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1. Introduction

ABSTRACT

Developing vegetation cover is one of the practical solutions to alleviate the
sediment transfer rate. Predicting the sediment transfer rate in the presence of
cover vegetation is a complicated necessary issue for designers due to the
complex interaction between sediments and cover vegetation. This study
intends to predict the sediment transfer rate (STR) by employing soft
computing models based on an experimental study. The primary innovations
in this study were the introduction of new and optimized versions of the group
method of data handling (GMDH) for predicting sediment transport rate, the
use of a new inclusive multiple model for predicting sediment transport rate,
and the investigation of the effects of various parameters on the sediment
transport rate, such as vegetation cover density. This study used an inclusive
multiple model (IMM) as an ensemble model to predict sediment transport in
the presence of cover vegetation. Initially, the sediment transport rate was
predicted using the individual GMDH models. These outputs were then used
to create the final outputs by inserting them into the GMDH model as an
ensemble model at the next level. The Honey Badger algorithm (HBA), the rat
swarm optimization algorithm (RSOA), the sine cosine algorithm (SCA), and
the particle swarm optimization algorithm (PSOA) were used to train the
GMDH model. The diameter of the sediments, the diameter of the stems, the
density of vegetation cover, the wave height, the wave velocity, the cover
height, and the wave force were used as inputs to the models. The IMM's mean
absolute error (MAE) was 0.145 m3/s, while the MAEs for GMDH-HBA,
GMDH-RSOA, GMDH-SCA, GMDH-PSOA, and GMDH in the testing level
were 0.176 m3/s, 0.312 m3/s, 0.367 m3/s, 0.498 m3/s, and 0.612 ma3/s,
respectively. The Nash-Sutcliffe coefficient (NSE) of IMM, GMDH-HBA,
GMDH-RSOA, GMDH-SCA, GMDH-PSOA, and GHMDH were 0.95 0.93,
0.89, 0.86, 0.82, and 0.76, respectively. Additionally, this study demonstrated
that vegetation cover decreased sediment transport rate by 90%. The overall
results indicated that the IMM and GMDH-HBA models could accurately
predict sediment transport rates.

ecosystems and the operation of hydraulic structures

Prediction of sediment transport rate (STR) is one of
the essential considerations in watershed management
[1]. Sediment transport may cause environmental
pollution. Additionally, sediment transportation may
reduce the capacity of dams' reservoirs. In coastal
areas, sediment transport results in disturbance in
coastal residents' lives and downstream hydraulic
structures [1]. Using cover vegetation that reduces flow
velocity and traps sediments is an efficient solution to
alleviate sediment transport rate. Sediment transport,
caused by long coastal waves, adversely affects coastal
hydraulic systems and structures. Controlling river

rely heavily on sediment transport rates [2]. Several
strategies have been proposed to reduce sediment
transport [3]. Planting vegetation is one of the most
effective ways to reduce sediment transport. A
vegetation cover prevents soil erosion and traps
sediment. It is challenging for coastal engineers to
predict sediment transport in vegetation-covered areas
[4]. The presence of vegetation affects sediment
transport and flow velocity [5]. The vegetation cover is
an efficient solution for sediment trapping. Sediment
traps are an effective way to protect rivers from
sediment loads [3].
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Prediction of sediment transport rate in the presence of
cover vegetation is a complicated issue for managers
and decision-makers in water resource management.
Predicting sediment transport rate in the presence of
cover vegetation is a recondite and challenging issue
because of the complex interaction between sediment
and cover vegetation. Many various studies have been
conducted to predict the sediment transport rate (SRT)
in the presence of cove vegetation so far. Wang et al.
investigated the effect of vegetation density, water
depth and sediment grain size on sediment transport
[6]. They reported that vegetation slowed sediment
transport. According to Igarashi and Tanaka (2016),
integrating coastal forests and embankments reduced
wave force by up to 80% compared to structural
methods.

Chen et al. examined the sediment transport rate in a
bare mudflat and a mangrove stand and reported that
vegetation altered the flow rate [7]. Permatasari et al.
investigated the correlation between mangrove density
and sediment transport. There was a negative
correlation between mangrove density and sediment
transport [8]. Parnak et al. investigated the effect of
rigid and flexible vegetation covers on the sediment
transport rate. They reported that vegetation cover
could significantly reduce the sediment transport rate
by 70% [9].

According to Mu et al., the basal stem covers
drastically reduced the transport capacity of overland
flows [10]. Kusumoto et al., reported a reduction in
sediment transport due to coastal forest cover [11]. As
per Sun et al., ecological restoration affected
sedimentary delivery [12].

The precise design of vegetation cover for sediment
trapping is a complicated issue. As a result, one of the
primary responsibilities of hydraulic engineers is to
forecast sediment transport in the presence of
vegetation cover ([1]). However, powerful models are
required to make this prediction. Although numerical
models can be applied to predict the sediment transport
rate (SRT), using them involves solving complicated
equations ([1]). Furthermore, experimental equations
suggested for predicting sediment transport rate (STR)
are not accurate enough. Soft computing models have
provided strong sediment transfer rate (STR) prediction
models in recent years. Table 1 presents a review of soft
computing models' application for predicting the
sediment transfer rate (STR). Soft computing models
effectively predict the sediment transfer rate due to
their high accuracy, low computing time, and ease of
use [13].

Previous studies used soft computing models to predict
the sediment transfer rate (STR) ignored the effect of
cover vegetation. In addition, using individual models
is one of the shortcomings of the former studies since
individual models have some disadvantages besides
advantages. Using ensemble models based on outputs
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of individual models may enhance final output
accuracy [14]. Predicting the sediment transfer rate
(STR) in the presence of cover vegetation using soft
computing models assists watershed managers in water
resource management and controlling environmental
pollutants.

According to table 1, the artificial neural network is one
of the feasible models for the sediment transfer rate
(STR) prediction. Various types of artificial neural
networks are available. GMDH is one of the most
important kinds of ANN models. The group method of
data handling (GMDH) is one of the most important
kinds of ANN Models.

The GMDH model operates on the self-organizing
principle. The GMDH algorithm makes use of
polynomial transfer functions and multiple neuronal
layers. The advantages of GMDH include high speed
of computation and accuracy. The GMDH has been
widely used in a variety of fields, including flood
susceptibility prediction [15], groundwater level
prediction [16], daily river flow prediction [17], and
monthly streamflow prediction [18]. Mulashani et al.
used (GMDH) for permeability prediction. Results
revealed a reasonable reduction in processing time and
high accuracy for the GMDH [19]. Panahi et al. used
the GMDH model to spatially model landslides.
Optimized GMDH models performed better than a
standalone GMDH model in the validation [20]. A
GMDH model's advantages include high accuracy,
ease of implantation, and quick computation.
Although the GMDH model is robust, robust training
algorithms should be used to determine the model's
weight coefficients. Additionally, advanced operator-
based optimization algorithms have a high potential for
adjusting the GMDH parameters.

