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Over the past two decades, maritime transportation and container traffic
worldwide has experienced rapid and continuous growth. With the increase in
maritime transportation volume, the issue of greenhouse gas (GHG) emission
has become one of the new concerns for port managers. Port managers and
government agencies for sustainable development of maritime transportation
considered "green ports" to balance between environmental impacts and
economic interests. Therefore, this study aims to integrate the Berth
Allocation and Quay Crane Assignment Problem (BACAP) with speed
optimization and vessels emission considerations. Rajaee port, the most
important port in Iran, was selected as the case study. A mathematical model
is developed based on the main characteristics of this port and is solved by
GAMS IDE/CPLEX software. Given the NP-hard complexity of the BACAP,
exact solution approaches need huge time, even for small and medium
problems. Hence, an adapted Non-Dominated Sorting Genetic Algorithm-II
(NSGA-II) and a Multi-Objective Simulated Annealing (MOSA) algorithm
are adopted to deal with the complexity of the proposed model. Sensitivity
analysis is used to assess the applicability of the proposed model and evaluate
the efficiency of the solution algorithms.
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problems, which began to be analyzed by
management science. Maritime trade continues to
grow in the twenty-first century, and the operations

1. Introduction
Historically, humans have always strived to make
good decisions and plan future actions to achieve the

best results. This is an individual effort and a social
endeavor [1]. During the first half of the twentieth
century, commerce between regions in different
continents  experienced an upsurge with the
development of diesel-driven cargo vessels, which
increased maritime trade by improving freight
transport efficiency. Moreover, the standardization of
containers led to the construction of specialized
vessels and ad hoc facilities at ports. Consequently,
these infrastructures posed new operational planning

research (OR) community is increasingly interested in
the mathematical analysis and formulation of the
problems that container terminals encounter [2], [3].
Many of these problems consider the optimization of
planning decisions so that scarce resources can be
used efficiently. Thus, researchers attempt to tackle
these problems by developing models and
computational methods.

Nowadays, maritime transportation is the most widely
used, the safest, and the cheapest mode of
international freight transportation, which handles
over 90% of world trade by volume for developing
countries [4]. With the increasing demand for
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maritime trade, container shipping has become the
core of modern logistics, and container terminals have
become key nodes of international trading. One of the
most important problems at the quayside of container
terminals is the efficient allocation of quay space to
the vessels berthing at the terminal over time, also
known as the berth allocation problem (BAP). When
ships berth at a quay, the quay cranes must be so
assigned that vessel handling times are minimized.
This leads to the quay crane assignment problem
(QCAP). The BAP and QCAP are hard to be solved,
even for medium and small-sized problems [5].
Therefore, artificial intelligence methods are
employed to attain good solutions in reasonable
computational times. In particular, this article
addresses the integrated berth allocation and quay
crane assignment problem (BACAP). This problem
considers the assignment of berthing time and position
(and QCs) to each vessel that is scheduled to arrive at
anchorage at a certain time. Minimization of service
time of vessels is the objective of the developed
model. In formulating this problem, new and existing
constraints arising in real-world cases, which give rise
to interesting new variants, are taken into
consideration.

With the rapid growth of the global economy,
maritime transportation has become the most
important mode of international trade. Meanwhile,
emissions from maritime transportation have
increased significantly. Some studies indicate that
shipping emissions  have increased ambient
concentrations of air pollutants over vast areas of land
and sea, and they are responsible for increases in
premature deaths related to cardiopulmonary diseases
and lung cancer in these areas [6]. This is related to
the fact that ships operate much closer to where
people live and work more than previously
recognized. Typically, about 70% of emissions from
international shipping occur within 400 km of the
coastline [7]. One of the major environmental effects
of seaports is air pollution that ways of tackling this
issue and reducing greenhouse gas (GHG) emissions
of ships, heavy trucks, inland transportation
equipment, etc., are among the issues that many
seaports are considering. On the other hand, port
managers usually cannot focus solely on
environmental issues, and often, constructive
interaction between economic and environmental
goals has to be considered, which will lead to a multi-
objective decision making (MODM) problem. From
the perspective of planning and optimization, the
environmental sustainability of operations at ports
requires appropriate models and approaches to
consider and evaluate the environmental impacts of
decision-making through various criteria. In
particular, this research presents a multi-objective
mathematical model and implements the augmented

epsilon constraint (AEC), multi-objective simulated
annealing (MOSA), and non-dominated sorting
genetic algorithm-11 (NSGA-II) methods to achieve
Pareto solutions for the BACAP with speed
optimization and air emission considerations.
Compared to pioneering studies, this study contributes
to literature in the following ways. First, the fuel
consumption and emissions of vessels are considered
in an integral model of BACAP. Therefore, a multi-
objective model is constructed for a tradeoff analysis
between costs and environmental issues. Second,
because the handling time of vessels at port markedly
impact sailing times and speeds, the effects of quay-
crane assignment are incorporated into the proposed
model. This inclusion increases the flexibility when
adjusting the schedules of vessels. Third, to the best of
our knowledge, emissions from vessels during
mooring periods are first quantified in literature for
BAPs. Thus, emissions from vessels are examined for
while moored and sailing. Fourth, arrival times of
vessels at ports are formulated as decision variables,
such that sailing speeds and quay-crane utilization can
be balanced by adjusting the berthing times of vessels.
To optimize utilization of port resources and reduce a
vessel’s fuel consumption and emissions, this work
attempts to optimize operational schedule at ports and
vessels’ shipping schedule. Moreover, service quality
provided by port operators to vessels must not be
reduced. This study applies a novel strategy for the
hybrid berth and quay-crane allocation problem
(BACAP), in which arrival times of vessels are
formulated as decision variables of a nonlinear multi-
objective mixed-integer programming model. The
nonlinear objective is transformed into a second-order
cone programming (SOCP) model. Further, vessel
emissions while moored are calculated based on two
parameters: wait time and emission factors. Finally,
resource utilization at a port, impact of the number of
quay cranes on port operational cost, and a vessel’s
fuel consumption and emissions are analyzed.

The rest of the paper is organized as follows. Section
2 provides a concise literature review on previous
studies related to BACAP. Section 3 defines the
problem and special assumptions of the BACAP.
Besides, a multi-objective mathematical model and
the relationships between fuel consumption and GHG
emissions are presented in this section. The applied
solution methods are investigated in Section 4.
Section 5 demonstrates and analyzes numerical
experiments using real data of Rajaee Port. Finally,
Section 7 concludes the research and presents
recommendations for future studies.

2. Literature Review

As noted, Maritime logistics as the primary type of
transportation has become the heart of worldwide
trade. The industrialization of the world has increased
the  importance of sea  transport.  The
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standard of living has been improved by sea
transportation of all kinds of products to people.
Nowadays, the maritime industry has gained more
importance than ever because the
livelihoods of many people depend on it [8]. The main
resource in seaports is the quay space (berths), which
must be used efficiently by the port operators to
provide a high-quality service to calling vessels. In
container terminals, QCs also have to be assigned
efficiently to moored vessels as they determine
vessels' handling time and thus affect their schedules.
Various versions of the BAP can be found in the
literature depending upon the assumptions made on
the spatial attribute, temporal attribute, handling time
attribute, and performance measure. In particular, the
alternatives for each attribute are as follows:

e Spatial attribute. This concerns the
characteristics of the quay layout, which can
be:

e Discrete (Disc). The quay is divided into
several sections, called berths. In each berth,
only a single vessel can be processed at a
time. This partitioning may result from the
actual layout of the quay or organizational
criteria.

e Continuous (Cont). The quay is treated as a
continuous segment along which vessels can
be moored. The planning, in this case, is more
complex than in the discrete case, but it
allows better utilization of the space.

o Hybrid (Hyb). This is a discrete layout in
which each berth may admit more than one
vessel or vessels may occupy more than one
berth under certain conditions. Here, there is
also a special case of indented berths, in
which two berths are opposite to each other.

e Temporal attribute. This attribute concerns
restrictions on berthing and departure times,

which can be:

e Static (Stat). No arrival times are given for the
vessels or there are soft constraints. In the
first case, it is considered that vessels are
already waiting at the port, so they can berth
at any time. In the second case, a vessel can
berth before its expected arrival time at the
expense of the cost of speeding up its arrival
at the terminal.

