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 The reliable control of marine vessels remains a critical challenge due to the 

nonlinear dynamics and strong environmental disturbances inherent in ocean 

operations. This paper proposes an optimal heading control strategy for a linearized 

model of a high-speed container ship based on a Proportional–Integral–Derivative 

(PID) controller whose parameters are tuned using the Adaptive Particle Swarm 

Optimization (APSO) algorithm. While classical PID controllers are widely adopted 

for their structural simplicity and robustness, they often require labor-intensive 

parameter tuning and exhibit performance degradation under time-varying sea 

states. To overcome these limitations, the proposed APSO framework adaptively 

balances global exploration and local exploitation to identify optimal PID gains. The 

optimization objective function integrates both trajectory-tracking accuracy and 

control effort, thereby ensuring a trade-off between precision and efficiency. The 

linear dynamic model of the container ship is formulated and implemented in 

MATLAB/Simulink, serving as the test platform. Simulation results reveal that the 

APSO-tuned PID controller achieves substantial improvements in transient and 

steady-state responses, including overshoot suppression, reduced settling time, and 

acceptable gain margin, compared with conventional PID tuning. These findings 

highlight the potential of APSO-based PID design as a robust and interpretable 

control solution for advanced marine navigation and dynamic positioning 

applications. 
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1. Introduction 
Proportional–Integral–Derivative (PID) controllers 

remain the cornerstone of control engineering owing to 

their structural simplicity, intuitive implementation, 

and robustness across a wide range of industrial 

domains. In the maritime sector, and particularly in the 

heading control of surface vessels such as container 

ships, PID-based strategies continue to dominate 

practice due to their ease of deployment and 

operational familiarity [1-7]. Despite this widespread 

use, the limitations of conventional PID controllers 

become evident in highly dynamic and uncertain 

marine environments. Manual tuning is often 

inadequate in the presence of time-varying 

disturbances [8, 9], hydrodynamic nonlinearities, and 

mission-dependent operating conditions, thereby 

restricting the reliability of classical PID frameworks 

[10]. 

In response to these challenges, several advanced 

approaches have been proposed in the literature. Data-

driven and intelligent paradigms such as deep 

reinforcement learning (DRL) have demonstrated 

promising adaptive capabilities. However, their limited 

interpretability and the risks associated with black-box 

decision-making significantly constrain their 

deployment in safety-critical maritime applications 

[11]. Hybrid frameworks that preserve the 

transparency of PID while embedding adaptive 

intelligence have thus gained increasing attention. For 

instance, Wang et al. [3] introduced an adaptive PID 

controller based on the Soft Actor–Critic (SAC) 

algorithm, striking a balance between interpretability 

and learning-based adaptability. 

Beyond DRL-inspired solutions, alternative research 

streams have emphasized model-based or hybrid PID 

extensions. Lyapunov-based adaptive PID structures 

have been applied to power-electronic converters [12], 

while Predictive Functional Control (PFC) schemes 

combined with PID have been employed to improve 

transient response in marine engines. Similarly, fuzzy 

logic has been integrated with PID architectures to 

enable real-time parameter adjustment, thereby 

enhancing adaptability under nonlinear and time-

varying dynamics [13-15]. 

Complementary to these hybrid controller designs, 

optimization-based PID tuning has attracted substantial 

research interest [16]. Conventional tuning approaches 

rely heavily on expert knowledge and trial-and-error, 

which can be inefficient and error-prone. In contrast, 

metaheuristic algorithms [17] such as Particle Swarm 

Optimization (PSO) [18], Genetic Algorithms (GA) 

[19], and Ant Colony Optimization (ACO) [20],  offer 

systematic and automated alternatives, enabling 

effective parameter selection without extensive manual 

intervention [10, 20]. Hu et al. [21], for example, 

employed an Improved PSO scheme to optimize PID 

gains for a marine dual-fuel engine, demonstrating 

notable improvements in transient and steady-state 

behavior. 

A further enhancement to the classical PID architecture 

is the Fractional-Order PID (FOPID) controller, which 

introduces additional degrees of freedom for more 

flexible performance shaping. However, the increased 

dimensionality of the tuning problem substantially 

complicates optimization. Tumari et al. [22] addressed 

this issue through a Modified Marine Predators 

Algorithm (MPA) combined with adaptive dynamics, 

successfully improving convergence speed and 

robustness. 