Although previous studies used soft computing models
for predicting STR, there are many research gaps.
Previous studies used classical soft computing models
without improving accuracy. No effort was made to
develop ensemble models for predicting STR. STR was
estimated via experimental studies without considering
robust models in previous studies. For these reasons,
soft computing models must be developed for
predicting STR.

The primary objective of this research is to predict
sediment transport using experimental data. The effect
of vegetation on the sediment transport rate was
investigated in this study, and the specifics of a
comprehensive experiment examining the effect of
vegetation on the sediment transport rate are presented.
The developed GMDH models using the new
optimization algorithm were used to predict sediment
transport rates in the presence of cover vegetation. This
study predicts the sediment transport rate using a
variety of input parameters and demonstrates how
vegetation affects sediment transport rates.
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Additionally, this study presents an inclusive multiple
model for ensembling the outputs of GMDH models,
as ensemble models have the potential to improve the
accuracy of individual models by leveraging the
benefits of multiple models. By combining the outputs
of multiple models within an ensemble framework, the
efficiency of each individual model is increased.

As a result, the following are the novelties of the
current article:

1) Novel GMDH models predict the sediment transport
rate using new optimization algorithms. The new
optimization algorithms were used to train the
GMDH model. Thus algorithms are chosen because

2)

3)

4)

5)

A new ensemble model is proposed for predicting
sediment rate, namely, the inclusive multiple model
(IMM).

A comprehensive experimental investigation into the
effect of cover vegetation on the sediment transport
rate is conducted.

The effect of various cover vegetation layouts on the
sediment transport rate is determined.

The effect of various inputs on the prediction of
sediment transport rate is examined.

Section 2 presents the material and methods. Section 3
outlines the details of the experiment. Section 4
illustrates the discussion and results. Finally, Section 5

of high accuracy, fast computation and high

flexibility.

concludes the paper.

Table 1. Application of soft computing models for predicting STR

Authors

Description

Results

Ab. Ghani and Azamathulla ,[21]

They evaluated gene expression
programming (GEP) for estimating STR.

The suggested GEP model gave accurate
results compared to existing predictors.

Kitsikoudis et al., [22]

They applied an adaptive-network-based
fuzzy inference system (ANFIS) for STR
prediction.

They reported that the ANFIS model
provided better accuracy than the empirical
methods.

Ebtehaj and Bonakdari, [23]

They tested several models for estimation of
STR. They compared different training
algorithms for estimating STR.

They found that artificial neural network-
Levenberg-Marquardt performed better than
existing equations.

Ebtehaj and Bonakdari, [24]

They compared two soft computing models
for STR prediction.

It was found that the extreme learning
machine model performed better than the
support vector machine model.

Roushanger and Ghasempour, [25]

They estimated the STR in pipes using a
support vector machine (SVM).

It was found that the SVM method was
superior to classical methods.

Riahi-Madvar and Seifi, [26]

They estimated STR in gravel bed rivers
using two soft computing models.

It was found that the ANFIS model was
superior to the ANN model.

Baniya et al., [27]

They estimated STR using the bed shear
stress (tv), specific stream power (o), and
flow velocity (v). They investigated the
potential of ANN model for predicting STR.

It was found that the ANN model was
superior to all the suggested models.

Kargar et al., [28]

They compared two soft computing models

They found that the neuro-fuzzy model

for STR prediction.

performed better than the genetic
programming model.

2. Materials and methods

Different optimization algorithms have been developed
to solve different problems in recent years. A new
optimization algorithm, the monarch butterfly
optimization algorithm (MBOA), was introduced by
Wang et al. [29]. The migration of monarch butterflies
was simplified and idealized, leading to the
development of the MBOA. The slime mould
algorithm (SMA), proposed by Li et al. [30], is an
advanced stochastic optimizer. SMA simulates slime
mould's search for food by introducing weights. Wang
et al. [31], introduced a new metaheuristic algorithm
based on the phototaxis and Levy flights of moths,
called Moth Search (MS). The Hunger Games Search
(HGS) technique was proposed by Yang et al. [32].
Animals' behavioral preferences and hunger-driven
activities are the basis of the proposed HGS.
Ahmadianfar et al. [33], developed the Runge Kutta
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optimizer (RUN) to handle various optimization
problems. RUN is a promising and logical way to
search for global optimization based on the slope
variations computed by the RUN method.

Several algorithms were presented in this study for
training GMDH, including the Honey Badger
Algorithm, Rat Swarm Optimization Algorithm, Sine
Cosine Optimization Algorithm, and Particle Swarm
Optimization Algorithm (PSOA). The algorithms
selected for this research are noted for their flexibility,
precision, straightforward implementation, and quick
convergence rates. These characteristics were the
primary factors in their selection for the study.

2.1 Structure of group method of data handling

The GMDH is similar to various types of artificial
neural networks. The structure of GMDH reveals the
input, hidden, and output layers [34]. The observed
input variables are inserted into the input layer.
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GMDH's hidden layers process the data received from
the first layer. Finally, the output layer produces the

d d d d d d
output = oy + Zaiini + zz%iniinj + ZZZaijkin,.injink
i=1

i=1 j=1 i=1 j=1 k=1
1)

Where output : final output, «,, «;, Qe and Q!
polynomial coefficients, inin;, ing ith, jth, and kth
input and d: number of inputs. In this research, the
quadratic form of the polynomial was utilized. For
example, the quadratic form for a problem with two

inputs is as follows [34]:

output = a, + ayin, + a,in, + auin: +a,in; + agingin,

(2)

The polynomial coefficient vector is computed as
follows:

a=(p"p)" prour (3a)

Where £ :a matrix based on inputs and T: transpose.
(.. . .1 N2 (e 1\ ]
1 im i inging (zni) (m;)

.2 .2 :2. 2 . 2)2 . 22
in, in, inin, (m1 ) (znz)

p=l T @

2 2
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Where OUT : matrix of outputs. The following
equation gives the number of neurons in the next layer

(Nn):

N,
N, = ) (4)

Where "7 number of the current layers. The number
of neurons in the layers is limited to a maximum value
to prevent the complexity of GMDH. Users can use an
equation to eliminate GMDH's redundant neurons. The

neurons with lower RMSE than the ¢ (selection-
pressure criterion) are removed.