e Dynamic (Dyn). A fixed arrival time is given
for each vessel, so it cannot be moored before
that time.

e Stochastic (Stoc). Arrival times are obtained
from random distributions or may correspond
to random scenarios.

e Cyclic (Cyc). Vessels call at the terminal
periodically in fixed time intervals.

e Handling time attribute. The handling times
of vessels can be:

e Fixed. They are given in advance as input to
the problem and cannot be changed. For each
vessel, the handling time may derive from a
prior estimate made by both the terminal and
the vessel operators.

e Position-dependent. The handling time of a
vessel depends upon its berthing position.

e QCAP-dependent. They are obtained by
solving the QCAP jointly with the BAP.
Thus, the handling time of a vessel depends
on how many cranes have been assigned to it.

e QCSP-dependent. They are obtained by
solving the quay crane scheduling problem
(QCSP) jointly with the BAP. Thus, the
handling time of a vessel depends on the work
schedules of the assigned cranes.

e Stochastic. They are determined from random
distributions.

e Performance measure. This concerns the
factors taken into account in the objective
function that is to be optimized. In most cases,
the objective is to minimize a function
comprising, for each vessel, such elements as
waiting time before berthing, handling time,
completion time, delay, speed-up cost,
deviation from the desired position on the
quay, or usage of equipment and manpower.
Different weights are commonly used to set
priorities between the elements considered and
the vessels. In general, the time spent by each
vessel at the terminal is usually considered in
one way or another since it is a crucial factor
in terminal competitiveness.

Many studies in the past have focused on the BAP and
QCAP, among which optimization models have been
widely used to analyze and plan the operations and
events of container terminals. For a detailed review of
research on the BAP and QCAP, see [9], [10], [11],
and [12]. A brief classification of the previous berth
allocation optimization models is presented in Table
1. With respect to the objective function, waiting and
handling times are taken into account in most studies,
and penalties related to delays and deviations from
preferred positions are also common. Around 75% of
the solution methods proposed are metaheuristics,
whereas the remaining are exact approaches, based
generally on integer linear models implemented on
solvers. Exact methods are able to solve instances
with a few vessels to optimality, while metaheuristics
usually obtain good solutions in both small and large
instances in very short computation times. These
studies did not consider the impact of quay-crane
allocation on fuel consumption and emissions.
Moreover, emissions while moored are not considered
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in current formulations. To overcome these
limitations, this work formulates a novel BACAP
model that considers fuel consumption and emissions
by vessels, and analyzes the impact of number of
allocated quay cranes on port operational cost, and
fuel consumption and emissions by wvessels. In
addition to integration of the BAP and the QCAP,
using both exact and metaheuristic solution methods
and considering  environmental issues  (fuel
consumption and emissions) in the objective function
of the presented model, as well as new realworld
aspects (including time window service deadlines),
are among the distinguishing features of this paper
compared to previous studies.

In the standard BAP, handling times are usually
assumed to be fixed and known in advance. However,
in the seaside of container terminals, QCs are also a
scarce resource that may affect the service time of
vessels. The number of cranes simultaneously serving
a vessel is often restricted between a minimum and a
maximum number, for either technical or contractual
reasons, and several vessels may be concurrently
handled at the quay, so an efficient assignment of the
cranes is also required to reduce the delays and the
costs incurred by the terminal. Given that the handling
time of a vessel depends on how many QCs have been
assigned to it, and the handling time is taken into
account in the BAP to berth ships, reaearchers are
developing models by simultaneously considering
these two problems. In the combined BACAP, in
addition to time and berthing position, some cranes
have to be assigned to each vessel. Moreover, two
versions of the BACARP, i.e., a time-invariant version

and a variable-in-time version, have been considered
in the literature. In the time-invariant version, the
number of cranes assigned to each vessel is fixed
throughout its handling, while in the variable-in-time
version, this number may change in each period. At
any rate, the present study addresses the time-
invariant BACAP. For more information, interested
readers can see [13], [14], [15], [16] and [5].

3. Problem Definition and Formulation
Managers in many container terminals attempt to
reduce costs by efficiently utilizing resources,
including human resources, berths, container yards,
container cranes, and various yard equipment [17].
Among all resources, berths are the most important
resource  whose good schedules will improve
customers' satisfaction and increase port throughput,
leading to higher revenues of the port. Port managers
usually schedule the usage of berths by an intuitive
trial-and-error method supported by a schedule board
or a graphic user interface in a computer system [9].
This article attempts to satisfy various constraints for
berthing container vessels by using a mixed-integer
second-order conic programming (MISOCP) model.
The BACARP is the optimization problem of assigning
berth position, cranes, and berthing time to calling
vessels and minimizing the total assignment cost. As
well, in the BAP, vessels are called to the available
terminals over time and terminal planners assign a
berthing position along the pier and a berthing time on
the planning horizon for each vessel. The main reason
is that the vessels can leave as soon as possible and
the next vessels can be deployed to the dock.

Table 1. Summary of related articles

Articles Type of Type of Objective (s) Solution Approach (s) Caseosr,tudy
Problem Formulation (Minimization) (Algorithms) Real Data
The weighted summation of Lagrangean relaxation
handling cost of containers, the grang .
Integer . . and the subgradient
[18] BQCSP Programmin penalty cost incurred by berthing optimization procedure -
Cont, Stat g 9 earlier or later than the expected P 1on p -
(IP) . . the dynamic programming
time of arrival, and the penalty cost .
. technique
of departure time
19 BCAP Disc, MIP Total service time (including wait ~ GA and maximum flow _
[19] Dyn and handling times) problem-based algorithm
BCSP The sum of the handling time, the
[20] Disc. Stat MIP waiting time, and the delay time for GA -
' every vessel
BSP The total service time,the delayed
[21] Disc, Dyn MIP departures, the total emissions, and GA =

the fuel consumption.
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BACAP MILP The housekeeping costs generated 4
[22] Disc. Dvn & by transshipment flows between CPLEX, Tabu search Port of Gioia
it MIQP vessels Tauro, Italy
. . Hybrid simulation-
BAP Operational expendltureg, fuel cost, optimization approach, v
[23] n MIP demurrage and cancellation -
Disc, Dyn . . . C++ programming
penalties, dispatch credits |
anguage
The total handling time of vessels,
the deviation from the preferred . -
[24] BACAP MILP berthing location, the change in the Rolling horizon 4
Cont . framework
number of cranes assigned to a
vessel during its service
[25] BH?E MIP Earliness/ Tardiness Meta heuristics, VNS -
BAP Minimizing the weighted sum of _
[26] Disc MIP turnaround times of vessels CPLEX
. . MA
[27] Bg%?P MIP ;rr?g et;z?e-?sfzvli)r?tween time-saving (integrated simulation and =
9y 9 optimization method)
BAP, QCAP Total handling cost and average
[28] Cont, Dyn MIP handling time per vessel GAMS, CPLEX B
BAP Constraint Hybrid CP/IP (integer
[29] Disc. Dvn Programming  Makespan, departure delay programming) -
DY (CP) algorithmic procedures
[30] MIP The weighted turnaround times Rolling horizon & -
g structural decomposition
[31] . The waiting time of vessels and the Column generation .
DIEBE CHi il delay of vessels' departure solution approach
The overall costs (including
[32] Cont MIP speeding, tardiness cost, and costs ALNS algorithm -
related to the QCs)
BAP, QCSP . L RHH & branch and cut _
[33] Cont MIP The service completion time approach
BACAP Reactive,
[34] Disc MIP The recovery cost RHOA -
CPLEX, GAMS
[35] MINLP Time, Cost, Demand (novel collaborative --
agreement)
BAP . Metaheuristic algorithms
[36] Disc, Dyn MIP Cost, Time & competitive heuristic -
BAP, QCSP q SA based simulation
[37] Hyb, Dyn MIP, MINLP  Makespan of handling all vessels optimization --
Optimize sailing routes and speeds  Combining the two-stage
within and outside the emission iterative algorithm and
38 control  areas s) while fuzzy logic method base -
MIP | ECA hile  fi logi hod based
minimizing the total fuel cost and  on the epsilon-constraint
SOz emissions method
BAP The total cost of speed, delay, the
[39] Disc MIP penalty of vessels, and operational Iterative heuristic =
cost
[40] MINLP Fuel, Emissions Meta-heuristic algorithms -
Genetic algorithm and a Y
41 BAP MIP Total service time and  quay dvnamic gro rammin Port
[41] Dyn occupation y mp thg d g Administration of
etho Paranagua and
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Antonina
(APPA),
Brazilian coast

