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ABSTRACT

In this paper, the application of distributed-lumped (hybrid) modeling
technique (DLMT) in the modeling of longitudinal (axial) vibration of marine
shaft system is investigated. The equation of motion for the longitudinal
vibration is solved in new analytical method, and modeled as a series of
interconnected distributed and lumped elements. Natural frequencies of a rotor
system with various elements are calculated based on the distributed lumped
modeling technique (DLMT). The results obtained by this method are
compared and verified with the results of other techniques, such as FEM, using
ANSYS software, and the mode shapes are also presented. The method is then
employed for calculating the natural frequencies of a marine propeller shaft
with multiple elements such as different couplings. The results are compared
and verified with the frequencies and mode shapes obtained by KissSoft
software. It is shown that the presented method provides highly accurate
results, while it can be simply and effectively applied to the complicated

systems.

1. Introduction

Vibration modeling of industrial systems, especially
rotating shafts, is one of the fundamental issues in the
engineering design of dynamic systems. Natural
frequencies of rotating shafts should not be presented
near the working revolution domain. Moreover, the
condition monitoring (CM) of sensitive and costly
plants such as ships and turbines needs accurate
appreciation of different elements and their effects on
the whole system vibration [1]. Condition Monitoring
for rotating machinery incorporates a wide range of
techniques. Developments are continually made with
the use of new analysis methods, increased computing
power, measurement techniques, and so on. Therefore,
developing an accurate vibration model of industrial
systems has been one of the main goals of mechanical
engineers for decades.

Different analytical solutions are proposed for the
simple cases of vibrating systems. However, there is no
analytical and precise method for vibration modeling of
the complicated systems combined of various shaft and
disk elements; such as gears, propellers, pulleys, and so

on. In such cases, the proposed techniques widely
utilize spring-mass-damper models, such as references
[2, 3]; or numerical and approximate methods; such as
transfer matrix method (TMM) [4] and finite element
method (FEM) [5].

Among different methods of modeling systems such as
lumped-lumped modeling technique (LLMT) and
distributed-lumped modeling technique (DLMT), or
numerical and approximate methods such as transfer
matrix method (TMM) and finite element method
(FEM), it is clear that the model combined with both
the distributed and lumped elements is the best
representative of complex and accurate systems.

The distributed- lumped modeling technique (DLMT)
was firstly introduced by Whalley [6] for the second
order systems. This technique was applied by
Aleyaasin et al. [7] for calculating the flexural
frequencies of Euler-Bernoulli beams using 4x4
matrices. Recently, DLMT was employed to
investigate the flexural vibration of a multi-step turbine
shaft using Timoshenko beam theory [8]. The
distributed-lumped method can be applied to model the
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torsional [9] and flexural [10] vibrations as well. This
technique can also be employed to calculate the
frequency and time responses in forced systems [9].
For the vibration model of the shaft with FEM, the shaft
is discretized in many elements, and the mode shape is
approximated by some shape functions. Hence, the
procedure introduces approximations in modeling, and
finally the accuracy depends on the number of
elements. In this method, mass and stiffness matrix
orders are 2(n+1)x2(n+1) for n elements.

The transfer matrix method (TMM) also deals with the
shaft by discretizing it in many elements. In this
method, mode shape is approximated using various
separated shaft (field) and disk (point) elements. The
shaft element has only elastic properties without mass,
and the disk element possesses only mass and inertia
moment without elastic characteristics. Therefore,
both elements possess approximations in modeling,
and finally the accuracy depends on the number of
elements as well as other factors.

In contrast with FEM and TMM, the DLMT deals with
the shaft as one continuous element with inertia and
elastic effects, and since the presented matrix form is
based on the main solution of governing equations, no
approximation is utilized. Therefore, mathematically or
physically; no simplification neither approximation has
been taken into account. Another advantage of the
DLMT, compared with the FEM, is the reduced size of
matrices and equations. The transfer matrix order of the
entire system in the DLMT is just 2x2 for longitudinal
vibration. Moreover, the boundary conditions (BCs) of
the system could be easily applied to the model.