£ =vxRMSE,, +(1-v)x RMSE,,
RMSE

)
Where U: a value between 0 and 1, max : the

RMSE of the worst neuron, RMSEqy, : the RMSE of
the best neuron . The backpropagation algorithm (BPA)
is one of the methods for adjusting polynomial
coefficients, although it may not have a rapid

HBnew = HBprey +Fx px Ini X HBprey

HB , . .
Where P prey location, F: flag (it changes
direction), ras and ra: random parameters,

+Fxra;xnxdi, ><|cos(27zra4)x [1-cos(2zra, )]|

desired result. The GMDH constructs a high-order
polynomial named Kolmogorov-Gabor as follows [34]:
convergence. In this research, robust evolutionary
algorithms were used to set the polynomial coefficients
of the GMDH. Figure la depicts the structure of
GMDH [34].

2.2 Honey Badger Algorithm (HBA)

Hashim et al. introduced the HBA algorithm as a novel
optimization technique. They evaluated HBA using a
variety of engineering problems [35]. The advantages
of HBA include rapid convergence, high precision, and
high diversity. The HBA was chosen for the current
study due to these advantages and inspired by the honey
badger's life. The honey badger is attracted to honey
and creates holes. They remain in holes to mate with
other badgers. They climb trees to gain access to
beehives and nests. One of honey badger's challenges
is locating beehives. A honeyguide (a bird) assists the
honey badgers to locate beehives.

Additionally, the HBs dig holes within a forty-
kilometer radius to trap their prey. HBs are capable of
preying on squirrels and lizards and use their sense of
smell to locate prey. In the first level, the location of
HBs is initialized as follows [35]:

HB; =lo, +ra, x(up, —lo;)

Where HB

(6)
. . up, .
. the location of HBs, . the upper

bound of decision variable, lo . lower bound of
decision variable, and ra;: random variable. The HBs
can identify the location of prey or honey based on the
intensity of the smell they receive.

Ini = ra2 X 4—d2
i )
S=(HB,~HB,,) ©
di, = HB,, —HB,
9)
Where [18i - the location of ith HB, 11Bi1: the

location of i+1th HB, 7’1’12; random number, and In;:

S HB,,
smell intensity, . source strength, and prey.

location of prey, and dli: distance between rye and HB.
The HBs excavate holes to rest and trap prey. The
location of HB following digging is calculated as
follows:

(10)

controller parameter, and 7: density factor. The
density factor is computed as follows:
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n=27Zx exp(t_—tj Eax = MaXimum (number ) of (iterations)

max

-1« else

- {u— if () so.so}
(12)

Where t: number of iterations and ' : random
number.

Additionally, HBs update their location when they
follow honeyguide birds to reach beehives.

HB,,  =HB, ,k +Fxra,xnxdi,

prey

(13)

Where HB,,, : new location of the HB after following
honeyguide bird and ra, : random parameter. Figure
1b depicts the flowchart of the HB.

2.3 Rat Swarm Optimization algorithm (RSOA)
Dhiman et al. [36] developed the ROSA based on rat
behavior. ROSA's advantages include ease of
execution and a small number of random parameters.
They evaluated RSOA's performance on various
benchmark functions and engineering problems. The
ROSA algorithm outperformed the particle swarm
optimization (PSO), the genetic algorithm (GA), the
gravitational search algorithm (GSA), and the
multiverse optimization algorithm (MOA). Rats
exhibit aggressive behavior and are constantly in
search of prey. A swarm of rats will follow the superior
rat, aware of its prey's location. As a result, the rats
update their location following the location of the rat
leader as follows:

Where RA : the new location of the rat, R4, (x): the

ith location of the rat, R4, (x) : the best location of the
rat, S and C: controller parameters.

4
max

C=y—-xx ,x=0,..,max,,,
iter (15)

S =2.rand (16)

Where 7 : a number between [1, 5], rand: random
number, and maxXier: Maximum number of iterations.
Rats struggle with prey in order to hunt it. This
behavior is simulated as follows:
RA. (x+1)=|RA (x)-RA

Where RA, (x+l): The subsequent position of the
rat. Figure 1c illustrates the RSOA flowchart.

2.4 Structure of Sine Cosine Algorithm
The Sine Cosine algorithm (SCA) is a novel
optimization technique based on sine and cosine

(11)

trigonometric functions [37]. The SCA has several
advantages, including robustness, adaptability, and a
high rate of convergence [38]. Each population's
solution vector represents a candidate solution. The
optimal solution is chosen as the final destination. The
SCA algorithm updates the solution as per the
following equation:

t H t t
IS +K1XSIn(K2)><|K3Zi —S,.|<—/(4 <0.50

S; +K1XCOS(K2)X|K3ZZ?—Sf|<—K4 >0.50 (18)
Where "1 : A parameter for controlling the balance
between exploration and exploitation N parameter

for determining the direction of solutions, K. A
parameter for adjusting stochastic influence of the

global best solution, and «,: A parameter for

determining the priority of sine function or cosine
function.
K=y 7

I (19)
Where ¥ : constant value, i: number of iterations, I:
maximum number of iterations. Figure 1d shows the
SCA flowchart.
2.5 Particle Swarm Optimization Algorithm
(PSOA)
PSOA is a well-known and robust optimization
algorithm that operates based on information exchange
between particles. The PSO possesses a strong capacity
for global problem-solving. PSO's advantages include
ease of implementation and a good balance between
exploration and exploitation [39]. The PSO begins by
determining the positions and velocity of particles [40].
The fitness function for particles was then calculated in
the following step. The optimal particle with the
optimal objective function was identified. The velocity
and the location of particles are updated as follows:

t+1 t t * t
ve; :gvei"'M(Pg_pi)"'/v‘z(B _Pi) (20)
t+1 t+1

pil=pi+Y; (21)
t

t+1
Where i velocity of i+1th at t+1th iteration, ve; .

. : N p
velocity of ith at iteration t,  #: current global best

*

solution, F > individually best solution, Hi and #e-

t
acceleration coefficient, Pi : the location of the ith
t+1

particle, S - inertia coefficient, and bi : the location
of a particle at t+1 iteration (Figure 1f).


https://ijmt.ir/article-1-835-en.html

[ Downloaded from ijmt.ir on 2026-02-08 ]

Elham GhanbariAdivi / IMT 2024, Vol 20; p.26-50

Output

Exlem al
Criterion

Imitialize
Random
Population

Compute Density
factor

Update the location

of HB after digging Compute Density Compute

hole using equation factor Objective
(10) Function

Update the Is the Stop
location of HB Criterion Met?
after digging hole
using equation 13

Finish

(b)

Initialize Random

. Compute Objective
Population

Functions

Perform chasing Determine the best

Upie s isle e ool behaviorusing equation rat

rats using equation 16 14

Is the stop criterion met?