Robust optimization,
exact solution approach

Bézggd The deviations from target berthing  based on the EC method,
[42] MIP locations and times as well as SA and MOSA based -
(BQCSP), 2
departure delays of all vessels. metaheuristics and a
Stoc ;
pareto simulated
annealing (PSA) approach
The worst-case of the expected sum
of delays with respect to a set of Exact decomposition _
[43] EARR e MIP possible probability distributions of algorithm
the handling times
Berth
assignment . .
Aims to assign proper number of .
[44] and MILP, MINLP  berths for serving vessels of various CPLEX, Genetic --
allocation . algorithm
liner clusters
problem
(BAAP)
Fully fuzzy
multi-objective  The total waiting time of vessels  Lexicographic methods,
[45] BAP, Stoc linear and the makespan of the wharf  Fuzzy epsilon-constraint -
programming  operation method
(FFMOLP)
Integer The baseline schedule cost in the
[46] BAP Pro rar%min deterministic  situation and the Multi-stage heuristic B
g(|p) g recovery cost in the disruption algorithm, CPLEX solver
scenarios
N BACAP MILP, Port's operational costs, Vessel's 4
1its e Hyb, Dyn MISOCP fuel consumption, GHG emissions (EE, IORTAY, @A Rajaee port, Iran

The traditional aim of the BAP is to serve all vessels
so that their handling times are minimized as much as
possible and berthing constraints are satisfied too. In
fact, in the BAP, planning of how to use the berth by
arriving vessels at a specified time is decided. At
different ports, the operators of each terminal are
faced with this problem and according to the above
definition, the terminal operator must determine the
time and location of each vessel's berthing under the
existing physical and time constraints [47]. This
article aims to minimize operating costs at terminals
and for shipping companies. On the other hand, the
reduction of total fuel consumption and consequently,
the reduction of the emissions at the port, which is
produced by vessels, has also been considered in this
formulation. Based on the scheme provided by [48],
this problem can be classified as Hyb/Dyn/BAP +
QCAP /Y Operational Costs (wait.tard and tariff ) +
Fuel Consumption + Emissions.

In the problem addressed here, the pier has been
considered a set of quay sections, each one admitting

a limited number of vessels under special conditions
(hybrid variant), and the number of quay cranes that
serve a vessel is not changed after they are once
assigned to the wvessel during its handling.
Furthermore, the maximum and the minimum number
of cranes that it can admit and an estimate of its
handling time for each number of cranes are known in
advance. Vessels can be moored along the quay within
a given time horizon, while QCs can move along the
quay to serve the vessels provided that they do not
cross each other. A berth plan can be rendered as a
space-time diagram in which the vertical axis
represents the position along the wharf and the
horizontal one represents the time axis. Also, each
vessel is shown with a rectangle. The handling
(loading or unloading) time of the corresponding
vessel is displayed with the length of a rectangle
whereas the vessel length is represented by the height
of a rectangle, as in the case of the BAP, now
considering the number of cranes assigned to each
vessel, too (Figure 1). The number of cranes for v; =
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3, v, =2, v3 =2,and v, = 3. As shown in Figure 1,
each vessel has an optimal coordinate point for the
mooring. The y-axis and the x-axis of the lower-left
corner of a rectangle represent the berthing position
and time of the corresponding vessel, respectively.
The main purpose is to determine this place and time
so that the existing conditions and restrictions are not
violated.
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Figure 1. An example of a space-time diagram for the
BACAP solution with 4 vessels and a quay 400m long

3.1. Assumptions

In general, the expected arrival time of a vessel is
earlier than its berthing time. When a vessel is at the
port, its auxiliary machinery will still operate, which
will increase the fuel consumption of the vessel at the
port. Generally, vessels' arrival times are optimized to
achieve two objectives: (a) minimizing total fuel
consumption and emissions hourly produced by all
vessels during sailing and mooring periods, and (b)
minimizing delayed departures of vessels. The main
assumptions of this study are the following:

- Time:

e The planning horizon whose time unit is one
hour is divided into multiple equal time
segments.

e Containerships are to be moored within the
planning horizon.

e Time windows can be of two types including
an entering and a leaving window. At the
entering windows, vessels can only pass
through the channel one-way from the outer
sea (or anchorage) to the inner terminals and
one-way from the inner terminals to the outer
sea during leaving windows. In other words,
vessels are only allowed to arrive at the berth
during entering windows and leave the berth
during leaving windows.

e The minimum length of a time window is
larger than the maximum time taken for a
vessel to pass through the channel.

- Quay:
e Each position on the quay can accommodate
one vessel at a time.
e There are some physical or technical
restrictions such as container vessel and berth
length, container ship draft, and water depth.

- Vessels:

e When a vessel is moored, the berthing position
is kept unchanged in its entire handling
process.

e Once the handling of a vessel has started, it
cannot be interrupted (to avoid additional
Ccosts).

e The handling time of each vessel is considered
to be independent of its berthing position. This
assumption is reasonable if the quay has
enough machinery and workers for container
transportation between the yard and the quay at
any moment. Hence, the cranes serving each
vessel do not need to wait for vehicles. The
increased transportation cost produced if the
position of the vessel deviates from its desired
position is included in the objective function.

e The handling time of each vessel is a function
of cranes assigned to it. No specific relation is
assumed between them, so it can be either
linear or non-linear.

e The time for docking and undocking
maneuvers is considered to be included in the
vessel handling time.

e Vessels may have different relative
importance. Therefore, cost coefficients are
specific to each wvessel. It means vessel
priorities may be reflected by setting
coefficients in the objective function for the
waiting and delay costs.

e The inter-ship clearance is included in the
vessel length. In general, for vessels longer
than 130m, this clearance corresponds to 10%
of its length. For small vessels, the minimum
clearance is 10m.

- Cranes:

e The total number of QCs available at the quay
(container terminal) is fixed, and all the cranes
have the same characteristics.

e All QCs can move along the whole length of
the quay, but they cannot cross each other.

e Each quay crane can be assigned to one vessel
at most, in each time period.
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e The number of quay cranes that have been
assigned to a vessel does not change during its
berthing time.

e The number of cranes that can be assigned to a
vessel has a certain minimum and maximum.

e The emissions and working energy
consumption of each QC per move have been
ignored. In other words, the impact of quay
crane allocation on fuel consumption and
emissions is not considered in this article.

3.2. Relationship between Fuel Consumption and
Sailing Speed

There is a nonlinear relationship between vessel speed
(sailing speed) and fuel consumption [49]. Since there
is a direct relationship between fuel emissions and
fuel burnt, it is relevant to optimize sailing speed from
the carrier and environmental perspective. The
International Maritime Organization (IMO) has had a
lot of considerations on measures of speed
optimization, speed reduction, or slow steaming in
recent years [50]. So, the aspects and effects of
different measures have been subject of several
studies. When designing a berth plan, the terminal
planner considers the fuel consumption of vessels
sailing to the ports during the berth planning period
(e.g., a week). It is assumed that the berth planning
time starts at time zero, and the distance from vessel i
to terminal k is m,,; . The fuel consumption of vessel
i, therefore, can be calculated by Equation (1) [51]:

Fig = ¢ X ay; + ¢} x mbi x a, 71 1)
where c?, ¢} > 0 are the regression coefficients and
w; € [52]. It is assumed that p; = 3.5 for feeder
containerships (Vg), u; =4 for medium-sized
containerships  (Vy;), and u; =4.5 for jumbo
containerships  (V;) in this article. Meanwhile,
Equation 1 is non-linear (a,la._“i), which significantly
challenges the branchandbound solvers during
computation. The compromise methods such as linear
regression provided by [53] and speed discretization
by [23] and [54] may result in calculation
inaccuracy. Not avoiding this nonlinearity, it will
be demonstrated that F,; can be equivalently
transformed to a linear objective subject to some
second-order cone programming (SOCP) constraints,
which makes it easy to solve the model to optimality
in a reasonable time [55].

