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1. Introduction

Proportional-Integral-Derivative (PID) controllers
remain the cornerstone of control engineering owing to
their structural simplicity, intuitive implementation,
and robustness across a wide range of industrial
domains. In the maritime sector, and particularly in the
heading control of surface vessels such as container
ships, PID-based strategies continue to dominate
practice due to their ease of deployment and
operational familiarity [1-7]. Despite this widespread
use, the limitations of conventional PID controllers
become evident in highly dynamic and uncertain
marine environments. Manual tuning is often
inadequate in the presence of time-varying
disturbances [8, 9], hydrodynamic nonlinearities, and
mission-dependent  operating conditions, thereby
restricting the reliability of classical PID frameworks
[10].

In response to these challenges, several advanced
approaches have been proposed in the literature. Data-
driven and intelligent paradigms such as deep
reinforcement learning (DRL) have demonstrated
promising adaptive capabilities. However, their limited
interpretability and the risks associated with black-box
decision-making  significantly ~ constrain  their
deployment in safety-critical maritime applications
[11]. Hybrid frameworks that preserve the
transparency of PID while embedding adaptive
intelligence have thus gained increasing attention. For
instance, Wang et al. [3] introduced an adaptive PID
controller based on the Soft Actor—Critic (SAC)
algorithm, striking a balance between interpretability
and learning-based adaptability.

Beyond DRL-inspired solutions, alternative research
streams have emphasized model-based or hybrid PID
extensions. Lyapunov-based adaptive PID structures
have been applied to power-electronic converters [12],
while Predictive Functional Control (PFC) schemes
combined with PID have been employed to improve
transient response in marine engines. Similarly, fuzzy
logic has been integrated with PID architectures to
enable real-time parameter adjustment, thereby
enhancing adaptability under nonlinear and time-
varying dynamics [13-15].

Complementary to these hybrid controller designs,
optimization-based PID tuning has attracted substantial
research interest [16]. Conventional tuning approaches
rely heavily on expert knowledge and trial-and-error,
which can be inefficient and error-prone. In contrast,
metaheuristic algorithms [17] such as Particle Swarm
Optimization (PSO) [18], Genetic Algorithms (GA)
[19], and Ant Colony Optimization (ACO) [20], offer
systematic and automated alternatives, enabling
effective parameter selection without extensive manual
intervention [10, 20]. Hu et al. [21], for example,
employed an Improved PSO scheme to optimize PID
gains for a marine dual-fuel engine, demonstrating
notable improvements in transient and steady-state
behavior.
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A further enhancement to the classical PID architecture
is the Fractional-Order PID (FOPID) controller, which
introduces additional degrees of freedom for more
flexible performance shaping. However, the increased
dimensionality of the tuning problem substantially
complicates optimization. Tumari et al. [22] addressed
this issue through a Modified Marine Predators
Algorithm (MPA) combined with adaptive dynamics,
successfully improving convergence speed and
robustness.
Despite these advancements, three persistent
challenges remain salient in the maritime domain: (i)
the limited generalizability and adaptability of
traditional PID structures under highly variable marine
operating conditions, (ii) the lack of interpretability in
purely data-driven approaches such as DRL when
applied to safety-critical surface vessels, and (iii) the
complexity of tuning PID and FOPID controllers,
necessitating efficient metaheuristic optimization
techniques.

Motivated by these gaps, this study proposes an

interpretable and computationally efficient control

strategy tailored for surface vessel heading regulation.

Specifically, an Adaptive Particle Swarm Optimization

(APSO) algorithm is employed to optimally tune PID

parameters, thereby combining the transparency of

fixed-structure control with the adaptability of modern
optimization frameworks. The contributions of this
work are as follows:

o Development and implementation of an APSO-
based PID controller to minimize heading error in
a linearized container ship model.

e Reduction of control effort through optimization,
enhancing both efficiency and actuator longevity.

e Improved transient and steady-state performance,
including overshoot reduction, shorter settling
times, and acceptable gain margins.

o Comparative evaluation against both classical PID
tuning and standard PSO-based PID tuning,
highlighting the additional benefits of adaptivity.

The remainder of this paper is organized as follows.

Section 2 introduces the mathematical modeling of the

linearized container ship system. Section 3 details the

PID controller structure and the APSO optimization

framework. Section 4 presents simulation results and

comparative analyses. Section 5 concludes the study
with insights and recommendations for future
extensions.