31


https://ijmt.ir/article-1-835-en.html

[ Downloaded from ijmt.ir on 2026-02-08 ]

Elham GhanbariAdivi / Predicting Sediment Transport Rate under VVegetation Cover Using Group Method of Data Handling and New Optimization ...

Initialize Compute
Random Objective
Population Function

Is the stop criterion met? Update Solutions using

NO .
equation 18

(d)

Compute Objective

Initilize location and velocity of particles e

Update the location of Update the velocity of

, criteri t? . - - : - :
Is the stop criterion met? particle using equation 21 particle using equation 20

(€)

Create GMDH structure

Prepare the mnitial
parameters of
Input data optimzation
7 algorithms

Use operators of
algonthms to update the

GMDH model

(M)

Figure 1. a: Structure of GMDH (Radiadeh and Kozlowski, 2020), b: The flowchart of HB, c: The Flowchart of RSOA,
d: The SCA flowchart, e: PSO flowchart f:The structure of optimized GMDH model
26 GMDH integration with optimization
algorithms
32


https://ijmt.ir/article-1-835-en.html

[ Downloaded from ijmt.ir on 2026-02-08 ]

Elham GhanbariAdivi / IMT 2024, Vol 20; p.26-50

The HBA, SCA, RSOA, and PSOA were used in this
study to compute polynomial coefficients. An
optimization problem based on decision variables and
an objective function was defined to determine the
GMDH parameters. The following levels are
considered when developing GMDH optimization
algorithms:

1- Classifying the data into training and testing data.

2- Inserting the initial values of polynomial coefficients
into the GMDH.

3- Running the GMDH at the training level. If the stop
criterion is met, the GMDH goes to the testing level,
otherwise, the GMDH connects to the optimization
algorithms.

4- The polynomial coefficients have unknown values.
Therefore, they are named the decision variables.

5- The initial values of polynomial coefficients are
referred to as the initial population of algorithms. For
instance, the location of particles represents the
coefficient values of polynomials. To this end, the
GMDH parameters' values are encoded to initialize
the population.

6- Each agent's objective function is computed. The
objective function is computed by inserting the
values of the GMDH parameters into the GMDH.
Following that, the RMSE is calculated as an
objective function.

7- Since the location of particles, rats, HBs, and
candidate solutions in SCA represents the value of
decision variables, the position of agents is updated
using advanced operators to obtain the new value of
GMDH parameters. For example, the location of HBs
was updated using HBA equations 10 and 13.
Updating the location of HBs implies that the GMDH
parameters' values have been updated.

8- The convergence carrion is checked. If the
convergence criterion is satisfied, the process
advances to level 3; if not, it proceeds to step 6
(Figure 1f).

2.7 Inclusive multiple model (IMM)

An individual model has several advantages and
disadvantages. Each model has its advantages and
disadvantages. For example, individual models are
easily implemented to predict variables. Optimization
algorithms can be coupled with them easily. Previous
studies have proved that the accuracy of individual
models is lower than the accuracy of ensemble models
[14]. The motivation for using the IMM model is to
decrease the generalization error of the prediction.
GMDH models have their limitations, and producing a
model with high precision is challenging. If modelers
integrate multiple GMDH models, the overall precision
will be boosted. This study combined the outputs of
multiple hybrids and standalone GMDH models using
an inclusive multiple model. First, individual GMDH,
GMDH- HBA, GMDH-RSOA, and GMDH-PSOA
outputs were obtained. Following that, the previous
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level's outputs were incorporated into a GMDH model.
In fact, the second-level GMDH model is critical for
assembling hybrid and standalone GMDH models. At
this level, the GMDH model creates a synergy between
multiple models. The GMDH generated the final output
by combining the advantages of multiple models.

2.8 Case study

An increasingly favored natural method among
engineers is to utilize tree stands of varying densities or
hybrid Protection (tree cover and structural protection) t0 combat
and diminish the harmful impacts of tsunami waves.
This is due to their ability to generate a turbulent flow
within the mass of a permeable structure, similar to a
barrier [41]. This study aims to determine the role of
coastal vegetation in decreasing sediment transport.
For this purpose, the data used in the research by
Mirzakhani et al., has been utilized, which is further
described in the subsequent laboratory conditions of
the mentioned research [42]. The waves examined in
this article fall under the category of shallow water
waves (relative depth less than 0.5). The experiments
were conducted in a flume located in Shahrekord
University's hydraulic laboratory. The flume's length,
width, and height were 20 m, 60 cm, and 60 cm,
respectively. The flume's floor and wall were
constructed of metal and Plexiglas, respectively. The
flume used is depicted in Figures 2a and Figure2b.
Experiments were conducted in a flume at an 8.6 m
distance. This interval was divided longitudinally into
three sections, 2m, 3m, and 3.6m to construct the water
tank, shore, and downstream. Based on field reports,
Palm tree is one of the resistive trees against the
destructive effects of waves. Accordingly, rigid plastic
cylinders were used to simulate cover vegetation on the
scale of 1:50 to match the model against the reality.
Table 2 shows the details of the experiments. The
experiment's water distribution system consists of a
piping network, a pumping system, and a water tank.
The beach was constructed using a galvanized sheet
measuring 1 m in length, 0.59 m in width, and 6 mm in
thickness. The beach was constructed on a fixed and
horizontal slope.

The tank at the start of the desired area was created
using a Plexiglas plate. Afterward, the sliding gate was
placed 2 m away from the Plexiglas wall. The initial
height of the input waves was simulated using a 50:1
scale following the height of the tsunami wave, which
was between 3 and 15 meters high. The tank was
topped off with water to the desired depth. The gate was
then quickly opened, and the height of the broken wave
was determined at the shore. Two gates were used in
this experiment. The upstream gate applies to generate
waves. The downstream flume valve balances the water
level. Along with the ADV (Acoustic Doppler
velocimeter), a video camera operating at a frame rate
of 30 frames per second was used to record the wave
characteristics at the refraction moment. ADV was
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used to record the wave velocity. The camera was
positioned against the flume's wall and adjusted to
include the beach in the frame. The constant sill height
(Y) was 6.5 cm. A dynamometer connected to the
transverse part of the flume was applied to record the
wave force crashed onto the beach, with and without
cover vegetation. Following preliminary experiments,
it was determined that three waves with heights of 25.6
cm, 39.5 cm, and 47 cm behind the upstream gate
generate waves with heights of 6, 9, and 12 cm on the
beach following the gate. The wave heights of 6, 9, and
12 cm correspond to the wave heights at the refraction
moment. The sediment transport rate depends on the
wave heights at the refraction moment [1]. The details
of the forest cover are shown in Table 2 and Figure 3a.
Two triangular and rectangular forest cover layouts
were used to examine the effect of different vegetation
layouts on sediment transport. The rectangular and
triangular layouts for the vegetation cover density VCD
=273 (number/m?) and VCD =66 (number/m?) are
shown in Figures 3b and 3c. Sediment transport rates
are depicted in Figure 3d. Furthermore, Figure 3e
illustrates the heights produced at the refraction
moment for the VCD=273 sample.