This work attempts to cast the non-linear fuel
consumption equation Fy; as a linear objective subject
to a group of SOCP constraints by substituting the

term a,; ** with an auxiliary variable Qj,; as presented

in Equations 2-4 and obtain a computationally
tractable MISOCP model where ||®]|, denotes the

Euclidean norm, wug;1, Uiz, Ukiz» Ukia > 0, and ay;,
Qi > 0.

Uiy < @i 13 || Quy, ayg
=Dl
< A +1
Uiy < Ugir Qi = || Qi ki
- Qull,
< Upiy + Qpi
Upiz < Ukiz- Qg = | (Qugz, Uk
—ar)ll;
< Ui + A
Uk < Uk 12 (| QUpigs Upeis
=Dl
< Ugi1 +1
1 < wyiz- ugis = 112, Uiz
— Ukia)l2
< Upgjz + Upig

LEV
— or 2
Ui = 4.5

Ury < A Qri = || Qugin, g
- Qull, L €Vy
< api = Qi - ®)
1< agi- i = 12, agg — w2 =4
< Qg+ Ugip

Uy < g 12 |Quggy, ag —

Dl <a +1

Upiy < Upir- Qri = || Qukizs Uk i €Vp
- Q)ll, or Q)
< Upis + Qi i =35

1< agi- ki = 12, agi — ugi2)ll2
= Qg t Uiz

I

3.3. Mathematical Formulation

This study establishes two novel models for the
BACAP with variable and constant arrival time: i.e. a
model with variable arrival time (VAT) and a model
with constant arrival time (CAT). It is worth noting
that with this BACAP formulation, terminal planners
allocate the berthing positions and times to the vessels
based on their expected arrival times. That is to say;
the terminal operator regards the arrival time of each
vessel as a constant known a priori. Similar to [56],
this berth allocation strategy is referred as a CAT
strategy. However, considering the arrival time of a
vessel as a decision variable will provide the
convenience of optimizing fuel consumption and
emissions. This new berth allocation strategy is
referred to as a VAT strategy. The numerical
experiments, which are presented later in this study,
reveal that the VAT strategy significantly outperforms
the CAT strategy when taking fuel consumption and
vessel emissions into account. The notations used in
the mathematical model are listed below.

Sets:
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V={1.2....i} The set of container ships under
consideration in the berth plan

Q={1.2....k} The set of container terminals under
consideration in the berth plan

N ={1.2....n} The set of pollutants (CO,, NOy, and
SOy)

T ={1.2....t} The set of time periods in the planning
horizon

Cc={1.2....c} The set of quay

cranes  under
consideration in the planning horizon

M Big-M, a sufficiently large constant

Decision variables:

Parameters:

Ry;  The requested departure time of vessel i at terminal k

P, Specific handling time (estimated time of unloading
and loading) of vessel i if crane c is assigned to it at
terminal k

l; The length of vessel i (including the safe distance
between adjacent vessels for mooring)

L The total length of the container terminal

D, The water depth of terminal k

L, The length of terminal k (terminal endpoint
coordinates)

d;  The draft of vessel i

my; The distance from vessel i to terminal k

sp;  The sailing speed of vessel i

LF  The load ratio of average power used during normal
operations to maximum rated power

PO; The rated power of the engine of vessel i

AC,; The average activity time of each engine of vessel i
at terminal k

EF,, The emission factor of the nth pollutant for vessel i
(in sailing periods)

EF;, The emission factor of the nth pollutant for vessel i
(in mooring periods)

FCE, The fuel correction factor of the nth emission factor
to reflect changes in fuel properties over time

EN; The number of engines of vessel i

CAP; The capacity of vessel i (quantity of vessels' cargo)

DEM Maximum warehouse capacity at terminal k
(maximum freight required for delivery/discharge at
terminal k)

DEN,; Minimum warehouse capacity at terminal k
(minimum freight required for delivery/discharge at
terminal k)

UT, The upper bound of the time windows at terminal k

LT, The lower bound of the time windows at terminal k

fecr;  The tariffs of terminal k for vessel i

Max; The maximum number of quay cranes that can be
assigned to vessel i

Min; The minimum number of quay cranes that can be
assigned to vessel i

w;  The weight of vessel i (the "weights" reflect the unit
waiting costs of vessels)

ICy; The idleness cost of vessel i at terminal k

Qi Arrival time of vessel i at terminal k

Ski Time at which vessel i berths at terminal k on the
space-time diagram (berthing start time)

fri The berthing position of vessel i at terminal k on
the space-time diagram (berthing position)

Thi Time at which vessel i leaves terminal k
(departure time of vessel i at terminal k)

Etki Positive integer variable; total number of quay
cranes assigned at time period t to vessel i at
terminal k

yj Binary variable; I1,;; = 1 indicates that vessel i is

positioned below vessel j at terminal k, I1;;; = 0,
otherwise. Or when vessel i is positioned earlier
than vessel j in the space-time diagram, I1;; = 1;
otherwise, II;;; = 0.i.j EV.i # j

P Binary variable; I1I;;; = 1 indicates that vessel i
is positioned left of vessel j along the wharf at
terminal k, I11,;; = 0, otherwise. i.j € V.i # j

X Binary variable; x;; =1 if vessel i berths at
terminal k, x;; = 0, otherwise.

Orei Binary variable; d.,; = 1 if quay crane c at time

period t assigned to vessel i, d.; = 0, otherwise.

The final model that is presented in the study is as
follows:

Minfy D wiX (s + ) ) Oret-Pei) = Ria) ©)

keQ iev teT cec
+ Z Z 1Cyi X (Ski — Qi)
keQ iev
+ Z Z feri X Xy
keQ iev
Min f, ZZc?xaki+c}xmﬁl‘fo,;i (6)
keo iev
Min f, Fyi X EFyp, (")

k€eQ i€V ne{C0,,N0,,S0,}
+ Z Z Xki
k€eQ i€V ne{C03,N0y,S0,}
X (PO; X ACy; X LF X FCF;;, X EN;)
X EFp,

Subject to: SOCP constraints (2)-(4) and:
Si t Z Z(atci -Deki) ;l]'cjeeQV &izj (@
teT ceC
< sgj + M1 — 1)

fatL<foy+MA—1IL;) Vijev&i#j (9)

&keqQ

I + i + gy + 1L, VijeEV&i<j (10)
> 2% (tg+x;—1) &KEQ

s + i + My + 1L YijeV&i<j (11)
<xp+x; &KEQ

VIiEV (12)

Zxki=1

keQ

Ayi < Qg < g Viev&keQ (13)
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In this formulation, port operational cost is defined as
the objective function (5), which includes three
components. The first statement is to minimize the
total departure delay of all vessels, which is a typical
measure of the service level of container terminals and
popularly adopted by terminal planners. The second
statement minimizes the cost of idleness time, and the
third statement minimizes port and maritime service
tariffs. The objective function (6) minimizes vessel
fuel consumption. The first statement of the objective
function (7) minimizes the volume of total GHG
emissions when sailing to terminals, and the second
term minimizes the volume of emissions during
mooring. The set of constraints (8) to (11) enforce the
non-overlapping conditions among vessels in the
space-time planning diagram. Constraint (12) ensures
that each vessel is berthed at only one terminal.
Constraints (13) and (14) are related to the arrival time
of vessels and mean that a vessel cannot be berthed
before its arrival time. Constraints (15) link the
berthing time of a vessel to variable d,.; to prevent
inconsistencies. Constraints (16) and (17) are related
to the calculation of the completion time of each
vessel and state that vessels are not allowed to berth
earlier than the time of departure of previous vessels

at a terminal. Constraints (18) and (19) ensure that all
vessels are berthed within the boundaries of the wharf;
in other words, if the stern of vessel i is in terminal k,
the bow of vessel i must also be in terminal k.
Constraint (20) ensures that the draft of vessels is less
than or equal to the water depths of terminals.
Constraint (21) indicates the cargo capacity of the
vessels, as well as the minimum and maximum cargo
required by the terminals. Constraints (22) and (23)
indicate the time windows of the terminals for the
berthing of vessels. As such, they represent the upper
and lower boundaries of these time windows,
respectively. The set of constraints (24) to (26) are
related to the assignment of quay cranes to vessels.
Thus, constraint (24) indicates the limitation of the
maximum number of available quay cranes.
Moreover, the number of cranes assigned to vessels in
each time period cannot be greater than the total
number of cranes available at the quay due to
constraints (24). Constraint (25) indicates the
necessity or non-necessity of assigning a quay crane
to a vessel (the handling of each vessel starts only
once and with a fixed number of cranes) and
constraint (26) indicates the minimum and the
maximum number of quay cranes required to be
assigned to a vessel. Finally, constraints (27) and (28)
specify the domains and type (nature) of the variables
used.