2. Mathematical
Floating System

Marine floating systems are governed by six degrees of
freedom (DOF), but for many practical purposes such
as surface vessels operating near equilibrium, the
system can be reduced to three degrees of freedom:
surge (longitudinal motion), sway (lateral motion), and
yaw (rotational motion around the vertical axis).
Assuming linear dynamics and small perturbations, the

Modeling of the Linear
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motion equations of the floating body can be written as
[23]:
Mv+Dv+Gn=rt Q)
Where:
e MeR3*3 : mass and added mass matrix
e DeR3*3: hydrodynamic damping matrix
o GeR3*3 Restoring force matrix (can be
neglected for surface vehicles without
heave/roll/pitch)

e n=I[x ¥y @]" : position and orientation

vector

e v=[u v r]": linear and angular velocity
vector

e 7=[Tx Ty Tp]T forces and moment,

including environmental force/moment and

control input
For control purposes, the system can be written in a
state-space form. Assuming decoupled dynamics and
linear drag coefficients, the simplified dynamics for
surge, sway, and yaw channels can be written as:

X(t) = AX(t) + BU(t) (2)
The state vector X (t) and control vector U (t) can be
defined as:

X=Xy o]TU=[x Ty Tp]".
This model serves as the foundation for the PID
controller design and subsequent optimization using
APSO.

3. Adaptive PSO-Based PID Controller Design
3.1. PID Control Scheme
The PID controller is one of the most commonly used
control strategies in industrial and marine systems due
to its simplicity and effectiveness. The control law of a
standard PID controller for a single-input-single-output
(S1SO) system is defined as:
U(t) = Kpe(t) +K; [, e(t)dt + K, dfz_(tOWhere:

e e(t) =r()—y(t) isthetracking error,

e K, proportional gain,

e K;:integral gain,

e Kj: derivative gain,

e y(t): system output,

o r(t): desired reference trajectory.
For the marine floating system with three degrees of
freedom (surge, sway, and yaw), three independent PID
controllers are designed, each controlling a single
DOF.

3.2 Cost Function for PID Tuning

To achieve optimal performance, the PID gains
[K, K; Kalare optimized using the Adaptive APSO
algorithm. The optimization aims to minimize a
weighted objective function that balances tracking
accuracy and control effort, defined as:

T
J= f Wi €2() + waU2(6) 3)
0

where:
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e w; and w, are weighting coefficients
representing the relative importance of the
tracking error and control effort, respectively;

o T denotes the total simulation time;

e e(t)=r()—y() is the tracking error
between the reference input r(t) and the
system output y(t);

e U(t) represents the control signal applied to
the actuator.

In this study, the nominal weights were selected as
w; =0.7 and w, =0.3 , emphasizing tracking
accuracy while penalizing large control amplitudes that
could lead to excessive actuator activity or energy
consumption.

To verify the robustness of this selection, a sensitivity
analysis was conducted by varying the weight ratio in
a small grid over the range w,€[0.5,0.9] and w, = 1 —
w; . The results indicated a clear trade-off between
time-domain performance and control effort:

e For higher w, values (e.g., 0.8-0.9), the
controller achieved faster settling times (up to
6% improvement) but exhibited slightly higher
control energy.

e Conversely, when w, was increased (e.g.,

(wy = 0.6), the control effort decreased by
approximately 12%, though the settling time
increased modestly (~4%).
These findings confirm that the selected nominal
weights  (wy,w,) = (0.7,0.3) offer a balanced
compromise between rapid convergence and actuator
efficiency, suitable for practical marine applications
where both precision and energy economy are critical.

3.3. Adaptive Particle Swarm Optimization (APSO)
Unlike standard PSO, APSO dynamically updates its
parameters—such as inertia weight w , and learning
factors cq,c, based on the evolutionary state of the
swarm. This adaptation helps maintain a balance
between exploration (global search) and exploitation
(local search), which is critical for dynamic marine
systems with changing conditions.
APSO Algorithm Outline:
1. Initialization:
o Initialize a swarm of particles with
random PID gains: [Kp, K; Kg]
o Initialize velocity vectors and set initial
Cq1,Cy W
2. Fitness Evaluation:
o For each particle, simulate the marine
system with the current PID gains
o Calculate the cost function J
3. Evolutionary Factor (EF) Estimation:
o Define evolutionary factor EF using the
Euclidean distance between particles:

1 N
EF =2 x—g ()
i=1
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Where x; is the position of the " particleand g; is

the global best.
4. Parameter Adaptation Rules: Based on EF,

update parameters:

o Exploration Phase (large EF): Increase w
, decrease c,, increase c,

o Exploitation Phase (small EF): Decrease
w, increase c,, decrease c,

o Update equations:

W = Wmnax — (Wmax - Wmin)' t/T (5)

€1 = Cimin t (C1max — C1min)
EF
X ( / max (EF ))

C2 = Comin + (C2max — C2min)
EF
X ( / max (EF ))

(where f, and f, are nonlinear functions mapping

EF to suitable ranges)
5. Position & Velocity Update: As in classical
PSO, but using adapted parameters.
vi(t+1) =x; + wy;(t)
+ rie1(Pp — x;(1))
+ 15¢2(Gp — x(1)) (7
xi(t + 1) = Xi(t) + Ul'(t + 1)

(6)

x;(t): current position of particle i,
v; (t): velocity of particle iii,
Py, best previous position of particle i,
Gp . global best position among all
particles,
w : inertia weight,
o €q,Cy, . cOgnitive and social acceleration
coefficients,
o 11,1y, random numbers in [0, 1].
6. Termination: Stop when maximum iterations
or acceptable cost is achieved.

o O O O

o

4. Simulation Results and Performance Evaluation
4.1 Simulation Setup

To rigorously evaluate the performance of the proposed
APSO-PID controller, a comprehensive set of
simulations was carried out over a duration of 3000
seconds with a discrete sampling interval of 0.1
seconds. The simulations were implemented in
MATLAB/Simulink on a standard desktop platform.
The APSO algorithm was initialized with a swarm of
100 particles, and each particle represented a potential
solution  vector comprising the PID gains
[K, K;i Kga]. The search bounds for these control
parameters were defined as all (-100,100).

These ranges were chosen based on prior empirical
studies on marine surface vessel dynamics and
preliminary step-response analysis to ensure numerical
stability and feasible convergence.

The inertia weight (o) was linearly decreased from 0.9
to 0.4 over the course of iterations, maintaining a
dynamic balance between global exploration and local
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exploitation. The cognitive and social learning
coefficients ¢4, c,,were both adaptively varied within
the range ([1.0, 2.5]) in accordance with the swarm’s
evolutionary factor (EF), consistent with established
APSO strategies.

The optimization process was terminated when either
the maximum iteration limit of 100 was reached or
when the change in the global best cost between
successive iterations fell below the convergence
threshold of (107%). The cost function used for
optimization combined the integral of squared error
(ISE) and the integral of squared control effort (ISU),
as detailed in Section 3.2.

To enhance reproducibility, the main computational
procedure of the APSO-based PID tuning is outlined in
the following pseudocode:

Algorithm 1. APSO-Based PID Tuning Procedure
1. Initialize parameters:
swarm_size = 100, o € [0.9, 0.4], ¢4, ¢5,€ [1.0, 2.5]
bounds max_iter = 100, tol = 1e—6
2. Randomly initialize particle positions
and velocities within bounds.
3. Evaluate fitness J for each particle using:

J =f wy e2(6) + wyU2(2)
0

4. ldentify personal best (Pbest) and global best (Gbest).

5. Compute the Evolutionary Factor (EF) based on swarm
diversity.

6. Adapt APSO parameters (w, C;,C,) using EF rules:

- High EF — increase o, reduce c;

- Low EF — decrease o, increase ¢,
7. Update velocity and position by Eq. (7)
8. Apply bounds and evaluate new fitness J.
9. Repeat steps 4-8 until convergence or max_iter reached.
10. Output optimal PID gains [K, K; Kg]corresponding
to Gbhest.
All simulation parameters and algorithmic settings
have been summarized to ensure complete
reproducibility of the presented results.

4.2. Performance Metrics

To benchmark the controller performance, the

following standard control system metrics were

employed:

e Gain Margin (GM): Indicates the robustness of the
system in the frequency domain.

e Overshoot (%): Measures the maximum peak value
relative to the desired setpoint.

e Settling Time (s): Defines the time required for the
system to converge within a specified error band
(typically 2%) around the final value.

These metrics were calculated for both the

conventional PID controller and the APSO-tuned PID

controller to establish a quantitative basis for
comparison.

4.3. Results and Comparison
Table 1 presents a comparative summary of the
controller performance based on the aforementioned
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metrics. The APSO-PID controller demonstrates clear
improvements over the classical PID controller,
particularly in terms of transient response.

Table 1. Performance comparison between Classic PID and
APSO-PID controllers.

