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ABSTRACT

Internal corrosion poses a significant risk to offshore pipeline operations. This study
aims to utilize a combination of the Finite Element Method (FEM) and Latin Hypercube
Sampling (LHS) to create a database of structural response data for corroded pipelines
experiencing longitudinally interacting internal corrosion defects under internal and
external pressure loading. The database includes input data such as pipeline geometry
parameters, pipeline material data, corrosion defect data and loading data. This
generated database will be utilized to train various advanced machine learning (ML)
models to develop a predictive model capable of estimating the Maximum von Mises
Stress occurring in the outermost mesh layer of a mesh ligament within the thickness of
the corroded pipeline at the defected area. Such predictive capabilities of the ML model
will enhance the ability to forecast leakage based on pipeline and defect specifications,
thereby saving costs and time. To achieve the optimal model, various ML algorithms
have been compared. Finally, to assess the prediction accuracy of the models, results of
models were compared and evaluated.
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1. Introduction

Despite the rapid expansion of renewable energy, oil
and gas remain the primary sources of energy, and
offshore pipelines play a crucial role in ensuring a
reliable energy supply [1]. Corrosion failures in
offshore pipelines transporting marine oil are becoming
more frequent. Internal inspections frequently reveal
substantial corrosion defects. These defects can appear
in different forms, including deposit corrosion,
cavitation corrosion, uniform corrosion, and pitting
corrosion [2]. Among these, internal pitting corrosion,
mainly caused by carbon dioxide (CO2) and hydrogen
sulfide (H2S), is identified as a major failure
mechanism in these pipelines [3]. The depth of
corrosion defects, especially pitting, has a significant
impact on the failure pressure of the pipelines [4]. As
artificial intelligence (Al) progresses rapidly, data-
driven models utilizing machine learning (ML)
algorithms have shown significant flexibility in
managing high-dimensional data and intricate
operating conditions. This capability is especially
valuable for corrosion prevention and fault diagnosis in
pipelines and equipment [5].

In this regard, numerous efforts have been undertaken
to evaluate how the corrosion specifications impact the
reliability and integrity of pipelines. For instance,
Zhang [6] revealed that corrosion depth significantly
affects the condition of pipelines during landslide
events, with a notable impact on stress levels. The
study identified a complex relationship between
maximum stress, the position facing the landslide, and
the location of corrosion around the pipe. Moreover, it
was demonstrated that the axial placement of corrosion
in relation to the landslide center affects the distribution
of stress within the pipeline. Wang et al. [7] provided a
detailed analysis of theoretical methods used to assess
the remaining strength of seawater pipelines with
corrosion defects. The study compared different
evaluation results across various pipeline parameters
and corrosion conditions, underscoring the importance
of these methods for understanding how corrosion
affects pipeline integrity and lifespan. Yang et al. [8]
examined the reliability of gas pipelines with corrosion
defects by employing ASME-B31G revised criteria
alongside finite element numerical analysis methods.
The study forecasts the residual strength and lifespan
of pipelines, offering important insights for
maintaining the safe and stable operation of natural gas
pipelines. Cheng [9] highlighted the essential role of
corrosion modeling in evaluating and forecasting
pipeline failure and managing related risks. The
complexity of pipeline corrosion stems from the
interplay of multiple reactions and processes unique to
the material and environmental conditions, affecting
pipeline integrity. In a recent study by the same
researchers, a new method called "IPA" (Internal
Pressure Assessment) was introduced to evaluate the
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reliability of offshore pipelines with internal corrosion
defects [10]. This approach is based on the probabilistic
Incremental Dynamic Analysis (IDA) method
developed by Vamvatsikos and Cornell [11]. However,
the study focused solely on single defects and did not
address the effects of defect interactions.