4. Solution Method

The presented mathematical model is solved by the
solver of GAMS IDE. Meanwhile, due to the
complexity of the formulated mathematical model, an
adapted NSGA-Il and a MOSA algorithm are
employed. Given that all the local search procedures,
rely on the constructive algorithm to obtain feasible
solutions, valid solutions for the BACAP can also be
obtained from other machine learning methods such as
Artificial Neural Networks (ANNs) and Support
Vector Regression (SVR). To understand the
capabilities of the methods of machine learning, refer
to [57] and [58]. First of all, the concept of multi-
objective optimization that is necessary for this work
is discussed.

4.1. Multi-objective Optimization

A single-objective optimization problem has only one
objective function. But in a multi-objective
mathematical programming (MOMP) problem, the
number of objective functions that are optimized
simultaneously is more than one. Assume M
uncorrelated objectives to be minimized. Equation 29
represents the mathematical definition of a multi-
objective optimization problem:

minz = (f,(x). fo(0). . frn(x)) (29)
subject tox € X

where X is the set of feasible solution space, x is a

feasible solution, and f;(x) is the first objective
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function value of solution x. Objective functions are
often in contradiction so that the improvement of one
leads to the deterioration of the other. Thus, a binary
relationship of dominance acts as a comparative
function between feasible solutions. It means that if
the solution x, is better than the solution x, for all
objectives, it is said that x; dominates x, and it is
written as x; < x,. But, in optimization problems, it is
aimed to find a non-dominant solution (or solutions)
that cannot be dominated by other feasible solutions.
A set of non-dominated solutions is called Pareto set
(or Pareto front) [59, 60]. In these cases, the decision-
makers seek the "most preferred" solution versus the
optimal solution. In MOMP, the concept of optimality
is substituted with that of Pareto optimality or
efficiency. The Pareto optimal (or efficient, non-
dominated, non-inferior) solutions refer to the
solutions that are impossible be improved in one
objective function unless their performance in at least
one of the rest is deteriorated [61].

4.2. AEC Method

A well-organized technique for solving MOMP
problems, in which the main objective function is
identified among all other objective functions, is
known as the epsilon constraint (EC) method, which
has several important advantages over the traditional
weighting method. Despite its advantages over the
weighted method, the EC method has two limitations
that need attention. At first, the scope of the objective
functions is not optimized more than the efficient set,
and to solve this problem, the lexicographic
optimization technique is presented. Secondly, the
optimal Pareto solutions produced using the EC
method may be dominant or ineffective. To overcome
this defect, the augmented epsilon constraint (AEC) is
presented, which is a new version of the EC method
and prevents the production of weak Pareto optimal
solutions. As a result, by preventing redundancies, the
whole process is accelerated. In general, the AEC
method leads to the most optimal Pareto optimal
solution [62]. Interested readers are referred to [63]
and [64] to learn more about the AEC method.

4.3. MOSA

Simulated annealing (SA) is a meta-heuristic
algorithm that in an optimization problem, provides
solutions using a probabilistic method. The algorithm
starts from a desired solution in the problem space and
then selects another solution in the neighborhood of
the current solution. The algorithm then decides on the
basis of a probability-based method whether to stay in
the current solution or move to the neighboring
solution. The algorithm, in order to escape from the
local minimum and reach to the global minimum,
investigates the problem space by imitating the metal
annealing process and reducing the temperature to a

low temperature [65]. Applications of SA can be seen
in the parallel machine scheduling problem [66] or the
problem of task scheduling in heterogeneous
distributed computing systems [67].

The pseudo-code of SA is shown in Figure 2. In this
pseudo-code, s, contains the solution, and
minimization is assumed. This algorithm generates
local solutions in the neighborhood of the current
solution and accepts a new solution based on a
function depending on the current temperature "t".
The number of iterations to apply the algorithm
(ITER) and the cooling schedule (CS) are considered
as two main parameters of SA that have a significant
effect on the performance of the algorithm. [52].

The use of SA in multi-objective (called "Multi-
Objective Simulated Annealing”, or MOSA in short)
optimization was initially proposed by [68]. The work
proposes to use a target-vector approach to solve a bi-
objective optimization problem (several possible
transition rules are proposed). A solution x' is
generated in the neighbourhood of the current solution
x. If f(x") is non-dominated with respect to f(x), it is
accepted as the current state, and a set of non-
dominated solutions is also updated. This is the basic
approach used with local search procedures. The set or
archive of non-dominated solutions constitutes the
memory of the approach and allows the generation of
several elements of the Pareto optimal set in a single
run. Notice, however, that in this case, only local non-
dominance is used to fill up the archive of solutions,
and a further filtering procedure is required to reduce
the number of non-dominated solutions presented to
the decision-maker.

1. Select an initial (feasible) solution s,
2. Select an initial temperature t, > 0
3. Select a cooling schedule CS
4. Repeat
Repeat
Randomly select s € N(s,) // N = neighborhood
structure
6 = f(s) — f(sy) Il f = objective function
If § < 0then
Sop < S
Else
Generate random x // uniform distribution in the
range (0,1)
If x < exp(—4/t) then
So < S
Until max. num of iterations ITER reached
t < CS(t)
5. Until stopping condition is met

Figure 2. Simulated annealing pseudo code [69].

4.4. NSGA-I11

NSGA-II is a generic non-explicit building-block
multi-objective evolutionary algorithm (BB-MOEA)
applied to multi-objective problems (MOPs) based on
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the original design of NSGA. As shown in Figure 3, it
builds a population of competing individuals, ranks
and sorts each individual according to non-domination
level, applies evolutionary operations (EVOPs) to
create a new pool of offspring, and then combines the
parents and offspring before partitioning the new
combined pool into fronts. NSGA-II then conducts
niching by adding a crowding distance to each
member. It uses this crowding distance in its selection
operator to keep a diverse front by making sure each
member stays a crowding distance apart. This keeps
the population diverse and helps the algorithm to
explore the fitness landscape [70], [71]. This MOEA
is currently used in most MOEA comparisons. It has
also been used as a foundation for other algorithm
designs.

5. Numerical Experiments

In order to evaluate the performance of the proposed
model, numerical experiments are executed. Because
most articles in the literature use data generated
randomly in their experiments, making comparisons
between researches difficult, the data set for model
validation in this article are generated by using the
benchmark instances presented in [51]. All
calculations are performed in GAMS software version
25.1.2 and on a PC with a 64-bit operating system, 4
GB RAM, 2.20 GHz CPU, and Intel (R) Core (TM)
i3-2330M.