Despite these advancements, three persistent 

challenges remain salient in the maritime domain: (i) 

the limited generalizability and adaptability of 

traditional PID structures under highly variable marine 

operating conditions, (ii) the lack of interpretability in 

purely data-driven approaches such as DRL when 

applied to safety-critical surface vessels, and (iii) the 

complexity of tuning PID and FOPID controllers, 

necessitating efficient metaheuristic optimization 

techniques. 

Motivated by these gaps, this study proposes an 

interpretable and computationally efficient control 

strategy tailored for surface vessel heading regulation. 

Specifically, an Adaptive Particle Swarm Optimization 

(APSO) algorithm is employed to optimally tune PID 

parameters, thereby combining the transparency of 

fixed-structure control with the adaptability of modern 

optimization frameworks. The contributions of this 

work are as follows: 

• Development and implementation of an APSO-

based PID controller to minimize heading error in 

a linearized container ship model. 

• Reduction of control effort through optimization, 

enhancing both efficiency and actuator longevity. 

• Improved transient and steady-state performance, 

including overshoot reduction, shorter settling 

times, and acceptable gain margins. 

• Comparative evaluation against both classical PID 

tuning and standard PSO-based PID tuning, 

highlighting the additional benefits of adaptivity. 

The remainder of this paper is organized as follows. 

Section 2 introduces the mathematical modeling of the 

linearized container ship system. Section 3 details the 

PID controller structure and the APSO optimization 

framework. Section 4 presents simulation results and 

comparative analyses. Section 5 concludes the study 

with insights and recommendations for future 

extensions. 

 

2. Mathematical Modeling of the Linear 

Floating System 
Marine floating systems are governed by six degrees of 

freedom (DOF), but for many practical purposes such 

as surface vessels operating near equilibrium, the 

system can be reduced to three degrees of freedom: 

surge (longitudinal motion), sway (lateral motion), and 

yaw (rotational motion around the vertical axis). 

Assuming linear dynamics and small perturbations, the 
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motion equations of the floating body can be written as 

[23]: 

𝑀𝑣̇ + 𝐷𝑣 + 𝐺𝜂 = 𝜏 (1) 

Where: 

• 𝑀𝜖ℝ3×3 : mass and added mass matrix 

• 𝐷𝜖ℝ3×3: hydrodynamic damping matrix 

• 𝐺𝜖ℝ3×3 Restoring force matrix (can be 

neglected for surface vehicles without 

heave/roll/pitch) 

• 𝜂 = [𝑥 𝑦 𝜑]𝑇  : position and orientation 

vector 

• 𝑣 = [𝑢 𝑣 𝑟]𝑇 : linear and angular velocity 

vector 

• 𝜏 = [𝜏𝑥 𝜏𝑦 𝜏𝜑]𝑇 forces and moment, 

including environmental force/moment and 

control input 

For control purposes, the system can be written in a 

state-space form. Assuming decoupled dynamics and 

linear drag coefficients, the simplified dynamics for 

surge, sway, and yaw channels can be written as: 

𝑋̇(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡) (2) 

The state vector ( )X t and control vector ( )U t can be 

defined as: 

𝑋 = [𝑥 𝑦 𝜑]𝑇,𝑈 = [𝜏𝑥 𝜏𝑦 𝜏𝜑]𝑇. 

This model serves as the foundation for the PID 

controller design and subsequent optimization using 

APSO. 

 

3. Adaptive PSO-Based PID Controller Design 
3.1. PID Control Scheme 

The PID controller is one of the most commonly used 

control strategies in industrial and marine systems due 

to its simplicity and effectiveness. The control law of a 

standard PID controller for a single-input-single-output 

(SISO) system is defined as: 

𝑈(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
Where: 

• 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)   is the tracking error, 

• 𝐾𝑝: proportional gain, 

• 𝐾𝑖: integral gain, 

• 𝐾𝑑: derivative gain, 

• y(t): system output, 

• r(t): desired reference trajectory. 

For the marine floating system with three degrees of 

freedom (surge, sway, and yaw), three independent PID 

controllers are designed, each controlling a single 

DOF. 