TR @

Sand particles ranging in size from 0.25 to 0.59 mm
with an average diameter of 0.35 mm were used as
sedimentary porous materials in this study. The wave
velocity values in the conducted experiments depend
on the wave height under consideration and the
laboratory conditions taken into account, including the
speed of the wave-generating gate opening. Averagely
the wave velocity varies between 1-2 meters per
second. Moreover, IMM, hybrid, and standalone
GMDH models were used to predict sediment transport
rates.
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All dimensions are in meters

1- The main water pipe 2- Inlet water pipe to the wave tank 3-Wave head supply tank 4-Sliding zate
3- Mowvable frame (with knife edge support) 6-End valve 7-Flow drainage tank
Figure 2. a: Details of used Flume, and b: The structure of flume

Table 2. The details of layout of vegetation cover

Longitudinal - o, Density Number of stems Configuration Configuration
and transverse of rows (number i i (Rectangular) (Triangular )
distance m?) Rectangularity Triangular g g
4 24 12 10
20%20 3 18 9 8 R, T,
2 12 6 5
5 40 20 18
4 32 16 14
1515 3 24 12 11 R, T,
2 16 8 7
7 77 35 31
6 66 30 27
10x10 4 44 20 18 Rs T3
3 33 15 14
13 273 117 111
10 210 90 85 R
5x5 7 147 63 60 ! Ts
4 84 36 34
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Figure 3. a: Configurations of forest covers, b: rectangular layouts for the vegetation cover density (VCD) =273, c:
Triangular and triangular layouts for the vegetation cover density (VCD) =273 and d: sediment transport data points,
e: produced waves at the refraction moment
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According to Jalil-Masir et al. ([1, 43]), the sediment
transport rate was determined by a variety of factors,
including the diameter of the sediments, the diameter
of the stems, the cover density, the initial height of the
wave, the wave velocity, the cover height, and the wave
force. The input parameters in Table 3 were used to
predict the sediment transport rate under the specified
vegetation conditions. The sediment transport rate was
predicted in this study using 393 data sets.

In this study, the following levels were considered for
the experiment:
1- The sand was used as the bed material for the
flume.
2- The nets were placed after the sediment drain
gate for gathering sediments.

3- The upstream reservoir was filled with water.

4- The camera and velocity meter were located
on the beach for recording information.

5- A pulley and weight system were applied to
open the upstream gate abruptly.

6- The solitary wave was generated based on an
abrupt opening gate.

7- The camera and velocity meter recorded the
wave height and velocity in the refraction

point.

8- The sediment samples were gathered
downstream.

9- The samples were stored in the laboratory at 25
°C for 36 h.

10- A sensitive balance was used to determine the
weights of samples.

Table 3. The used inputs for predicting sediment transport rate

Parameter Average Maximum Minimum Standard deviation
Number of experiments: 393 and number of data:393
height at the refraction moment (Hw) (cm) 9 12 6 2.64
(height wave after gate)
Vegetation cover density (number /m?) (DS) 73.33 273 12 75.44
Wave force (F) (unit:N) 51.66 190.29 12.86 33.50
Dso (mm) 0.33 0.35 0.30 0.26
Height of vegetation cover (hy) (cm) 32 35 30 5.73
cover stem diameter D (cm) 0.55 0.90 0.30 0.40
Velocity (m/s) Vw 1.46 1.53 1.34 0.03
The following indices were used as follows [44]: N )
1- Root mean square error Z(RSTES —RST,)
NSE=1-- (25)
N 2 — \2
Z(RSTob_RSTes) Z(RSTDb _RS’I_;)I’J)
- i=1
RMSE =1|-=
N (22) 5- Fraction of standard deviation (FSD):
2- Mean absolute error (MAE)
SD(RST,)-SD(RST,
1 N FSD(RSTLQ,RST;I]):Z*| ( LS) ( ob)| (26)
MAE = NZU{STM —RST, (23) ‘ SD(RST,)+SD(RST,,)
i=1

3- Percentage of bias (PBIAS)

N
> (RST,-RST,,)
PBIAS == (24)
> RST,

i=1

4- Nash-Sutcliffe efficiency

Where RST: rate of sediment transport, SD(RST))

SD: standard deviation of estimated RST, SD(RST,,)
: standard deviation of observed RST, RSTqs: 0bserved
RST, RSTe: estimated RST, RST,: Average
observed RST, N: number of data.

3. Results and discussion
3.1 Training and testing level size selection

The various data sizes for the individual models were
tested and depicted in Figure 4 to determine the optimal
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size for simulations at the training and testing levels.
As illustrated in Figure 4, the optimal training and
testing data sizes for all models were 70% and 30%,
respectively, because the objective function (RMSE)
had the smallest values for these data sizes. For

Objective Function

02210
02101
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0.1665

0.1556
0.1447

0.1338

wowoung 2a1192100
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Tra,
JQI}? e,
& d':’faa/o é\’be’
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Q
.
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Z
a
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j=]
(¢!
&
!

0.7120

0.6893

0.6666

06439

06212
0.5986
05758
0.5531
05304
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0.4850

example, using the GMDH model, the objective
function for 50%, 55%, 60%, 65%, 70%, and 80% of
data was 1.05, 0.91, 0.967, 0.845, 0.800, and 0.833,
respectively. As a result, 70% and 30% of the data for
the training and testing levels were chosen in this study.