Although the higher risk associated with interacting
corrosion defects is well recognized, it has not been
extensively studied, with most research concentrating
on single defects. Nevertheless, some studies have
shown that interactions between two defects can affect
pipelines significantly. Mustaffa et al. [12] introduced
a method for assessing the reliability of corroded
pipelines arranged in series, focusing on how length-
scale effects impact pipeline integrity. The study
emphasized the statistical correlation between
corrosion features across different segments of the
pipeline, noting that failure in one section can influence
adjacent sections. By including a correlation distance
parameter to address these effects, the research
demonstrated that accounting for length-scale effects
leads to a higher probability of failure for corroded
pipelines compared to analyses that do not consider
these factors. Kuppusamy et al. [13] examined the
effect of interacting corrosion defects on the buckling
strength of pipelines using numerical analysis. The
study highlights how corrosion characteristics can
impact the structural integrity of pipelines. Xie et al.
[14] explored the interaction between corrosion and
crack defects in pipelines and its effect on fatigue crack
growth. The study introduced a crack propagation
method to predict how corrosion influences fatigue
cracks. Arumugam et al. [15] investigated the burst
capacity of pipelines with multiple longitudinally
aligned interacting corrosion defects using FEM. The
study examined the effects of internal pressure and
axial compressive stress on pipelines with two or three
longitudinal internal defects. Moreover, Kuppusamy et
al. [13] explored how corrosion defects in close
proximity can interact, leading to a decrease in the
overall strength of a pipeline, a phenomenon referred
to as interacting corrosion defects. The study focused
on the buckling strength of corroded pipelines with
such interacting defects, offering a numerical analysis
to better understand the effects on structural stability
and dynamics in materials science. Zhang et al. [16]
emphasized the need to consider the interaction
between adjacent defects when evaluating the failure
pressure of pipelines with corrosion clusters. The study
introduced a "center failure location” method that
focuses on the failure position of corrosion clusters,
accounting for how adjacent defects affect the failure
pressure of the central defect. Mondal and Dhar [17]
highlighted that the proximity of interacting corrosion
defects significantly affects the burst pressure of
pipelines. Factors such as pipe wall thickness,
corrosion depth, and defect locations are crucial in
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determining the critical spacing for these interactions.
Abyani and Bahari [18] examined the impact of
correlations between random variables in adjacent
components on the time-variant system reliability of
corroded pipelines. They addressed the challenge of
non-positive definiteness in the multivariate target
correlation matrix by applying optimization techniques
to transform it into a positive definite matrix. In a recent
study by the authors, internal corrosion was identified
as a significant threat to offshore pipeline services. The
study evaluated the reliability of 32” oil and gas
offshore pipelines with internal corrosion considering
the interaction of longitudinally aligned defects
interaction. The findings underscored that multiple
corrosion defects pose a greater risk to offshore
pipelines, potentially leading to more severe
consequences than a single defect alone, highlighting
the importance of considering defect interactions in
reliability assessments.

Identifying and predicting pipeline failures is crucial
for ensuring pipeline safety and integrity. Numerous
studies have been carried out to develop techniques for
estimating failure pressure, residual strength, and the
probability of failure in corroded pipelines. Ossai et al.
[19] developed a predictive model for internal pitting
corrosion in aged non-piggable pipelines, incorporating
various operational parameters. Using ten years of
Ultrasonic Thickness Measurement (UTM) data, the
study analyzed maximum pit depths in relation to
factors such as temperature, CO2 partial pressure, flow
rate, pH, sulfate ions, chloride ions, and water cut. The
model's accuracy was validated with field data from
twelve pipelines, demonstrating its effectiveness in
predicting maximum pitting rates. This is essential for
evaluating the strength and integrity of corroded
pipelines and ensuring operational safety. Nizamani et
al. [20] evaluated how corrosion affects the structural
strength of offshore pipelines, focusing on assessing
remaining strength to extend pipeline lifespan. The
study employed Bayesian updating to assess the
probability of failure and compared results from burst
tests, including a sensitivity analysis of variables such
as defect depth and thickness. additionally, Hou et al.
(2019) performed a non-probabilistic time-varying
reliability analysis of corroded pipelines, taking into
account the interaction of various uncertainty variables
[21]. The research conducted by Cui [22] introduced a
management system for predicting corrosion failures in
carbon steel oil and gas pipelines, improving the
precision and effectiveness of corrosion failure
predictions and control. This work advances the field
by providing a model that simplifies the prediction
process, supporting proactive maintenance for
underwater oil and gas transport pipelines. Moreover,
Colindres et al. [23] investigated the mechanical
responses of various pipelines subjected to different
corrosion types, such as external, internal, and
combined defects. The study demonstrated that finite
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element models provided more accurate predictions of
failure pressures in corroded pipelines compared to
traditional methods like B31G and DNV-99. Abyani et
al. [24] conducted a study on the failure pressure and
remaining lifespan of corroded offshore pipelines by
applying various code-based methods, including
ASME B31G, modified ASME B31G, DNV RP-F101,
and FFS Level-1.