 

 3.2 Cost Function for PID Tuning 

To achieve optimal performance, the PID gains 
[𝐾𝑝 𝐾𝑖 𝐾𝑑]are optimized using the Adaptive APSO 

algorithm. The optimization aims to minimize a 

weighted objective function that balances tracking 

accuracy and control effort, defined as: 

𝐽 = ∫ 𝑤1

𝑇

0

𝑒2(𝑡) + 𝑤2𝑈
2(𝑡) (3) 

where: 

•  𝑤1  and 𝑤2  are weighting coefficients 

representing the relative importance of the 

tracking error and control effort, respectively; 

• T denotes the total simulation time; 

• 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)  is the tracking error 

between the reference input  𝑟(𝑡)  and the 

system output  𝑦(𝑡); 

• 𝑈(𝑡)  represents the control signal applied to 

the actuator. 

In this study, the nominal weights were selected as 

𝑤1 = 0.7  and 𝑤2 = 0.3 , emphasizing tracking 

accuracy while penalizing large control amplitudes that 

could lead to excessive actuator activity or energy 

consumption. 

To verify the robustness of this selection, a sensitivity 

analysis was conducted by varying the weight ratio in 

a small grid over the range 𝑤1𝜖[0.5,0.9] and 𝑤2 = 1 −
𝑤1 . The results indicated a clear trade-off between 

time-domain performance and control effort: 

• For higher 𝑤1 values (e.g., 0.8-0.9), the 

controller achieved faster settling times (up to 

6% improvement) but exhibited slightly higher 

control energy. 

• Conversely, when 2w was increased (e.g., 

(𝑤1 = 0.6 ), the control effort decreased by 

approximately 12%, though the settling time 

increased modestly (~4%). 

These findings confirm that the selected nominal 

weights  (𝑤1, 𝑤2) = (0.7,0.3)  offer a balanced 

compromise between rapid convergence and actuator 

efficiency, suitable for practical marine applications 

where both precision and energy economy are critical. 

 

3.3. Adaptive Particle Swarm Optimization (APSO) 

Unlike standard PSO, APSO dynamically updates its 

parameters—such as inertia weight w  , and learning 

factors  𝑐1, 𝑐2  based on the evolutionary state of the 

swarm. This adaptation helps maintain a balance 

between exploration (global search) and exploitation 

(local search), which is critical for dynamic marine 

systems with changing conditions. 

APSO Algorithm Outline: 

1. Initialization: 

o Initialize a swarm of particles with 

random PID gains:  [𝐾𝑝 𝐾𝑖 𝐾𝑑] 
o Initialize velocity vectors and set initial  

𝑐1, 𝑐2, 𝑤 

2. Fitness Evaluation: 

o For each particle, simulate the marine 

system with the current PID gains 

o Calculate the cost function J 

3. Evolutionary Factor (EF) Estimation: 

o Define evolutionary factor EF using the 

Euclidean distance between particles: 

𝐸𝐹 =
1

𝑁
∑𝑥𝑖 − 𝑔𝑖

𝑁

𝑖=1

 (4) 
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Where  is the position of the  𝑖𝑡ℎ  particle and  𝑔𝑖  is 

the global best. 

4. Parameter Adaptation Rules: Based on EF, 

update parameters: 

o Exploration Phase (large EF): Increase 𝑤 

, decrease 𝑐1, increase 𝑐2 

o Exploitation Phase (small EF): Decrease 

𝑤, increase 𝑐1, decrease 𝑐2 

o Update equations: 

𝑤 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛).
𝑡
𝑇⁄  (5) 

𝑐1 = 𝑐1𝑚𝑖𝑛 + (𝑐1𝑚𝑎𝑥 − 𝑐1𝑚𝑖𝑛)

× (𝐸𝐹 max⁡(𝐸𝐹)⁄ ) 
(6) 

𝑐2 = 𝑐2𝑚𝑖𝑛 + (𝑐2𝑚𝑎𝑥 − 𝑐2𝑚𝑖𝑛)

× (𝐸𝐹 max⁡(𝐸𝐹)⁄ ) 

 

(where  1f  and 2f   are nonlinear functions mapping 

EF to suitable ranges) 

5. Position & Velocity Update: As in classical 

PSO, but using adapted parameters. 

𝑣𝑖(𝑡 + 1) = 𝑥𝑖 +𝑤𝑣𝑖(𝑡)
+ 𝑟1𝑐1(𝑃𝑏 − 𝑥𝑖(𝑡))
+ 𝑟2𝑐2(𝐺𝑏 − 𝑥𝑖(𝑡)) (7) 

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) 

o 𝑥𝑖(𝑡): current position of particle i, 

o 𝑣𝑖(𝑡): velocity of particle iii, 

o 𝑃𝑏: best previous position of particle i, 

o 𝐺𝑏 : global best position among all 

particles, 

o 𝑤 : inertia weight, 

o 𝑐1, 𝑐2,  : cognitive and social acceleration 

coefficients, 

o 𝑟1, 𝑟2,: random numbers in [0, 1]. 