Non-dominated sorting Crowdingdistance sorting Py

QOO )
OO0  J
Py
A
(@)
= _‘{ _____ e =
oo
X
Q¢ <—— Rejected

R

Figure 3. Flow diagram that shows how the NSGA-I1
works. Pt is the parents' population and Qt is the
offspring population at generation t. F1 are the best
solutions from the combined populations (parents and
offspring). F2 are the second-best solutions and so on

5.1. Validation

To validate the proposed model, a set of 10 different
vessels, 3 terminals, and 22 quay cranes are assumed.
Each terminal can serve at least two containerships
together and allocate a maximum of 4 to 6 and a
minimum of 1 to 3 quay cranes per vessel. The total
length of the wharf (L) is 1200 meters, and the
planning horizon is one week (168 hours). The
idleness coefficient or the cost of one hour of idleness

at the terminal (ICy;) is $200. The speed of vessels in
terms of engine power and the amount of their cargo
is calculated by uniform distribution between 8 and 28
knots (unit of speed in knots equal to 6076.12 feet per
hour) and also the earliest and latest arrival times of
vessels, the requested departure time of vessels, the
distance between vessels and terminals (in nautical
miles, 1 nautical mile is equal to 1852 meters), the
cost of tariffs for each terminal to serve each of the
incoming vessels, and the average activity time of
each engine of vessels are as follows (time parameters
are in hours):

ACy; = Uniform[10,30] ag; = Uniform [51,240]

_ SPi
My = Qg X >

ay; = Uniform [0,50]

Ryi = ay; + pri X Uniform [1,2]
fcki = Uniform [100,200]

The constant regression coefficients c® and ¢?* for all
vessels are 699 and 0.004238, respectively. The load
ratio (LF) is 0.5, and the number of engines per vessel
(EN;) is 4 since most sea-going vessels have 4-stroke
auxiliary engines. The fuel correction factors of CO.,
NOy, and SOy are 1, 0.948, and 0.04, respectively.
Other relevant parameters are presented in Tables 2-4.
The AEC method has been coded in GAMS, a widely
used modeling language [72]. To apply the AEC
method, this study considers the first objective
function (minimizing total operational cost f;) as the
main goal and the second objective (minimizing fuel
consumption f5) as the minor goal. Besides, it limits
the third objective (minimizing environmental effects
f3) to different amounts of epsilon. The
implementation results of the proposed model (VAT
and CAT) are summarized in Figure 4 and Table 5.

Time (hours)

00 10 0 259 30 £ 300 450 500 S50 600 630 700 70 800
Terminal (1) Terminal (2) Terminal (3)

Figure 4. A feasible solution to the problem using the
AEC method

Since the BACAP is NP-hard in general, it could be
solved to optimality only for small instances, and
many metaheuristics were used for large-scale
instances. For more information, refer to [73]. In this
section, large-scale instances are solved using
metaheuristic algorithms of MOSA and NSGA-II,

850
Wharf (meter)
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which are briefly explained below. All numerical
experiments are formulated in MATLAB (ver.
R2019b) environment using the computer system
described above.

As was previously mentioned, the scale and nature of
the research model at large terminals often makes it
impossible (NP-hard) for the decisions made to be
optimal. The exact solution of the AEC method is
used in GAMS software for small and medium-size
instances. Figure 5 shows a comparison of the model
solution presented in this article using the three
solution methods presented (in small scales). As can
be seen, metaheuristic algorithms (MOSA and NSGA-
I1) have provided solutions close to the exact solution
(AEC). Therefore, the outputs of these algorithms can
be trusted to solve large BACAP problems with time
budget and other limitations.

5.2. Case Study

Rajaee Port is located on the north shores of the
Hormuz Strait and 23 kilometers west of Bandar
Abbas, the capital of Hormozgan Province, in
southern Iran. It is around 1500 kilometers (933 miles)
southeast of Tehran, the capital of Iran. With 12
wharves, Rajaee Port is Iran's biggest multipurpose
port, so over half of Iran's commercial trading is
carried out at Rajaee. The port complex also accounts
for over 90% of all container throughput in Iran. The
Rajaee Port Complex has seen a spectacular jump in
private sector investment, which has been
unprecedented in the last 20 years. The stated port is
interacting with more than 80 other ports in the world
and has the highest rate of cargo transit throughout
Iran. A large volume of cargo being shipped towards
Central Asia passes through this port. The
development plan for the port is composed of three
phases to add berths capable of berthing largest
modern vessels. Detailed descriptions of the Rajaee
container terminal and its different modes of operation

are provided by [74] and [75]. The general schematic
of Rajaee Port is depicted in Figure 6.

5.3. Input Data

This subsection presents the data format collected
from Rajaee Port (Table 6) and compares the
performance of each of the applied algorithms.
Unemployment costs at all berths are fixed (200$ per
hour). There is also a penalty of 300$ per hour of
delay (suspension) at the berths for vessels with a
tonnage of less than 1000 TEU and 400$ for other
vessels. fcy; ($/hours) for problems (1) to (6), (7) to
(12) and (13) to (20) using uniform distribution are
equal to [100, 200), [200, 250) and [250, 400),
respectively. Furthermore, the constant regression
coefficient ¢© are [477.4, 719.9], [580.7, 718.6] and
[491.7, 709.2] and the constant regression coefficient
c! are [0.0151, 0.0245], [0.003709, 0.004299] and
[0.000864, 0.000972] for feeder, medium, and jumbo
vessels, respectively.

5.4. Parameter Tuning

The performance and quality (best response, solution
time, etc.) of any meta-heuristic algorithm for
optimizing a problem is strongly influenced by its
parameter configuration. This study uses the Taguchi
method for the configuration parameters [76]. The
following effective parameters were configured for
the MOSA and NSGA-II, respectively: temperature
(T), temperature reduction or damping rate (R),
repository size or archive size (MaxA), population
size (nPop), maximum number of iterations (MaxIt),
maximum number of inner iterations, or number of the
implementation of the neighborhood structure on each
solution of the population (nMove), percentage of
crossover (PC), percentage of mutation (PM), and
mutation rate (MU). The final configurations of
parameters for the two algorithms are summarized in
Table 7.

Table 2. Specifications of berths

NO. Of Lk Dk DENk DEMk LTk UTk

berths (meter) (meter) (TEU) (TEU) (hours) (hours)

Berth 1 250 18 20 1300 12 168

Berth 2 450 14 20 950 24 168

Berth 3 850 24 20 1150 72 168

Table 3. Specifications of vessels
Type u

vessels (TEU) (horsepower) %) (meter) (meter) (hours)
Vessel 1 Feeder 35 60 60 4 40 11 16
Vessel 2 Jumbo 45 140 400 1 80 23 19
Vessel 3 Medium 4 120 125 4 90 18 17
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Vessel 4 Feeder 3.5 105 90 4 50 22 16
Vessel 5 Jumbo 45 135 320 8 60 18 18
Vessel 6 Medium 4 105 200 2 100 10 13
Vessel 7 Jumbo 45 145 350 4 150 12 14
Vessel 8 Medium 4 95 230 1 75 13 20
Vessel 9 Jumbo 45 70 270 3 120 19 27
Vessel 10 Medium 4 95 230 1 75 13 20

Table 4. Reference values of emission factors
Emission factors Unit SOx  NOx CO2

g
kg — fuel 60 87 3110

Emissions while sailing (EF;,)

g
kw —h

Emissions while mooring (EF;,) 12.3 13 683

Table 5. The results of the AEC method with two strategies of VAT and CAT

[ Downloaded from ijmt.ir on 2025-10-24 ]

Type Solver Parameters Fitness obj 1 Fitness obj 2 Fitness obj 3
1 MISOCP CPLEX VAT 439284.410 158207.361 5.826427x108
2 MIP CPLEX CAT 561470.207 2175022.739 7.131858x10°
%1010
7.03 * _*
7.02 MOSA
NSGAII
7.01 ® AEC

Z3

zZ2 213 4 71

Figure 5. Validation of research algorithms
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™

Rajaee Customs %»’

Figure 6. A general schematic of the Rajaee Port
Complex

In general, the quality of the approximated sets has
to be measured with a quantitative metric. There
are several quantitative measurement approaches
to compare different sets of Pareto solutions in the
multi-objective literature. This article used four
indices (performance criteria) proposed by [77] as

follows: diversity or diversification matrix, the
closeness between Pareto solution and ideal point
(0,0) or mean ideal distance (MID), the spread of
non-dominance solution (SNS), and the rate of
achievement to three objectives simultaneously
(RAS). The values obtained are shown in Table 8.
According to the results in Table 8, the NSGA-II
algorithm has given better results than the MOSA
in both MID and RAS evaluation metrics, and the
MOSA algorithm is better in terms of Diversity
and SNS criteria. Also, they are equal in terms of
examining the average of the algorithms, and each
of the two indices is superior to the other
algorithm. To validate this superiority, it is
necessary to use analysis of variance (ANOVA),
which is discussed below. Also, Minitab software
was used to check the normality of the data (P —
VALUE = 0.01) (Figures 7 and 8).
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Figure 7. Graphical representation of the differences between the two algorithms (Diversity & MID)
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Figure 8. Graphical representation of the differences between the two algorithms (SNS & RAS)

In addition to the above metrics, to further investigate the algorithms, the solution time metric can also be
included to conclude which algorithm performs better.