Objective Function
0.5980

\

05827

\

05274

0.4921

04568

04215
0.3862

0.3503

N

vonoung 2An0fa0

03156

0.2803

0.2450

Objective Function

Objective Function
 0.8840

048728
08516
- 0.8304
- 0.8092
- 0.7880
- 0.7668

- 0.7456

- 0.7244

- 0.7032

e 01,6820

Figure 4. The choice of best size for data

3.2 Best
parameters

determination for random

value

Each optimization algorithm has random parameters
(RPs). It is critical to determine the optimal value of
RPs in order to achieve the best results when using
optimization algorithms. The objective function varies
with different values of RP, as shown in Table 3. The
HBA population ranged in size from 50 to 200. It was
discovered that the optimal population size was 100
because it resulted in the smallest objective function

37

value (RMSE). The maximum number of HBA
iterations was variable between 40 and 160. The best
value of a maximum number of HBA iterations was 80
because it resulted in the lowest objective function
value (RMSE). The population size of RSOA varied
between 50 and 200. The best value for the RSOA
population size was 100. At the maximum number of
iterations =100, the RSOA achieved the lowest value
of the objective function. The values of other algorithm
parameters were determined via a similar process.
While the value of one parameter was varied, the values
of the other parameters remained constant.
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Table 4. The sensitivity analysis of random parameters of algorithms

(Population size: POS, Objective Function: OBFU, the maximum number of iterations: MANI)

HBA

POS OBFU

50 0.167

100 0.123

150 0.190

200 0.198

RSOA

POS OBFU

50 0.345

100 0.267

150 0.298

200 0.312

SCA
POS OBFU Maximum OBFU
number of
iterations

50 0.345 100 0.367
100 0.267 200 0.266
150 0.298 300 0.399
200 0.312 400 0.412

MANI OBFU
40 0.169
80 0.134
120 0.187
160 0.98
MANI OBFU
50 0.367
100 0.266
150 0.399
200 0.412
K, OBFU K, OBFU
/3 0.389 0.60 0.376
2n/3 0.276 0.80 0.265
3n/3 0.265 1.00 0.298
4r/3 0.291 1.2 0.322

3.3 Best input scenario selection

Eight input scenarios were considered in this section to
determine the effect of inputs on outputs. The input
scenario is defined in Table 5. Figure 5 illustrates the
objective function's (RMSE) value for various input
scenarios and models. The RMSE of GMDH-HBA
based on input scenario (1) -(8) were 0.123 cm?/s,
0.233 cm®/s, 0.322 cmd/s, 0.412 cm?3/s, 0.523 cm?®/s,
0.612 cmds, 0.789 cm®/s, and 0.812 cm?dfs,
respectively. It was discovered that utilizing all input
variables resulted in the best results. By excluding the
wave height at the refraction moment from the input
combination, the RMSE was increased by 84%.
Additionally, removing the cover height from the input
combination increased the RMSE by 47%. Thus, the
highest and lowest significance values for the GMDH-
HBA were the wave height at the refraction moment
and the cover height, respectively.

The RMSE of GMDH-RSOA based on the input
scenarios (1) -(8) were 0.267 cm®/s, 0.278 cm3/s, 0.392
cm®/s, 0.567 cmd/s, 0.612 cmd/s, 0.823 cm?/s, 0.901
cm?®/s, 0.911 cm?¥/s, respectively. By removing the wave
height from the input combination, the RMSE was
increased by 70%. The second critical parameter for the
GMDH-RSOA was the wave velocity. Other models'
results indicated that the most important parameters for
predicting sediment transport rate were wave height,
wave velocity, density cover, and Dsq.

3.4 Model accuracy evaluation

The first input scenario was used to run all models in
this section. In the preceding section, the first input
scenario produced the best results. Figure 6 illustrates
radar plots to assess the accuracy of models. The
accuracy of models based on PBIAS is compared in
Figure 6a. The IMM had a PBIAS of 8%, whereas the
GMDH-HBA, GMDH-RSOA, GMDH-SCA, GMDH-
PSO, and GMDH at the training level had PBIASs of
12, 16, 22, 27, and 33%, respectively. According to the
outputs, the IMM and GMDH based on PBIAS
produced the best and worst results, respectively.
PBIAS of GMDH-HBA was 15% at the testing level.
The HBA outperformed the other optimization
algorithms. The values of the models' NSE are shown
in Figure 6b. The IMM had an NSE of 0.98 at the
training level, whereas the GMDH-HBA, GMDH-
RSOA, GMDH-SCA, GMDH-PSO, and GMDH had
NSEs of 0.97, 0.94, 0.87, 0.85, and 0.80, respectively.
The IMM, GMDH-HBA, and GMDH-RSOA
demonstrated the highest degree of accuracy at the
testing level. Figure 6¢ illustrates the FSD values for
the various models. The FSD of IMM was 1.11, while
the FSDs of GMDH-HBA, GMDH-RSOA, GMDH-
SCA, GMDH-PSO, and GMDH were 0.23, 0.67, 0.85,
1, and 1.22, respectively. The accuracy of the results
indicated that the GMDH-HBA performed better than
the GMDH-RSOA, GMDH-PSOA, GMDH-SCA, and
GMDH. Figure 6d illustrates the MAE values for the
various models. The IMM decreased the MAE of the
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IMM models GMDH-HBA, GMDH-RSOA, GMDH-
SCA, GMDH-PSO, and GMDH by 24%, 58%, 58%,
75%, and 80%, respectively, at the training level. The
IMM was found to have the lowest MAE at the testing
level. This section's findings indicated that the IMM
and GMDH-HBA had the highest accuracy. The IMM
operates based on the possibility of multiple
independent models. When an IMM model takes
advantage of the multiple individual models, the IMM
model's accuracy increases significantly. The HBA is
equipped with advanced operators. The HBA solutions

can be updated using equations 10 and 13. This enables
the HBA to circumvent local solutions. Additionally,
these equations enable the HBA to improve the
solution's quality. The IMM model in this study
performed better than other models. Jalil-Masir et al.
used regression models and the same data points for
predicting STR. A regression model and the data points
of the current study were used by Jalil-Masir et al. (to
estimate STR. They reported the R? value of 0.84 for
the regression model. Thus, the IMM of the current
study performed better than the regression models [1].

Table 5. The defined input scenarios for the models

1 H (W), V(W), D(S), F, Dsg, h(v), D
2 H (W)! V(W), D(S)l Fy D(SO); D
3 H (W), V(W), D(S), F, Deso), h(v)
4 H (W), V(W), D(S), Do), h(v) , D
S H (W), V(W), D(S), F, h(v), D
6 H (W), V(W), F, D(so), h(V), D
I H (W), D(S), F, Do, h(v), D
8 V(W), D(S), F, Do), h(v), D
RMSE
1.550
Input (8)

o Input (7) 1.264
.2

s

.S Input (6)
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3 Input (5) 0:0780
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Figure 5. The computed RMSE for different input scenarios and models
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Figure 6. Radar plots base for a: PBIAS, b: NSE, c: FSD, and d: MAE

For the reasons stated previously, the HBA
outperformed the other algorithms. While back
propagation was used to train the GMDH, optimization
algorithms significantly improved its accuracy. The
residuals histogram is shown in Figure 7. The
histogram of the residual for the IMM model is shown
in Figure 7a. In this Figure, 308 and 73 data points fall
within the -1 and 1 bin centers, respectively. Other bin
centers receive a small number of data. The histogram
of the residual for the GMDH-HBA model is shown in
Figure 7b. The residual of 263 data points is 2.5.
Additionally, 112 and 7 data points fall in the -2.5 and
-7.5 bin centers, respectively. The residual histogram
for the GMDH-RSOA model is shown in Figure 7c.