In this study, a method based on the distributed lumped
modeling approach is proposed to solve the governing
equations of motion for the longitudinal vibration. The
method is then employed to model a general three—
stage distributed-lumped-distributed system with
clamped-free boundary conditions (BCs), which are
more common in real systems. To check the
correctness and accuracy of the present method, the
natural frequencies of the system achieved by this
method are compared with those obtained by FEM
utilizing ANSYS software. The method is then
employed to obtain the frequencies of a marine
propulsion system, and the results are compared with
KissSoft software outcomes. The mode shapes of
propeller shaft system are also presented.

2. The General Distributed-Lumped Model
Generally speaking, systems in the hybrid modeling
technique are considered as the combination of two
types of elements:

1) The distributed element, which is the main part
of shafts and rotors; with the distributed mass or inertia.
2) The lumped element, which is the
supplementary part of shafts and rotors; with the
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concentrated mass or inertia such as disks, gears,
propellers, pulleys, and so on.

In this way, a system is considered as a combined set
of distributed and lumped elements, in which the final
vibration model of system is obtained by setting the
distributed and lumped matrices of different parts and
combining them together (see Figure 1). Distributed
and lumped matrices are formed according to the
analytical equations of motion, so this is the highly
accurate technique in contrast with the other
approximate techniques such as TMM (based on
lumped elements), FEM, and so on. Another advantage
of this technique is that the continuity conditions
between elements are simply satisfied; and only the
boundary conditions (BCs) of the system should be
applied to the model.

Po Pi D2 Pn-1 Pn

O_’ Distributed > Distributed L 5 — 5 Distributed >
oF or | smssen = oF
Lumped Lumped | o Lumped
O_’ Element » Element [—> —»| Element [—>
u u U, u u,

5 )i 1l
1", element 2" element n" element

Figure 1. General series representation of a distributed
lumped parameter system (hybrid model)

2.1. The Transfer Matrix for Distributed Element
The equations of motion for longitudinal vibration of a
thin rod with the density p and the modulus of elasticity
E can be expressed by the following equations (e.g., see
[11, 12]):

p(xt) pAazu(x,t)

Y 2 1)
0
u(x,t) _ p(x,t) )
OX AE

Where u(x,t) and p(x,t) are the displacement and
internal force functions, x is the distance along a section
and tis time.

Differentiating Eqg. (2) with respect to x and

substituting for dp/ox in Eq. (1) yields:

qu(x,t) _Bazu(x,t)

x2 E a2 ®

Also, differentiating Eq. (2) twice with respect to t
results in:

83u(x,t):i82p(x,t)

4
oot AE gt @
Differentiating Eq. (1) with respect to x gives:
2 3
oD _ p D )
OX oxot
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Substituting Eq. (4) into (5) results in:

o*p(xt) _ p 0%p(x.t)
x? B at?

(6)

Equations (3) and (6) are the main equations of
longitudinal vibration. Next, assuming zero initial
conditions, Laplace transformation of equations (6) and
(3) gives:

m_ﬁszp(s t) =0

ox2 E

) 7)
au—(S’t)—ﬁszu(s t)=0

ox? ’

where s is the Laplace transform variable. Eg. (7) can
be written in compact form as:

ok

2 -T%=0 8)
OX
where
k=u(x,s) or p(x,s) 9
and
Y2,
I'=s.|= 10
E (10)

The general solution of Eq. (8) is given by:

r I'x

k=re *+re”

where:

el = coshI'x +sinh T'x

e X — coshI'x —sinh I'x

Therefore we have:

k= (r+rp)coshI'x+(rp —rp)sinhI'x (12)
Hence, the solution of Eq. (7) will be:
p(X,s) = AcoshI'x+ BsinhI'x

(12)

u(x,s) =CsinhI'x + DcoshT'x

The unknown constants of integration A and D are
obtained by imposing the boundary conditions at x=0,
that is:

A=p(0,s)

D =u(0,s) (13)

Next, it remains to find B and C in Eqg. (12).
Differentiating Eqg. (12) with respect to x and
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substituting for op/ox and du/ox from Laplace

transformation of equations (1) and (2), respectively;
gives:

pASZU(X, s) = AI'sinh I'x + BI"coshI'x

1 . (14)
— p(x,8) =CI'coshI'x+ DI'sinh I'x
AE
Now putting x=0 in Eq. (14) results in:
B =sAy/ pE u(0,s) =£u(0,s)
(15)

C=

1 1
SA\/p_E p(O,S) _g p(O!S)

Hence, the solution of Eq. (7) for the j*" element can be
expressed in matrix form as:

{pj(x,s)}_ 1coshl“jx gjsinhIjx {pj(o,s)}

Uj(X,S) - aSlnhFJX COShFjX uj(015)
where:
Sj =SAj\PE]

According to Figure 1, for the j" element at x=0 we
have:

Pj(0,8)=pj_q(s)
uj(0,s)=uj_y(s)

Therefore:
coshI';l;
{Pj(s)}_ 1 1)
u:(s) [ | —=sinhI;l;
i(s) £ i'i
Which can be expressed as:

cosh'jl uj_1(s)

o}, ~tolio} )
UJj U
while:
COShFj'j nginhFj”
[TD]J' - isinhl“jlj coshTjl ;
Sj

which is the main transfer matrix for the longitudinal
vibration of distributed element in DLMT.

2.2. The Transfer Matrix for Lumped Element
The equation of motion and continuity conditions in
Laplace domain of the j lumped element, which is
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exposed to the applied force f in the x-direction are
written as:

p;i(s)- pj1(s)+ fj(s)=m;s?uj(s)
uj(s)=uj_1(s)

17

Therefore, Eq. (17) can be expressed in the matrix form
as:

pj(s) 2 ([Ppj-a(s)| [ f;
J _ 1 m jS J 4 j (18)
uj(s)| [0 1 |J{ujals) 0
In the absence of the force f, the matrix form can be
expressed as:

o, T

while:

elg "

which is the main transfer matrix for the longitudinal
vibration of lumped element in DLMT.

According to Figure 1, a shaft with multiple elements
can be considered as a vibrating system with various
types of distributed and lumped elements, and the
overall transfer matrix of the system is obtained by
putting these elements together, based on their order
and physical properties.

(16)

3. llustrative Example and Verification

In this section, the methodology outlined previously is
applied to a shaft with a disk on its middle (see Figures
2 and 3), which is a simplified model for common
industrial systems. The results are then compared with
the FEM solution. The properties of the system
considered here are shown in Table 1. As mentioned
already, the present method can be used for analyzing
systems with any number of distributed and lumped
elements without any increasing in difficulty.

Table 1. Properties of the propeller shaft model

Parameter Quantity
Shaft Overall Length 2L 4m
Shaft Diameter d 0.150 m
Density of Shaft Material p 7800 kg/m?
Modulus of Elasticity for Shaft E 200 GPa
Shear Modulus of Shaft G 80 GPa
Disk Thickness t 0.080 m
Disk Radius r im
Disk Mass 100 kg
Disk Moment of Inertia 50 kgm?
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Figure 2. General model of rotating shaft system
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— » » —
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Figure 3. Hybrid model of rotating shaft system

3.1. The DLMT Solution

To represent the main hybrid model of the system, it
should be noticed that the system is combined of two
distributed and one lumped elements (Figure 3). For the
distributed elements 1 and 3 the transfer matrices can
be written according to Eq. (16) as:

el i) o

where:
coshI'l  &sinh Tl

Tol= ésinhl‘l cosh Tl (20)

In addition, the transfer matrix for the lumped element

P2 | _ P1
{UZ } =[T ] {ul} (21)
where:
2
L, {; " } (22)

Substituting Eg. (19) into (21) yields [10,11]:

1 a2 : 2 2
cosh2I'l + =m. s sinh 2T1 sinh 2Tl + mys cosh“ Tl
{m}: M ] 2 {Po}

Y3J | e Lsinh 211 + mpe2s2sinh? Tl cosh 2l + %mzé’lsz sinh 21 |10

(23)

Equation (23) may be shown in the simple form as
follows:

1)

where:

(24)
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cosh2I'l + % ng‘lsz sinh 2Tl

&sinh 2T + m232 cosh? Tl

[r1=
5‘1sinh 2l + m2§‘2523inh2 I'l cosh2rl + %ng‘lszsinh 2ri

(25)

Equation (25) is the transfer matrix of the overall
system relating axial forces and axial displacements of
the left and right end of the system.

The Laplace transform variable ‘s’, in general, is the
representative of equation s=o+iw; in which the real
part (o) shows damping, and the imaginary part (iw)
shows vibrating frequency. It is assumed in the present
example that ¢=0 and, therefore, Eq. (24) will be
altered from Laplace domain into frequency domain by
putting s=iw [10].

3.2. Numerical Results and Discussions

For each sets of boundary conditions one characteristic
equation can be obtained that its solutions will give the
natural frequencies of the system.

Assuming that the shaft is clamped at the position zero,
and free at the position 3, the boundary conditions will
be (see Figure 3):

up =0 (at clamped end)

(26)
p3 =0 (at freeend)

According to the above relations, Eqg. (24) can be
arranged as:

1 _T12
Po _ Tll Tll P3 27)
Us Tor  Toalpo +T,, | Vo

Tia T11

where uo and ps, are the inputs and uz and po are the
outputs of the system.

In this case, the natural frequencies are obtained by
plotting us/ps or us/uo, for instance, as shown in Fig. 4.
In this view, the natural frequencies occur at the peaks
of the spectrum. From Eq. (27), it is clear that the peaks
are the result of denominator approaching zero. Since
in all relations T1: is the denominator, so the natural
frequencies are the roots of T1a.

Other than that, putting the relations (26) in Eq. (24)
gives:

T11Po =0

(28)
T21Pp = U3
The first equation is satisfied when T1,=0, which is
another reason for computing the roots of Ty, to find the
natural frequencies as well. The results for this case are
listed in Table 2.
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«10° end displacement ua/p3 vs w(rad/s)
2

us/p3 (real part)

0.5 \

‘ | ‘
| ( H

0 o -
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Figure 4. Frequency spectrum for clamped-free BCs (us/ps vs.
w(rad/s))

Table 2. Natural frequencies of clamped-free rotating system
Fre(qu;)”cy ik 6 s
DLMT
Solution
FEM
Solution
%Error
(FEM with
respect to
DLMT)

290 875 1464 2064 2671 3285

292 881 1480 2085 2704 3321

0.690 0.686 1.093 1.017 1.245 1.096

3.3. FEM Solution

To contrast and confirm the results with another
method, the finite element method is used to investigate
the natural frequencies. The system is modeled by
ANSYS software, and meshed using brick 45 (8 nodes
3D) elements (Figure 5). Block Lanczos solver of
ANSYS is used in the analysis. The natural frequencies
are listed in Table 2. Also the first 4 mode shapes for
clamped-free boundary conditions are shown in
Figures 6-9.

ELEMENTS AN

Figure 5. Meshed clamped-free system
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NODAL SOLUTION M