Table 6. Input data (mostly based on the data collected from Rajaee Port).

% - é Vessels I d; CAP; sp; PO, Py ACy,;
— o' *

§ < S Berths (meter)  (meter) (TEU) (Knots)  (horsepower)  (hours)  (hours)
17) [<5)

1)  2x10 [45,100) 5.8) [50,200) [10.24] [50,100) [630]  [6.12)
@ 30 [45100)  [5.8) [50,200) [10,24] [50,100) [630]  [6,.12)
2 (3) 4x10 [45,100) [5,8) [50,200) [10,24] [50,100) [6,30] [6,12)
$ @ 315 [45,100) [5.8) [200,500)  [10,24] [50,100) 630]  [6.12)

() 4x15 [45,100) [5.8) [200,500)  [10,24] [50,100) [630]  [6.12)

(6) 5x15 [45,100) [5,8) [200,500) [10,24] [50,100) [6,30] [6,12)

@) 6x20 [100,170)  [8,12) [500,800) [12,28] [100,250) [1054]  [12,20)
e ® 7x20 [100170)  [8.12) [500,800)  [12,28] [100,250) [1054]  [12.20)
2 () 725 [100170)  [8.12) [500,800)  [12,28] [100,250) [1054]  [12.20)
< (10) 8x25 [100,170)  [8,12) [500,800) [12,28] [100,250) [1054]  [12,20)

(11) 8x30 [100,170)  [8,12) [500,800) [12,28] [100,250) [1054]  [12,20)

(12) 930 [100170)  [8.12) [500,800)  [12,28] [100,250) [1054]  [12.20)

(13) 1035  [170230) [1215)  [800,1000)  [14,30] [250,425) [2038]  [20,30)

(14)  11x35 [170,230)  [12,15)  [800,1000)  [14,30] [250,425) [20,38]  [20,30)
, (15 125 [170,230)  [12,15)  [800,1000)  [14,30] [250,425) [20,38]  [20,30)
£ (16) 1040  [230300) [1215)  [1000,1500)  [1430] [250,425) [2038]  [20,30)
3 (17)  12x40  [230300) [1215)  [1000,1500)  [14,30] [250,425) [2038]  [20,30)

(18)  13x40 [230,300)  [12,15)  [1000,1500)  [14,30] [250,425) [20,38]  [20,30)

(19)  14x45 [300,0)  [12,15) [1500, o0) [14,30] [250,425) [20,38]  [30, )

(20)  15x50 [300,0)  [1215)  [1500,00)  [14,30] [250,425) [2038]  [30, )
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Table 7. Tuned values of the parameters by the Taguchi method

MOSA NSGA-II
Parameters Values Parameters Values

T 100 MaxIt 150

R 0.99 nPop 60
MaxA 50 PC 0.7
NPop 80 PM 0.25
MaxIt 150 MU 0.02
nMove 8 -- --

Table 8. A comparison of evaluation metrics (Diversity, MID, SNS, and RAS)

[ Downloaded from ijmt.ir on 2025-10-24 ]

Criteria
Problems Diversity MID SNS RAS
MOSA NSGA-I1I MOSA NSGA-II1 MOSA | NSGA-II MOSA NSGA-I1I

x101 x101 x101 x101 x1012 x1012 %1072 %1072

1 60.1 60.1 24.1 25.8 2.95 2.98 0.721 0.429
2 20.7 20.2 125 125 5.56 5.14 1.7154 0.7456
3 6.22 8.59 111 11.0 2.02 2.61 1.9923 0.685
4 3.54 9.51 53.6 50.6 1.10 3.49 2.6113 0.3777
5 2.78 2.13 36.8 34.7 8.95 6.72 3.1839 0.9543
6 4.33 6.51 20.3 60.7 8.79 1.80 3.665 2.1955
7 3.50 4.35 20.8 20.5 1.00 8.83 3.3867 1.6503
8 63.0 44.1 78.0 38.2 1.99 1.19 7.8306 4.3481
9 1.60 9.46 17.3 34.3 4.90 2.49 17.5578 9.8297
10 5.12 0.616 45.0 21.6 1.42 1.77 8.2249 2.6933
11 1.02 0.250 81.3 1.67 2.76 7.89 32.9588 5.5774
12 0.849 0.103 16.3 15.1 2.36 2.95 8.0849 1.9675
13 8.94 4.54 1.60 8.19 2.96 1.38 16.0245 4.5169
14 39.7 1.34 96.9 95.8 1.69 3.45 3.9118 1.1907
15 355 1.68 43.1 6.45 1.14 5.05 12.5912 2.7473
16 66.0 1.02 10.7 5.14 2.35 2.85 15.5374 2.3323
17 135 3.17 17.3 16.1 4.13 6.90 6.0602 2.4078
18 231 7.70 41.3 18.4 8.64 3.06 6.7014 4.5965
19 136 2.86 12.7 4.93 3.78 6.60 5.814 1.919
20 1.56 1.75 21.9 4.05 5.40 3.18 10.5791 1.4732
Average 57.3 9.5 33.1 24.3 3.69 4.02 8.4576 2.6319

According to Figure 9, it can be inferred that
NSGA-Il (average time solution = 15.3 min)
performed better and achieved the optimal solution
in less time than MOSA (average time
solution=18.8 min).
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Figure 9. The solution time of each of the algorithms

5.5. Sensitivity Analysis

In this subsection, the parameters affecting the
proposed mathematical model are changed to allow
observing and examining the behavior of each in
changing the output results. For this purpose, the
critical parameters that are selected for sensitivity
analysis (in which all other parameters, except for
the parameter under consideration, are considered
constant) are the speed of each containership, the
type of port arrival time parameter, the cost of each
time period waiting for mooring after entering the
harbor, and the number of quay cranes.

5.5.1. The Effect of Speed on Fuel Consumption
As can be deduced from Figure 10, the optimum
speed of movement for container vessels
considered in this study is approximately 16 knots.
Therefore, vessels with a current speed of more
than 16 knots (less than 16 knots) must reduce
(increase) their speed to save fuel.

Fuel Consumption (kg) versus Sailing Speed (knots)
350000

1

300000 :
250000 :
200000 I
150000 :
100000 :
50000 :
O 1

0 5 10 15 20 25 30

Figure 10. The relationship between fuel
consumption and speed

5.5.2. Comparison Between VAT and CAT
Strategies

This subsection evaluates the effects (performance)
of the VAT and CAT strategies on the presented
model. The focus is first placed on investigating

the economic benefits for fuel consumption and the
environmental benefits for vessel emissions. Then,
some experiments are conducted on the number of
QCs to further assess the berth utilization.

55.21. Operational Costs and  Fuel
Consumption

According to Table 9, as the number of container
vessels increases over the planning horizon (one
week), it is obvious that the port operating cost and
the fuel consumption of the vessels will also
increase. It can also be inferred from Table 9 that
the values of operating costs and fuel consumption
(kgallons) in the VAT mode have significantly
decreased compared to the CAT mode. So, the
VAT strategy has provided a better output in terms
of reduction in the first and second objective
functions. In addition, these analytical results show
that there is comprehensive cooperation between
port operators and shipping companies by setting
the arrival time of vessels as a critical decision
variable. In other words, port operators can suggest
the arrival time of a vessel to the relevant shipping
company. Having ample opportunity to improve
the productivity of berths and quay cranes, and
conversely, to adjust the speed of their vessels
(sailing) by shipping companies according to the
arrival time announced by port operators will lead
to more currency and fuel savings.

55.2.2. GHG Emissions of Vessels During
Sailing and Mooring

As shown in Table 10, the VAT strategy results in
a more dramatic reduction in GHG emissions
during sailing and mooring than the CAT strategy,
so the environment of ports will be healthier in this
mode.

