26756 699200000 86 1110×0.3496 45688000 4 910×2.2844 50 

Table 11. Impact of number of QCs on f1 and f2 

Numerical difference CAT VAT 

N
o

 o
f 

cr
a

n
es

 

𝒇𝟐
′ − 𝒇𝟐 

710× 

𝒇𝟏
′ − 𝒇𝟏 

510× 

𝒇𝟐
′  

710× 

𝒇𝟏
′  

510× 

𝒇𝟐 
710× 

𝒇𝟏 
510× 

-2.2050 1.8340 4.9450 7.2200 7.1500 5.3860 10 

-1.8370 1.4636 4.9450 6.4670 6.7820 5.0034 12 

-1.4660 0.8264 4.9450 5.6534 6.4110 4.8270 14 

-1.0090 0.6388 4.9450 4.9900 5.9540 4.3512 16 

-0.2680 0.6288 4.9450 4.4200 5.2130 3.7912 18 

0.2320 0.5660 4.9450 4.0100 4.7130 3.4440 20 

0.4050 0.4518 4.9450 3.2407 4.5400 2.7889 22 

0.4050 0.4518 4.9450 3.2407 4.5400 2.7889 24 

0.4050 0.4518 4.9450 3.2407 4.5400 2.7889 26 

0.4050 0.4518 4.9450 3.2407 4.5400 2.7889 28 

0.4050 0.4518 4.9450 3.2407 4.5400 2.7889 30 

 

 

Figure 12. The effect of the time window on the 

ship's operational costs 
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Figure 13. The effect of the time window on the 

emissions 

6. Conclusion 

Maritime transportation plays a crucial role in 

international trade and has experienced significant 

growth in recent years. Although near-port 

communities profit from this development, there 

are serious concerns regarding GHG emissions, 

which affect human health and climate change. In 

this article, the berth allocation problem and the 

quay crane assignment problem were 

simultaneously formulated into an integrated 

mathematical model by considering GHG 

emissions. The mathematical model was 

implemented in GAMS, which could only solve 

small-sized problems due to the high complexity of 

the mathematical model. An NSGA-II and a 

MOSA algorithm were proposed to solve large-

size real-world problems. The effectiveness of the 

evolutionary algorithms was tested at Rajaee Port 

as a real case. The results demonstrated the 

effectiveness of the developed mathematical model 

and the proposed algorithms in finding a near-

optimal solution within a reasonable time. 

The study focused on GHGs of vessels as the main 

source of emission. There are other sources too, 

e.g. quay cranes, yard cranes, and yard trucks that 

could be considered sources of emission. 

Therefore, an integrated mathematical model can 

be developed in future studies by considering the 

GHG emissions of vessels, quay cranes, yard 

cranes, and yard trucks. In addition, it will be 

interesting to introduce stochastic factors to 

improve the robustness of the solutions when faced 

with uncertainty and unexpected contingencies, 

such as crane breakdowns or adverse weather 

conditions. 
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