6. Termination: Stop when maximum iterations 

or acceptable cost is achieved. 

 

4. Simulation Results and Performance Evaluation 

4.1 Simulation Setup 

To rigorously evaluate the performance of the proposed 

APSO-PID controller, a comprehensive set of 

simulations was carried out over a duration of 3000 

seconds with a discrete sampling interval of 0.1 

seconds. The simulations were implemented in 

MATLAB/Simulink on a standard desktop platform. 

The APSO algorithm was initialized with a swarm of 

100 particles, and each particle represented a potential 

solution vector comprising the PID gains 
[𝐾𝑝 𝐾𝑖 𝐾𝑑]. The search bounds for these control 

parameters were defined as all (-100,100). 

These ranges were chosen based on prior empirical 

studies on marine surface vessel dynamics and 

preliminary step-response analysis to ensure numerical 

stability and feasible convergence. 

The inertia weight (ω) was linearly decreased from 0.9 

to 0.4 over the course of iterations, maintaining a 

dynamic balance between global exploration and local 

exploitation. The cognitive and social learning 

coefficients 𝑐1, 𝑐2,were both adaptively varied within 

the range ([1.0, 2.5]) in accordance with the swarm’s 

evolutionary factor (EF), consistent with established 

APSO strategies. 

The optimization process was terminated when either 

the maximum iteration limit of 100 was reached or 

when the change in the global best cost between 

successive iterations fell below the convergence 

threshold of ( 10−6 ). The cost function used for 

optimization combined the integral of squared error 

(ISE) and the integral of squared control effort (ISU), 

as detailed in Section 3.2. 

To enhance reproducibility, the main computational 

procedure of the APSO-based PID tuning is outlined in 

the following pseudocode: 

 

Algorithm 1. APSO-Based PID Tuning Procedure 

1. Initialize parameters: 

   swarm_size = 100, ω ∈ [0.9, 0.4], 𝑐1, 𝑐2,∈ [1.0, 2.5] 

   bounds   max_iter = 100, tol = 1e−6 

2. Randomly initialize particle positions  

   and velocities within bounds. 

3. Evaluate fitness J for each particle using: 

𝐽 = ∫ 𝑤1

𝑇

0

𝑒2(𝑡) + 𝑤2𝑈
2(𝑡) 

4. Identify personal best (Pbest) and global best (Gbest). 

5. Compute the Evolutionary Factor (EF) based on swarm 

diversity. 

6. Adapt APSO parameters (ω, 1 2,c c ) using EF rules: 

      - High EF → increase ω, reduce 𝑐1 

      - Low EF → decrease ω, increase 𝑐1 

7. Update velocity and position by Eq. (7) 

8. Apply bounds and evaluate new fitness J. 

9. Repeat steps 4–8 until convergence or max_iter reached. 

10. Output optimal PID gains [𝐾𝑝 𝐾𝑖 𝐾𝑑]corresponding 

to Gbest. 

All simulation parameters and algorithmic settings 

have been summarized to ensure complete 

reproducibility of the presented results.  

 

4.2. Performance Metrics 

To benchmark the controller performance, the 

following standard control system metrics were 

employed: 

• Gain Margin (GM): Indicates the robustness of the 

system in the frequency domain. 

• Overshoot (%): Measures the maximum peak value 

relative to the desired setpoint. 

• Settling Time (s): Defines the time required for the 

system to converge within a specified error band 

(typically 2%) around the final value. 

These metrics were calculated for both the 

conventional PID controller and the  APSO-tuned PID 

controller to establish a quantitative basis for 

comparison. 

 

4.3. Results and Comparison 

Table 1 presents a comparative summary of the 

controller performance based on the aforementioned 

ix
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metrics. The APSO-PID controller demonstrates clear 

improvements over the classical PID controller, 

particularly in terms of transient response. 

 
Table 1. Performance comparison between Classic PID and 

APSO-PID controllers. 