In the contemporary era, ML tools are considered as
decisive elements in costly industries and can play a
supportive role to significantly improve the prediction
of pipeline behavior, fostering heightened reliability
and enabling proactive maintenance strategies. To
predict the potential failure of corroded pipelines using
machine learning (ML) tools, it is essential to review
the application of ML in pipeline integrity management
systems (PIMS). A comprehensive review of ML
applications in pipeline integrity management is
provided by Rachman et al. [5], which is directly
related to the task. In a similar effort, a review study by
Soomro et al. highlighted the essential role of ML in
assessing hydrocarbon fluid integrity in oil and gas
pipelines, particularly given the severe impacts of
corrosion. Their study emphasizes that unlike
conventional deterministic and probabilistic models,
ML techniques such as ANN, Support Vector Machine
(SVM), and hybrid models have been better suited to
handle the complex nature of pipeline degradation. The
study offers an extensive evaluation of current ML
methods, datasets, and variables, and proposes future
directions for researchers and practitioners to improve
pipeline integrity assessment. [25]. Various facets of
integrity management, encompassing the utilization of
ML for predictive analysis and risk assessment in
pipeline systems, are covered in the review.
Additionally, a data-driven ML approach for corrosion
risk assessment is presented by Ossai [26],
emphasizing the efficacy of ML techniques, such as
ANN, in forecasting future states of corrosion defect
depth growth. Valuable insights into the application of
machine learning specifically for corrosion risk
assessment, pertinent to the task of predicting failure in
corroded pipelines, are offered by this study. Data-
driven methods, including ANN and SVM, for
predicting the burst strength of corroded line pipelines
subjected to internal pressure are discussed by Cai et al.
[27]. This research, addresses the prediction of pipeline
strength, crucial for assessing the failure likelihood of
corroded pipelines. The study provides a practical
application of ML tools for predicting the strength of
corroded pipelines, contributing to failure prediction in
such systems. ML data analytics based on distributed
fiber sensors for pipeline feature detection are the focus
of Zhang et al. [28], aiming to enhance ML algorithms
for the detection and size prediction of major pipeline
structural changes and corrosion types. This research is
relevant as it underscores the use of ML for detecting
and predicting corrosion types, fundamental for failure
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prediction in corroded pipelines. In a recent research,
Abyani et al. employed ML techniques, specifically
Gaussian Process Regression (GPR) and Multi-Layer
Perceptron (MLP), to predict the failure pressure of
corroded offshore pipelines, demonstrating their
remarkable performance compared to other models,
while also observing that Maximum Von Mises Stress
(MVMS) of the pipeline increases with water depth at
low levels of IP but decreases at high IP levels [29].
Although there are other recent researches related to
ML and pipeline management, such as [30], [31], and
[32] which have furnished valuable insights and
methodologies for utilizing ML to address the
challenges of predicting failure in corroded pipelines.
This paper has aimed to use generated FEM analysis
big data to train a ML model in order to predict the
behavior of corroded pipelines having pipeline and
defects data including the defect interaction effect.
Subsequently, pipelines as key conduits transporting
hydrocarbons transportation play a key role in the oil
and gas industry. Offshore pipelines particularly, are
vital due to their vulnerability to corrosive and severe
conditions. Internal corrosions are the primary cause of
failure for the offshore pipelines, posing a significant
threat to their reliability and performance. It’s probable
that Corrosion defects interact when they are in
proximity which intensify the damage, making
pipelines much weaker than those with isolated defects.
To ensure safe and efficient operations and to predict
pipeline failures, it is essential to estimate the behavior
of offshore pipelines affected by interacting defects.
This research establishes a novel, data-driven
framework by integrating Latin Hypercube Sampling,
advanced finite element analysis, and machine learning
to develop a high-fidelity predictive model for the
structural response of pipelines with interacting
corrosion defects. The final outcome is a robust and
computationally efficient machine learning tool
capable of accurately forecasting pipeline reliability,
providing a significant contribution to the field of
pipeline integrity management that supports proactive
and informed decision-making.