5.5.2.3. Relationships of Operational Costs, Fuel
Consumption, and the Number of Quay Cranes
A negative correlation exists between port
operating costs and fuel consumption. In other
words, as f; increases, f, decreases, and vice
versa. Hence, the two parties involved (the port
operator and the shipping company) seek to reach a
balance point to reduce their costs through
comprehensive cooperation. The number of quay
cranes mainly affects the loading and unloading
time, the departure time of a vessel, and berth
utilization. Table 11 shows the impact of the
number of quay cranes on port operational cost and
fuel consumption when the number of incoming
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vessels in the planning horizon is 15. As shown in
Table 11, the optimal number of cranes to service
15 containerships during the one-week planning
horizon (considered in this study) is 22. If this
number is less than 22, some vessels will not be
serviced by the cranes available in a short time
(increasing waiting time for mooring and
increasing operating costs). Moreover, numerical
experiments show that the port operational cost
increase returned by solving CAT is greater than
that of VAT when the number of available QCs
decreases. These analytical results indicate that
cooperation between port operators and shipping
companies is beneficial. A vessel's arrival time is
regarded as a decision variable to provide a
concrete method for cooperation between port
operators and shipping companies. Port operators
can suggest the arrival time for a vessel to its
shipping company to maximize berth and quay-
crane utilization. Conversely, a shipping company
can adjust the vessel's sailing speed according to
the suggested arrival time.

5.5.3. Time Window Sensitivity Analysis

To investigate the effect of sailing time on the
speed optimization results, the fuel consumption
and the operational costs of vessels with the
increase or decrease in speed are calculated under
different time windows. Figures 11-13 show the
fuel consumption, the vessel operating costs, and
the emissions under the influence of the time
window, respectively. As is shown in Figures 11-
13, the fuel consumption, operating costs, and
emissions gradually decrease with an increase in
the time window. In the case of deceleration, the
fuel consumption decreased from 12.7409x107
kgallons at 96 h to 6.3200x107 kgallons at 480 h.
Increasing the time by 384 h resulted in a fuel

consumption approximate reduction of 200% and a
reduction in vessel operating cost by 431,450
$/hour.

16
Sum of Fuel Consumption (Kgallons) by Speed Up

1 Sum of Fuel Consumption (Kgallons) by SLow Down

Fuel Consumption (kgal) x 107

| |
L1 = . |
400 336 240 168 96
Time Window (hours)

Figure 11. The effect of the time window on the main
engine fuel consumption

As the time window increases, the differences in
all three parameters of fuel consumption, operating
costs, and emissions between the two cases
(acceleration and deceleration) gradually decrease.
The difference in fuel consumption decreased from
1.8092%107 kgallons at 96h to 0.4630x107
kgallons at 480h, the operating cost decreased
from 1.2281x105 $/hour to 0.5056 $/hour and the
emissions decreased from 0.6918x107 ¢ to
0.2112x107 g. If the time window continues to
increase, the difference in fuel consumption, the
difference in operating costs, and the difference in
emissions between the two cases will gradually
disappear because the sailing speed of the two
cases gradually becomes equal. Accordingly, the
sailing speed optimization delicately varies with
the time window, so speed can potentially be
reduced and vessel energy efficiency can be
enhanced with a larger time window constraint.

Table 9. A comparison of operating costs and fuel consumption according to the type of vessels' arrival time

VAT CAT Numerical difference
No of vessels f1 f2 fi fa fi=fi | fa-f
x10° x107 x10° x107 x10° x107
10 1.7362 2.9557 4.5674 3.2437 2.8312 0.2880
15 2.7889 4.5400 3.2407 4.9450 0.4518 0.4050
20 3.3975 6.6739 5.9714 7.1400 2.5739 0.4661
25 5.6322 8.2947 7.8643 8.8702 2.2321 0.5755
30 7.4451 9.3370 10.5689 10.1200 3.1238 0.7830
35 9.0928 11.1812 12.4800 12.2090 3.3872 1.0278
40 11.8259 13.6971 15.1209 14.5560 3.2950 0.8589
45 13.0171 15.0413 18.4108 15.7035 5.3937 0.6622
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50 15.2494 17.2035 19.3210 18.1030 4.0716 0.8995

Table 10. A comparison of GHG emissions between the VAT and CAT strategies

VAT CAT N_umerical
difference
§ f3 Total Average f3 Total Average
§ waiting | emission waiting | emission
s sailing time for | reduction sailing time for | reduction
S + berthing for a + berthing for a fis—f3
Mooring | (hours) vessel Mooring (hours) vessel
(9) ()
10 0.0493x10* 0 49.3 0.1164x10* 0 116.4 0.0671x10*
15 0.6770x10° 3 4513 0.9680x10° 5 6453 0.2910x10°
20 2.6028x108 0 130140 5.1379x108 14 256895 2.5351x108
25 1.7853x107 1 714120 2.7927x107 22 1117080 1.0074x107
30 2.3291x107 8 776366 0.6931x10° 24 23103000 6.69809x108
35 1.5253x108 4 4358000 0.1026x10%° 44 29314285 8.7347x108
40 2.8910x108 9 7227500 0.9503x10%° 56 237575000 9.2139x10°
45 1.9424x10° 1 43164000  0.2694x10% 72 598666000  2.49976x10%°
50 2.2844x10° 4 45688000  0.3496x10% 86 699200000  3.26756x10%°
Table 11. Impact of number of QCs on f1 and 2
- @ VAT CAT Numerical difference
ol N f2 fi fa fi-f1 fa—f2
Z 5| x10° x107 x10° x107 x10° x107
10 5.3860 7.1500 7.2200 4.9450 1.8340 -2.2050
12 5.0034 6.7820 6.4670 4.9450 1.4636 -1.8370
14 4.8270 6.4110 5.6534 4.9450 0.8264 -1.4660
16 4.3512 5.9540 4.9900 4.9450 0.6388 -1.0090
18 3.7912 5.2130 4.4200 4.9450 0.6288 -0.2680
20 3.4440 47130 4.0100 4.9450 0.5660 0.2320
22 2.7889 4.5400 3.2407 4.9450 0.4518 0.4050
24 2.7889 4.5400 3.2407 4.9450 0.4518 0.4050
26 2.7889 4.5400 3.2407 4.9450 0.4518 0.4050
28 2.7889 4.5400 3.2407 4.9450 0.4518 0.4050
30 2.7889 4.5400 3.2407 4.9450 0.4518 0.4050
o Figure 12. The effect of the time window on the
{3 Sum of Operational Costs ($/hours) by Siow Down ship's operational costs
Sum of Operational Costs ($/hours) by Speed Up | 10
(=] 8 ‘.'é‘
s
3
&
4;80 400 3}56 240 168_ i 96— 0
Time Window (hours)
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Figure 13. The effect of the time window on the
emissions

6. Conclusion

Maritime transportation plays a crucial role in
international trade and has experienced significant
growth in recent years. Although near-port
communities profit from this development, there
are serious concerns regarding GHG emissions,
which affect human health and climate change. In
this article, the berth allocation problem and the
guay crane  assignment  problem  were
simultaneously formulated into an integrated
mathematical model by considering GHG
emissions. The mathematical model was
implemented in GAMS, which could only solve
small-sized problems due to the high complexity of
the mathematical model. An NSGA-Il and a
MOSA algorithm were proposed to solve large-
size real-world problems. The effectiveness of the
evolutionary algorithms was tested at Rajaee Port
as a real case. The results demonstrated the
effectiveness of the developed mathematical model
and the proposed algorithms in finding a near-
optimal solution within a reasonable time.

The study focused on GHGs of vessels as the main
source of emission. There are other sources too,
e.g. quay cranes, yard cranes, and yard trucks that
could be considered sources of emission.
Therefore, an integrated mathematical model can
be developed in future studies by considering the
GHG emissions of vessels, quay cranes, yard
cranes, and yard trucks. In addition, it will be
interesting to introduce stochastic factors to
improve the robustness of the solutions when faced
with uncertainty and unexpected contingencies,
such as crane breakdowns or adverse weather
conditions.
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