STEP=1

SUB =12
FREQ=292.563
usum (AVG)
RSYS=0

DX «.053822
SHX =.053822

— =
o

. . 2 . 047842
.00598 .017941 029501 041862 053822

Figure 6. 1st mode shape for clamped-free BCs

NODAL SOLUTION AN

STEP=1

SUB =19
FREQ=881.023
usun (AVG)
RSYS«0

DX =.068987
SIHX =.068987

— =
0 .01533 030661 .045391 .061322
.007665 . 022996 .038326 . 053657 . 068987

Figure 7. 2" mode shape for clamped-free BCs

NODAL SOLUTION AN

STEP=1
SUB =29
FREQ=1480
usun (AVG)
RSYS=0

DX =.074099
SIX =.074099

—_—
0 016466 .032933 .049399 . 065865
.008233 .0247 . 041166 .057632 074099

Figure 8. 3" mode shape for clamped-free BCs

NODAL SOLUTION AN

DX =.077967
SKHX =.077967

0

.0 .034652 B .
. 008663 025969 .043318 . 060641 .077967

Figure 9. 4™ mode shape for clamped-free BCs
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According to Table 2, there is less than 2% error
between the results of Hybrid modeling method and the
results of FEM solution. This example results verify the
results of the new method and approve the accuracy of
them as well. They also show the simplicity of
modeling of structural and industrial systems with any
BCs.

4. The Propeller Shaft Analysis

Vibration study of propeller shaft system is very
significant in the design of shafts for marine crafts,
especially ships. The operating speed of these systems
should be kept far from their natural frequencies.
Furthermore, any redundant vibration or noise makes
clear the position of underwater vehicles and leads to
unwanted dangers. According to the significance and
wide application of propeller shafts in submarines and
ships, developing an accurate method of vibration
analysis is of great importance. Hence; the exact
methods, such as the DLMT, are more appropriate than
the approximate ones, such as the TMM.

4.1. The Distributed- Lumped Modeling Analysis
The propeller shaft system studied in this paper is based
on the model presented in Figure 10. In this figure, “D”
and “L” refer to the distributed and lumped element,
respectively. The geometrical and the physical
properties of shaft and disk (propeller model) are
presented in Table 3.

Table 3. Properties of the propeller shaft model

Parameter Quantity
Shaft Overall Length | 7m

Shaft Diameter d 0.160 m
Density of Shaft Material p 7850 kg/m?®

Modulus of Elasticity for Shaft E 210 GPa

Shear Modulus of Shaft G 80 GPa
Flange Thickness t 0.030 m
Propeller Diameter d 0.750 m
Propeller Mass Mprop 1250 kg

Propeller

6290 Ds D:

Film
540

Miwcp , Jyrop

Thrust Bearing m

Figure 10. Model of marine propeller shaft system

As shown in Figure 10, the propeller shaft consists of 3
bearings, which has no effect on the axial vibration.
There is an oil film between the thrust rotating pads
attached to the thrust disk and the bearing housing
attached to the main structure. The oil film is modeled
as an axial spring with k,=5x10" N/m. the structure is
assumed as fixed support here.
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The flange coupling consists of 2 disks assumed as
lumped element. The propeller is modeled as a disk, in
which the thickness and radius is set in such a way that
the disk possesses the same mass and moment of inertia
as the propeller. The transfer matrix for this system is
obtained as follows:

[T]=TL LML LMo ML 1s[TL 14T 1s [T 12[Tp 13

x[TplalTpls[TplelTL16[Tp]7[TDIs[TL]7[TD]o
(30)

The linear spring, which is the representative of oil
film; is modeled in the following form:

Po| | 1 Offm
Ug 1/ka 1 Uq
Therefore, the system consist of spring (the

representative of oil film) and mass (the model of thrust
disk) can be displayed as follows:

Po =_ 1 0]|1 —mgw? |[P2
UO _1/ka 1 0 1 U2

2
—Myo Py
m
—k—dw2 +11|u,

a

(31)

(32)

1
1
_ka

Equation (30) is the main equation for longitudinal
vibration of the system which relates left and right ends
together. The BCs are considered as fixed-free ends
which result in the following frequency equation:

T T 0
{po} { 11 12 H } (31)
0 clamped end T21 T22 J(Un] free end

Therefore:

T22=0 (32)
Table 4 shows the longitudinal natural frequencies of
the propeller shaft using the distributed- lumped
modeling technique.