2. Methodology

The primary objective of this research is to construct a
model for forecasting the likelihood of failure and the
Maximum Von Mises Stress (MVMS) in pipelines
featuring two interacting, longitudinally aligned
corrosion flaws. Figure 1 illustrates the proposed
methodological workflow, with each stage detailed
below.

START

END

Figure 1. Diagram of the suggested approach
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Step 1: FEA results were validated by comparing them
against data from an experimental study.

Step 2: Latin Hypercube Sampling (LHS) technique
was employed to generate 200 realizations of the 8
random variables [33], creating an input matrix for the
subsequent analysis.

Step 3: For a given realization (i), the MVMS was
computed using ABAQUS FEA software. The analysis
began at an internal pressure (IP) of 0 MPa and a
longitudinal defect spacing (S;) of 0 mm.

Step 4: For a fixed defect spacing, the internal pressure
was incrementally increased. If the pipeline did not fail,
IP was increased by 1 MPa increments up to 20 MPa.
Beyond 20 MPa, the increment was refined to 0.1 MPa
to accurately pinpoint the failure pressure. This
approach efficiently tracks failure while conserving
computational resources.

Step 5: After completing the pressure cycle for a given
spacing, the effect of defect interaction was assessed by

increasing the longitudinal spacing by 0.2vDt This
process was repeated for each realization until the

spacing reached the maximum limit of 2/Dt.

Step 6: Steps 3 through 5 were repeated for all 200
realizations.

Step 7: The FEA results were compiled into a
comprehensive dataset. The input features include
pipeline geometry (OR, t), defect characteristics (d, 1,
S1), material properties (E, EYS, EUS), and loading
conditions (IP, EP). The target output variable is the
MVMS.

Step 8: Several well-known regression machine
learning models were selected and trained on the
generated dataset to predict MVMS based on the input
parameters.

Step 9: The performance of the trained models was
compared and evaluated on a held-out test set.
Techniques like k-fold cross-validation were used to
assess accuracy and prevent overfitting.

Step 10: The best-performing machine learning model
was identified and presented as the final predictive tool
for estimating MVVMS in pipelines with longitudinally
aligned corrosion defects.

3. Random Sampling

Abyani and Bahaari [34] demonstrated that the LHS
technique effectively evaluates the reliability of
corroded pipelines while requiring fewer random
samples than the MCS method. Additionally, TDA
analysis was applied to investigate how different
parameters influence the sensitivity of corroded
pipelines’ MVVMS, aiding in parameter selection [10].
Table 1 outlines the probabilistic properties of the
random variables obtained through the LHS method
and specify 95% Confidence Intervals (Cl) of each. A
total of 200 random samples were generated for each
parameter, with studies by Hosseinzadeh et al. [35] and
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Abyani and Bahaari [10] confirming the adequacy of
this sample size.

Table 1. Statistical attributes of the examined random

variables

Paramet Sig Dis  Uni Mea CO 95%  Referen
er n t. te n \Y Cl ce
Defect [8.04, [36]
Depth d N mm 10 0.1 11.96]
Defect [180.4, [37]
Length I N mm 200 005 219.6]
Pipeline [3825  [37]
Outer * 0,
Radius OR N mm 406.4 0.03 43030