The residuals for the 301, 60, 6, and 5 data points are
2.5, -2.5, -7.5, -12.5, and -17.5, respectively. The
residual histogram for the GMDH-SCA model is
depicted in Figure 7d. The residuals for 300, 53, 15, 7,
and 5 data points are 2.5, -2.5, -7.5, -12.5, and -17.5,
respectively. The histogram of the residual for the
GMDH-PSOA model is shown in Figure 7e. The

40

residual distribution of 272, 73, 15, 9, and 5 data points
is 2.5, -2.5, -7.5, -12.5, and -17.5, respectively. Other
data points' residuals fall into the other center bins.
Finally, Figure 7f depicts the histogram of GMDH
residuals. The residuals for 309, 25, 17, 12, 8, 5, and 2
data points are 2.5, -2.5, -7.5, -12.5, -17.5, -22.5, and -
27.5, respectively. Other data points' residuals fall into
the other center bins. Some of the outputs of GMDH
had residuals of >-42.5. In general, the IMM and
GMDH outperformed the other models in this section.
The boxplots for the models are shown in Figure 7g.
The median of the observed data, IMM, GMDH-HBA,
GMDH-RSOA, GMDH-SCA, GMDH-PSOA, and
GMDH were 58.5 cm®fs, 58.5 cm®/s, 58.5 cmd/s, 63
cm?/s, 63 cm®/s, 63 and 63 cm?/s, respectively. The
mean of the observed data, IMM, GMDH-HBA,
GMDH-RSOA, GMDH-SCA, GMDH-PSOA, and
GMDH was 67.0 cm®/s, 67.0 cm®, 66.7 cm®/s, 68.7
cm’/s, 69.0 cm®s, 69.7 cm®s, and 69.8 cm?/s,
respectively. It was discovered that the IMM and
observed data had a high degree of correspondence.
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Figure 7. The histogram of residual values of models for a: IMM, b: GMDH-HBA, ¢: GMDH-RSOA, d: GMDH-SCA,
e: GMDH-PSOA, f: GMDH, and g: The boxplots of models for estimating STR

The density scatterplots are depicted in Figure 8. When
many data points cannot be clearly identified, the
density scatterplot is advantageous. A density
scatterplot determines the density of data in a given
area. The density scatterplots for the IMM, GMDH-
HBA, GMDH-RSOA, GMDH-SCA, GMDH-PSOA,
and GMDH are shown in Figures 8a, 8b, 8c, 8d, 8¢, and
8f, respectively. IMM, GMDH-HBA, GMDH-RSOA,
GMDH-SCA, GMDH-PSOA, and GMDH had R?

R2=0.9963

values of 0.9963, 0.9887, 0.9741, 0.9669, 0.9443, and
0.9267, respectively. The density values indicate that a
substantial amount of data was located between 43.80
cm? and 73.70 cm?3, implying that this interval contains
the highest density for all models. In this region, a large
number of data points overlap. All models exhibit a low
density value at the upper and lower limits of the
sediment transport rate.
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Figure 8. The heat scatter plots of models

3.5 Further discussion

This section examined the effect of various parameters
on sediment transport rate. The vegetation cover was
used in this study to conduct the experiments.
Vegetation cover reduces sediment transport and wave
velocity. Figure 9a illustrates the velocity and height
wave variations for different vegetation cover densities
(VCD) using a rectangular layout. When the VCD
value increases, the wave velocity should be increased
to maintain a constant height wave. This indicates that
utilizing forest cover effectively reduces the height
wave at the refraction moment. For example, at VCD
=12 and wave height=6 cm, the rectangular layout
produces a wave velocity of 1.34 m/s. For maintaining

44

a constant height of 6 cm at VCD =44 and VCD =210,
the wave velocity should be increased from 1.34 (VCD
=12) to 1.40 (VCD =44) m/s and 1.34 (VCD =12) to
1.42 (VCD =210) ml/s, respectively. Figure 10b
demonstrates the velocity and height waves variations
for three VCD s of 12, 44, and 210 based on a triangular
layout.

The triangular layout results also indicated that
increasing the VCD decreased the wave height. Figures
9a and 9b demonstrated that the triangular layout was
more effective at reducing height wave than the
rectangular layout. For example, at VCD =12 and wave
height=6 cm, the rectangular layout produces a wave
velocity of 1.34 m/s, while the triangular layout
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produces a wave velocity of 1.38 m/s. The velocity
should be increased from 1.34 m/s to 1.38 m/s to
maintain the 6 cm height in the triangular layout. In
fact, the triangular configuration is more effective at
reducing wave force. As a result, it can significantly
reduce wave velocity. The results of Figures 13 and 14
3 demonstrate that as wave height increases, velocity

12

=
[N
1

=
o
1

o
1

Height at the refraction moment (m)
~ ©
1 1

increases as well. The velocity for H=6, H=9, and H=12
cm was 1.34 m/s, 1.38 m/s, and 1.42 m/s in the
rectangular layout's VCD =12. Since the triangular
layout increased the drag force and cover resistance
against the flow, it could significantly decrease the total
sediment rate.

Forest cover desity (Number/ m?)
210.0
185.3
160.5
135.8
111.0
86.25
61.50
36.75

12.00

—
1.42

1.36

1.38 1.40

—
1.44

Velocity (m/s)

12

[uy
[
1

[y
o
1

o]
1

Height at the refraction moment (m)
~ ©
1 1

6 —

a

T T T T
146 148 150

Forest cover desity (Number/ m?)