Metric Classic PID | APSO-PID
Gain Margin (dB) 36.0 31.9
Overshoot (%) 35.1 17.6
Settling Time (s) 587 560

The results reveal that while the APSO-PID controller
incurs a slight reduction in gain margin (from 36 dB to
31.9 dB), it offers significantly better time-domain
performance. Specifically, the overshoot is reduced by
nearly 50%, and the settling time is shortened by
approximately 27 seconds. These improvements are
indicative of enhanced damping and faster response,
highlighting the capability of the APSO-PID controller
to provide a more stable and accurate control strategy,
especially in applications with strict transient
performance requirements [12].

Fig. 1 illustrates the time-domain step response of the
linearized container ship model under classical PID
(dashed line) and APSO-tuned PID (solid line) control
schemes. The simulation, executed over 3000 s with a
sampling period of 0.1 s, comprehensively captures
both transient and steady-state dynamics. As observed,
the conventional PID controller exhibits pronounced
overshoot (= 35 %) and a slower convergence rate. In
contrast, the APSO-PID controller achieves a
substantially reduced overshoot (= 17.6 %), faster
settling time, and negligible steady-state error,
indicating superior damping and control precision. The
adaptive search capability of APSO dynamically
balances exploration and exploitation in the tuning
space, leading to globally optimized gain parameters.
Consequently, the APSO-PID controller provides a
smoother trajectory and improved robustness,
rendering it particularly suitable for marine heading
control where rapid stabilization and reliability are
essential.
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Fig 2: Heading angle response of the high-speed container ship
using the APSO-PID controller with a reference command of
30°. The controller achieves precise tracking with negligible
steady-state error and a smooth transient profile.

Figure 2 illustrates the time-domain response of the
vessel’s heading angle, which was commanded to track
a desired reference of 30 degrees. The APSO-PID
controller demonstrates excellent trajectory-tracking
accuracy, achieving the target heading with negligible
steady-state error. The transient behavior reveals
smooth convergence without overshoot or oscillatory
dynamics, indicating a well-damped closed-loop
response.

This result validates the robustness and precision of the
APSO-tuned PID design in handling marine yaw
dynamics, where hydrodynamic nonlinearities and
environmental disturbances typically induce steady-
state deviations. The controller maintains consistent
performance throughout the 3000-second simulation
horizon, reflecting its suitability for surface vessels
and dynamic positioning operations requiring tight
heading regulation.

PSO Optimization for Heading Control

10.32 |

10.31 |

103 |

10.29 |

Best Cost

10.28 |

10.27 |

10.26 [

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
NFE
Fig. 3. Convergence of the APSO algorithm showing the
evolution of the best cost value versus the number of function
evaluations (NFE).

Figure 3 presents the convergence behavior of the
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Adaptive Particle Swarm Optimization (APSO)
algorithm in minimizing the control performance cost
function. The vertical axis represents the best fitness
value (cost), while the horizontal axis corresponds to
the number of function evaluations (NFE). As the
iterations progress, the cost function rapidly decreases
within the initial exploration phase and gradually
stabilizes as the swarm converges to the global
optimum.

The smooth monotonic decline in the best-cost curve
demonstrates the algorithm’s efficient search capability
and stability in avoiding premature convergence. The
adaptive adjustment of inertia and acceleration
coefficients enables the swarm to maintain diversity in
the early stages while refining exploitation in later
iterations. This convergence pattern confirms the
reliability and repeatability of APSO in identifying
optimal PID parameters that yield superior dynamic
performance compared to conventional PSO or manual
tuning approaches.

5. Conclusion

This paper presented an optimal PID control approach
tuned via the Adaptive Particle Swarm Optimization
(APSO) algorithm for heading regulation of a high-
speed container ship. Simulation results demonstrated
that APSO-PID significantly enhances dynamic
performance compared with classical PID tuning,
reducing overshoot from 35.1% to 17.6% and settling
time while maintaining an acceptable gain margin of
31.9dB.

The APSO algorithm effectively balances exploration
and exploitation, enabling rapid convergence toward
globally optimal PID parameters. This adaptivity yields
superior trajectory tracking, improved robustness, and
smoother control effort under dynamic marine
conditions. The framework combines interpretability,
computational efficiency, and practical applicability—
key attributes for marine control and dynamic
positioning systems.

Future work will extend this approach to nonlinear six-
degree-of-freedom vessel models and hybrid
metaheuristic or learning-based controllers to further
enhance  robustness under realistic sea-state
uncertainties.
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