Metric Classic PID APSO-PID 

Gain Margin (dB) 36.0 31.9 

Overshoot (%) 35.1 17.6 

Settling Time (s) 587 560 

 

The results reveal that while the APSO-PID controller 

incurs a slight reduction in gain margin (from 36 dB to 

31.9 dB), it offers significantly better time-domain 

performance. Specifically, the overshoot is reduced by 

nearly 50%, and the settling time is shortened by 

approximately 27 seconds. These improvements are 

indicative of enhanced damping and faster response, 

highlighting the capability of the APSO-PID controller 

to provide a more stable and accurate control strategy, 

especially in applications with strict transient 

performance requirements [12].  

Fig. 1 illustrates the time-domain step response of the 

linearized container ship model under classical PID 

(dashed line) and APSO-tuned PID (solid line) control 

schemes. The simulation, executed over 3000 s with a 

sampling period of 0.1 s, comprehensively captures 

both transient and steady-state dynamics. As observed, 

the conventional PID controller exhibits pronounced 

overshoot (≈ 35 %) and a slower convergence rate. In 

contrast, the APSO-PID controller achieves a 

substantially reduced overshoot (≈ 17.6 %), faster 

settling time, and negligible steady-state error, 

indicating superior damping and control precision. The 

adaptive search capability of APSO dynamically 

balances exploration and exploitation in the tuning 

space, leading to globally optimized gain parameters. 

Consequently, the APSO-PID controller provides a 

smoother trajectory and improved robustness, 

rendering it particularly suitable for marine heading 

control where rapid stabilization and reliability are 

essential. 

 

 
Fig. 1: Classical PID vs  Tuned  APSO-PID 

 

 
Fig 2: Heading angle response of the high-speed container ship 

using the APSO–PID controller with a reference command of 

30°. The controller achieves precise tracking with negligible 

steady-state error and a smooth transient profile. 

 

Figure 2 illustrates the time-domain response of the 

vessel’s heading angle, which was commanded to track 

a desired reference of 30 degrees. The APSO–PID 

controller demonstrates excellent trajectory-tracking 

accuracy, achieving the target heading with negligible 

steady-state error. The transient behavior reveals 

smooth convergence without overshoot or oscillatory 

dynamics, indicating a well-damped closed-loop 

response. 

This result validates the robustness and precision of the 

APSO-tuned PID design in handling marine yaw 

dynamics, where hydrodynamic nonlinearities and 

environmental disturbances typically induce steady-

state deviations. The controller maintains consistent 

performance throughout the 3000-second simulation 

horizon, reflecting its suitability for  surface vessels 

and dynamic positioning operations requiring tight 

heading regulation. 

 

 
Fig. 3. Convergence of the APSO algorithm showing the 

evolution of the best cost value versus the number of function 

evaluations (NFE). 

 

Figure 3 presents the convergence behavior of the 
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Adaptive Particle Swarm Optimization (APSO) 

algorithm in minimizing the control performance cost 

function. The vertical axis represents the best fitness 

value (cost), while the horizontal axis corresponds to 

the number of function evaluations (NFE). As the 

iterations progress, the cost function rapidly decreases 

within the initial exploration phase and gradually 

stabilizes as the swarm converges to the global 

optimum. 

The smooth monotonic decline in the best-cost curve 

demonstrates the algorithm’s efficient search capability 

and stability in avoiding premature convergence. The 

adaptive adjustment of inertia and acceleration 

coefficients enables the swarm to maintain diversity in 

the early stages while refining exploitation in later 

iterations. This convergence pattern confirms the 

reliability and repeatability of APSO in identifying 

optimal PID parameters that yield superior dynamic 

performance compared to conventional PSO or manual 

tuning approaches. 

 

5. Conclusion 

This paper presented an optimal PID control approach 

tuned via the Adaptive Particle Swarm Optimization 

(APSO) algorithm for heading regulation of a high-

speed container ship. Simulation results demonstrated 

that APSO-PID significantly enhances dynamic 

performance compared with classical PID tuning, 

reducing overshoot from 35.1% to 17.6% and settling 

time  while maintaining an acceptable gain margin of 

31.9 dB. 

The APSO algorithm effectively balances exploration 

and exploitation, enabling rapid convergence toward 

globally optimal PID parameters. This adaptivity yields 

superior trajectory tracking, improved robustness, and 

smoother control effort under dynamic marine 

conditions. The framework combines interpretability, 

computational efficiency, and practical applicability—

key attributes for marine control and dynamic 

positioning systems. 

Future work will extend this approach to nonlinear six-

degree-of-freedom vessel models and hybrid 

metaheuristic or learning-based controllers to further 

enhance robustness under realistic sea-state 

uncertainties. 
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