4.2. The FEM Analysis

In order to compare and confirm the results, the finite
element method is used to investigate the natural
frequencies and mode shapes of the propeller shaft.
Here, KissSoft software is employed to obtain the
frequencies and mode shapes. The propeller and
flanges are modeled as disks. Figure 11 shows the
model. The natural frequencies obtained by this method
are presented in Table 4. The first 5 mode shapes for
the system are shown in Figures 12-16. According to
Table 4, there is a close agreement between the results
of the DLMT and FEM in this case.
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Figure 11. The model and boundary conditions

Table 4. Natural frequencies of the propeller shaft system

(H2).
Frequenc YoError
Nuqmbery DLMT FEM (FEM with respect
to DLMT)
1 214 215 0.47
2 1992 1986 0.30
3 4930 4921 0.18
4 8623  86L.4 0.10
5 12532 12497 0.28
1.00
0.80
0.60
0.40-
0.20
O iw‘; i 77“““:{:‘U‘
-0.20— -
-0.40—
-0.60—
-0.80—
T I T | T I T | T [
0 1400 2800 4200 5600 7000

Axial direction Y [mm]

Figure 12. The first mode shape

1.00
0.80——
0.60—-
0.40——
0.20—:

0.20-
-0.40
0.60-
0.80-

I I I I
0 1400 2800 4200 5600
Axial direction Y [mm]

T T T T

l
7000

Figure 13. The second mode shape
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-0.20—_-/ 3
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0.60

-0.80

T ] T ] T | T ] T
0 1400 2800 4200 5600
Axial direction Y [mm)]

Figure 14. The third mode shape

I
7000
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0.40-
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I I I I
0 1400 2800 4200 5600
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Figure 15. The fourth mode shape

I
7000

1.00
0.80
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L
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-0.60]
-0.80]

LS (S S (R e ) I
0 1400 2800 4200 5600
Axial direction Y [mm]

Figure 16. The fifth mode shape

[
7000

4.3. The Sensitivity Analysis

In this section, the sensitivity analysis for 5 parameters,
namely oil stiffness, propeller mass, foundation
stiffness, main shaft length and diameter are
investigated.

The oil stiffness value is obtained by tribology analysis
and relates to the oil film thickness. It is very difficult
to determine the exact value of this parameter by
solving Reynolds nonlinear fluid equations [13,14]. In
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order to decrease the transmitted vibrations to the hull,
the Resonance Changer (RC) could be utilized [2].
Therefore, the sensitivity analysis can display the
significance of oil stiffness value and its effect on the
axial frequency values.

Figure 17 shows the first 3 natural frequency changes
due to the +50% variations of oil stiffness value.
According to this figure, it can be seen that the oil
stiffness value greatly affects the first frequency values
of the system (about -30% - +22% variations), while its
effect on the higher frequencies are negligible. The
basic reason is that the ka value is very smaller than the
shaft stiffness value, and the whole propeller shaft
system acts as a mass connected to the spring; while for
the higher mode shapes, the shaft itself vibrates and the
spring has less effect, conclusively.

30 T
—¥1st frequency

20t -& 2nd frequency
c
o 3rd frequency
©
= 101
©
>
>
8 0- AR e B - B R B
0]
=
o -101
=
ES

-20

30 . . . .

2 3 4 5 6 7 8
oil stiffness value (mm) %107

Figure 17. Frequency variation (%) with respect to the oil
stiffness changes

Figure 18 shows the effect of +50% propeller mass
variations on the first 3 natural frequencies. It is
depicted that the propeller mass value has the most
effect on the first frequency value of the system (about
+15% - -10% variations), and its effect on the higher
frequencies are gradually reduced. It also shows that
decreasing the propeller mass brings more frequency
changes compared with the increasing of its value.