210.0
185.3
- 160.5
- 135.8

| 1110

- 86.25

- 61.50

36.75
12.00

1.38 1.42

1.40

1.44

1.46

Velocity (m/s)

b

1.48 1.50 1.52

Figure 9. The investigation of height and wave velocity for different CFCs based on a: rectangular layout and b:
triangular layout

Figure 10a plots the dimensionless sediment transport
rate (DSTR) against the dimensionless wave height
ratio (H (at the refraction moment)/Y (sill height)) for
the Ry configuration. The DSTR is calculated by
dividing the mass of sediments in the presence of cover
vegetation by the mass of sediments in the absence of
cover vegetation. By increasing the height of the
waves, the sediment transport rate is increased. For
instance, when the number of rows of vegetation cover
was equal to four, the DSTR for H/Y=0.65, H/Y=0.9,
and H/Y=1.2 was 0.52, 0.58, and 0.61, respectively.
NRVC is a numerical value that indicates the number
of rows of vegetation cover. DSTR versus H/Y plots
for R2, R3, and R4 configurations are shown in Figures

45

10b, 10c, and 10d, respectively. DSTR decreased as the
number of rows of forest cover increased in these
figures. For example, in the H/Y=0.65 configuration of
R4, the DSTR of NRVC=12, NRVC=10, NRVC=7, and
NRVC=4 was 0.14, 0.20, 0.30, and 0.39, respectively.
The DSTR versus the H/Y for the T1 configuration is
depicted in Figure 10e.

Increase in H/Y resulted in an increase in DSTR in this
Figure. For instance, the DSTR for H/Y=0.65,
H/Y=0.9, and H/Y=1.2 was 0.42, 0.50, and 0.55 when
the number of rows of vegetation cover was equal to
four. The DSTR versus the H/Y is depicted in Figures
10f, 10g, and 10h for the T2, T3, and T4 configurations,
respectively. For example, in the T, configuration with


https://ijmt.ir/article-1-835-en.html

[ Downloaded from ijmt.ir on 2026-02-08 ]

Elham GhanbariAdivi / Predicting Sediment Transport Rate under VVegetation Cover Using Group Method of Data Handling and New Optimization ...

H/Y=0.65, the DSTR of NRVC=12, NRVC=10,
NRVC=7,and NRVC=4 was 0.12, 0.20, 0.25, and 0.36,
respectively. When comparing the R1, R2, R3, and R4
configurations, the R4 configuration produces less
sediment than the others. The DSTRs of the R1, R2,
R3, and R4 configurations were 0.53, 0.38, 0.20, and
0.12, respectively, in the H/Y=0.65 with NRVC=4.
This implies that forest cover density increases as
longitudinal and transverse distances decrease. When
the vegetation cover density increases, the
sedimentation rate can be significantly reduced.

The performance of Ty, T2, T3, and T, demonstrates that
the T, configuration is more effective at reducing
sediment rate than the other configurations. The DSTR
of Ty, Ty, T3, and T4 configurations was 0.42, 0.28,
0.25, and 0.11 in the H/Y=0.65 with NRVC=4,
respectively.

The rectangular and triangular layouts indicated that
the triangular layout performed better in reducing
DSTR than the rectangular layout. For the NRVC=5,
the DSTR of the H/'Y=0.65, H/Y=0.90, and H/Y=1.2 in
rectangular layout was 0.39, 0.41, and 0.42,
respectively. For the NRVC=5, the DSTR of the
H/Y=0.65, H/Y=0.90, and H/Y=1.2 in the triangular
layout were 0.28, 0.37, and 0.41, respectively. The
triangular configuration increased drag force and force-
resisting area, slowing sediment transport.

Figure 10i shows the sediment transport rate versus
coastal forest cover density. It was observed that the
increasing density resulted in a significant decrease in
the sediment transport rate. The sediment transport rate
varied between 14 and 141 cm?/s. It means that as forest
cover density increases, the sediment transport rate
decreases by 90%. The findings of this study

Number of Rows
0.75 4

4.001
0.70 -

0.65

3.001
0.60 -

Dimensionless Sediment Transport Rate
2
4
1
[ )

o 2.001
0.50

T T T T T T
0.6 0.7 0.8 0.9 1.0 11 1.2
Wave Height (H) / Sill Height (Y) (Dimensional ratio of wave height)

(@ (number of rows:2,3 ,and 4)

corroborated those of previous researches. According
to Jalil-Masir et al. [1, 43], the triangular layout
performed better than the rectangular layout.
Additionally, they reported that sediment transport rate
decreased as forest cover density increased. Moreover,
Parnak et al. stated that vegetation covers reduced
sediment transport by 70% [9].

From the obtained results, the following points infer:
1) Various vegetation layouts consisting of triangular
and rectangular layouts result in different effects on
the capability of the sediment transfer rate (SDR).

2) The triangular layout is more efficient than the
rectangular one due to its larger contact surface area
with the flow.

3- Determining input model parameters is crucial in
predicting the sediment transfer rate. However, the
wave height and wave velocity significantly affect the
sediment transfer rate (STR) capacity in a significant
way.

4- Vegetation layout is not only limited to the
rectangular and triangular types. Future studies can
also investigate other vegetation layout types such as
random layout, zigzag layout, etc.

5- The consequences of the ensemble model reveal
that using outputs of several individual models in the
structure of an ensemble model may remarkably
enhance the result accuracy.

6- Combining the GMDH model with optimized
algorithms was a drastic method to improve the
GMDH results accuracy exactness.

7- Each optimized GMDH model had distinct
accuracy because of dissimilar optimizing algorithms
patterns.
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Figure 10. (a-d) The variation of sediment transport rate versus height wave for a: R1 configuration, b: Rz
configuration, c: Rs configuration, d: R4 configuration
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4. Conclusion

Predicting sediment transport rates is critical for
environmental pollution reduction. Decision-makers
require robust models for predicting sediment transport
rates in coastal regions. The coastal forest is one
method for reducing the rate of sediment transport. The
effect of coastal forests on sediment transport was
investigated in this study through a comprehensive
experiment. Additionally, the sediment transport rate
was predicted using various soft computing models.
The present study made several innovations, such as
introducing a new ensemble model for predicting
sediment transport, developing new optimization
algorithms  for training GMDH models, and
investigating the effect of various parameters on
sediment transport rate.

The inputs were the diameters of the sediments, stem
diameter, cover density, wave height, wave velocity,
cover height, and wave force. The HBA, RSOA, SCA,
and PSOA were used to enhance the performance of the
GMDH models. The current study predicted the
sediment transport rate using an IMM model based on
the outputs of GMDH models. This model took
advantage of the strengths of multiple GMDH models.
The MAE of the IMM was 0.145 m3/s, while the MAESs
of the GMDH-HBA, GMDH-RSOA, GMDH-SCA,
GMDH-PSOA, and GMDH in the testing level were
0.176 m®/s, 0.312 m%s, 0.367 m3/s, 0.498 m?/s, and
0.612 m¥s, respectively. The NSE of IMM, GMDH-
HBA, GMDH-RSOA, GMDH-SCA, GMDH-PSOA,
and GHMDH were determined to be 0.95, 0.93, 0.89,
0.86, 0.82, and 0.76, respectively.

The study of the effect of forest cover on sediment
transport rates revealed that coastal forecast cover was
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