1
Pipeline [18.04, [36]
Thicknes t N mm 20 0.05 21.96]
S
External [0.564  [38]
Pressure « MP 7,

EP G a 0.6 0.03 06353

1
Young’s [18942 [39]
modulus MP 2100 0,

EN 2 o0 99 p3s8

0]
Engineeri [4140 [36]
ng Yield EY ws  MP 005 3,
Stress S L a 464.5 6 520.77

1
Engineeri [530.6  [40]
ng 7,
uttimate ¥ N MP 5638 003 59693
. S a
Tensile ]
Strength
* Normal

** Log-Normal
***Gamble max)

4. Numerical modeling

For stress analysis on offshore pipelines corroded by
interacting defects, a 3D finite element model has been
generated utilizing ABAQUS 6.14. Within this model,
a dataset for burst pressure is generated, considering
variations in pipeline geometry, materials, and defect
characteristics. Corroded pipe models are created as a
guarter pipe model according to symmetry rules
utilizing solid elements and featuring two identical
defects on the inner surface. The details of the FEM
model’s properties and its validation is extensively
covered in earlier research by the authors.[35]. A
summary of the FEM model development procedure
for an offshore pipeline suffering from interacting
corrosion defects is outlined below:

4.1. Defect shapes and configurations

The simulated corrosion defects represent localized
metal loss, which encompasses both pitting corrosion
and general metal loss. To define rational models,
interaction rules available in the literature were studied
to estimate suitable longitudinal spacing levels between
defects. Various interaction rules have been established
to demonstrate interacting defects, with specific limits
defined for this purpose. These rules are categorized
into longitudinal and circumferential types, based on
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the defects' size and position. Both industry standards
and academic studies contribute interaction rules that
determine the distance at which defects influence one
another. Idris et al. [41] have gathered significant
interaction rules from existing literature which provide
the engineering basis for determining the distance at
which defects influence one another. This review
categorizes these rules into longitudinal and
circumferential types, based on the defects' size and
position. Consequently, this study evaluates the
interaction of defects arranged longitudinally, as
depicted in Figure 2.

Si

) J
— -
- - v
B - Y - -

TR A M 1d
t —

/

Figure 2. Defects’ geometry and arrangement scheme

As a result, the current research aims to evaluate the
influence of interaction of defect on pipeline
performance. Rectangular-shaped defects rounded at
edges will be aligned along the pipeline length. As a
quarter model has been modeled due to symmetry
rules, a single defect was created (see Figure 3). The
gap between defects will gradually increase from 0 to
2v/Dt , with intervals of 0.2v/Dt, resulting in 11
distinct distances for every samples.

P
et ~

Si
2

Figure 3. defect geometry design in Abaqus

4.2. Material properties

The present paper analyzes a pipeline constructed from
API-5L-X65 steel, a common material for hydrocarbon
transport. The material’s behavior is modeled using the
stress-strain relationship defined by the Ramberg-
Osgood equation (See Eq. (1)) [42].
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Of

og \V
Eg = F + SO (O'_Ey) (1)

The true stress is then determined by [43]:

er = Ln(1 + &) 2
or = og(1+ &) 3)

Here, azy, o7, and e represents the engineering yield
stress, true stress, and true strain, while S, and N are
material-specific constants. For API-5L-X65 steel,
Sp issetto 0.003 and N is set to 22.12 [44]. A full true
stress—strain curve derived from the mentioned
equation is shown in Figure 4:

700
600 |

500 -
400

300 |

True Stress (MPa)

200 |

100

0

0 002 004 006 0.08 0.1 012 0.14 016 0.18 0.2

True Strain

Figure 4. API 5L X65 true stress—strain curve

4.3. Boundary conditions and loads

The pipeline is subjected to internal and external
pressures on its respective surfaces. IP begins at 0 MPa
and steadily rises until it meets the failure criteria.
Additionally, water depth-induced hydrostatic pressure
is applied to the pipeline. In the study area, a water
depth of 60 m is assumed (maximum depth in the
midline area of the Persian Gulf), with seawater density

considered to be 1020 % [10].