—%1st frequency
-& 2nd frequency |-
3rd frequency

o

% frequency variation
&

-10

-15 '
600 800

1000 1200 1400 1600 1800 2000
propeller mass value (kg)

Figure 18. Frequency variation (%) with respect to the
propeller mass changes

The effect of main shaft length on the first 3
frequencies are displayed in Figure 19. According to
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this figure, £50% variations of shaft length value
changes the first frequency about +10%, while it alters
the third frequency between +75% and -25%. This
shows that decreasing the shaft length has more effect
on the frequency values in contrast with the increasing
of its value.

80
—*-1st frequency
60 - - 2nd frequency| |
c
S 3rd frequency
©
% 40
> \“n
(?)‘ 20 hat™
C (<]
o
g or ’ )M
= i
* e ol .
-20 TEog
3 4 5 6 7 8 9
shaft length value (m)

Figure 19. Frequency variation (%) with respect to the shaft
length changes

Figure 20 shows the first 3 natural frequency changes
due to the +50% variations of main shaft diameter.
According to this figure, it can be seen that the shaft
diameter value greatly affects the frequency values of
the system (about -40% - +30% variations). It can be
seen that increasing the shaft diameter would decrease
the first frequency value, and vice versa. For the second
and third natural frequencies (and also higher modes)
increment of the shaft diameter arises the frequency
values, and inversely the diameter reduction would
reduce the frequencies. The main reason is that since
the oil stiffness value is very smaller than the shaft
stiffness value, for the first mode the whole propeller
shaft system acts as a mass connected to the spring;
while for the higher modes, the shaft itself oscillates
and thus the spring has less effect on the mode shape of
vibration.

30

- 1st frequency o”
20 H~% 2nd frequency o
3rd frequency a

20+ o

% frequency variation
)
4]
-}
\
o]
=
\
/ \
\
\
4

30 =

_405' \ . . . . . .
80 100 120 140 160 180 200 220 240

shaft diameter value (mm)
Figure 20. Frequency variation (%) with respect to the shaft
diameter changes

The effects of structural stiffness value of thrust
bearing foundation on the first 3 natural frequencies are
investigated in Figure 21. Since the thrust bearing is
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attached to the hull through the foundation and
supporting structure, the final support of the system is
not exactly the fixed one and the foundation could be
modeled by a spring [14].

This figure shows that changing the base stiffness value
from 107 to 10° (N/m) brings about -60% to -2%
changes of the first natural frequency with respect to
the shaft with fixed base foundation. In addition, it can
be seen that the base stiffness has negligible effect on
the higher frequencies. Therefore, the exact
determination of foundation stiffness is so significance.
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Figure 21. Frequency variation (%) with respect to the base
stiffness variations

5. Conclusions

In this paper, the shaft longitudinal equation of motion
is solved by the analytical method. Considering the
distributed lumped modeling technique (DLMT), the
transfer matrix for the distributed element is presented
by applying the proposed method. The transfer matrix
for the lumped elements is also obtained using hybrid
modeling.

The natural frequencies obtained by DLMT is
compared and verified with the results of FEM for the
rotor shaft with a disk in the middle. The technique is
also applied to calculate the frequencies of a marine
propeller shaft system modeled as a shaft with different
supports carrying propeller and flanges as lumped
elements. The frequencies obtained by DLMT are
compared with the results of finite element method,
using KissSoft software. The mode shapes of the
propeller shaft model are also obtained by KissSoft
software. As it is shown in Table 4, the two methods
are differed less than 1 percent which confirms the
DLMT results.

The sensitivity analysis for oil stiffness, propeller mass,
foundation stiffness, main shaft length and diameter are
also investigated. It is shown that the oil stiffness, the
propeller mass and the foundation stiffness have the
most effects on the first natural frequency; and the shaft
length and diameter have the most effects on the higher
frequencies.

The results presented herein show that the natural
frequencies and mode shapes of the longitudinal
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vibration of a complicated shaft with various supports
and flanges can be computed effectively using
distributed lumped modeling technique. Moreover,
since the method is closely related to the governing
partial differential equations for the system, accurate
results are achieved. In this way, the simplicity and
accuracy of this method brings proper application for
the complicated systems.
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