The pipeline model, representing a quarter of the
complete corroded pipeline, is developed based on
symmetry rules. The longitudinal faces are restricted to
movement exclusively in the Z and Y directions and
allowed to rotate solely around the X axis.
Additionally, the freedom of the pipe section is
restricted to translate in the X and Y direction and
rotate around the Z axis. A point positioned in Z=0 and
X=Y=0R is treated as rigid. Further details of these BC
are depicted in Figure 5.
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Fixed Node

dz=0
drx=0
dry =0
dz=0
drx =0
dry =0
dx=0
dry =0
drz=0

Figure 5. Pipeline model load condition and boundary
condition

4.4. Meshing Structure

Hexahedral elements, such as Abaqus C3D8, were used
in this study and also, a mesh sensitivity analysis,
combined with model validation have been carried out.
The model was partitioned into three areas: the defect
area, defect-free area, and transition area (see Figure 6).
In the defect-free area, a coarser mesh was utilized
compared to the defect zone to minimize computational
demands. A transition area was defined too, to ensure a
smooth integration of the mesh structure utilizing a
single biased meshing rule (illustrated in Figure 6).

Defect Free Are

Transition
Defected Area

N
G5

R o
e

Ny o

LA

Figure 6. Meshing model system
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4.5. Failure criteria

According to earlier studies [35][10][45][46], this
research determines that pipeline failure happens when
the Von Mises stress across the thickness of the
ligament exceeds the true ultimate strength of the
element. This method employs a recognized standard
to evaluate the critical condition and identify failure in
the model.

4.6. Model Verification

The model results were validated using an
experimental data from Benjamin et al. [47], which
involved an IDTS3 specimen — a pipeline with two
longitudinally aligned corrosion defects matching the
current model. The verification process is detailed in
the authors' recent paper [35]. Model performance was
evaluated by analyzing the failure pressure as the mesh
size decreased, with results compared to the
experimental data. As shown in Table 2, a minimum
error of 1.39% was observed for mesh sizes smaller
than one-fifth of the pipeline thickness.

Table 2. The verification model results for different mesh
layer counts in pipeline thickness

Number  of

mesh layers 1 2 3 4 5 6 7 8
in thickness

Failure

Pressure 22.9 22.7 208 207 206 206 206 206
(Mpa)

Error (%) 1129 1051 234 186 139 139 139 1.39

To optimize the model a sensitivity analysis was
performed to assess the minimum acceptable length for
the Pipe model. The FEM model consists of 3 parts, the
length of the defect zone is equal to the defect length
and the length of part 2 which is a transition part to help
the meshing algorithm has been selected 10 percent of
the defect length. Therefore, to obtain the optimum
length of the model, the length of the 1st part has been
reduced from 20D to 0.5D and the burst pressure of the
model has been assessed in each case as shown in Table
3. Also, to assess the effect of defects longitudinal
spacing the effect of model length was observed in
cases where the longitudinal space between defects is 0
and 250 mm (approximately equal to 2v/Dt for a 32”

pipeline).

Table 3. The failure pressure in various model length

L/D
(rr?rln) 20 10 5 2.5 1 0.5
0 20 20 20 20 185 145

20.5 206 206 20.6 20.6 20 17.6
250 2125 2125 2125 2125 2125 2118

According to the sensitivity analysis results it can be
concluded that by choosing a length equal to 2.5 times
of pipe diameter for part 3 which is about 100 mm the
results are converged.

5. ML Algorithms

In this section, various Artificial Intelligence (Al)
models have been examined to find the best ML
method for predicting the MVMS, based on the main
parameters of pipeline geometry (outer radius and
thickness), defect geometry (depth, and length),
loading condition (internal and external pressure), and
material specification (Ultimate Tensile Strength,
Yield Stress, and young modulus).

Al is a branch of computer science aimed at designing
systems that handle tasks requiring human-like
cognitive abilities, such as solving problems and
making decisions. [48]. ML falls under the broader
category of Al. that deals with algorithms enabling
computers to learn from data and make predictions
[49]. Regression is a specific type of ML technique
used to model relationships between variables when the
goal is to predict continuous numerical outcomes [50].
In continuation, various regression ML models have
been assessed to find the best Al model to predict the
MVMS in corroded pipelines with longitudinal
interacting defects. Scikit-Learn (sklearn) is utilized to
create regression ML models [51]. This Python library
is renowned for its versatility in ML, offering a uniform
interface for a broad spectrum of tasks. The integrity of
other Python libraries such as NumPy and pandas,
makes Scikit-Learn an invaluable resource for
streamlining the development and deployment of ML
models across diverse applications.

In the present study, 5 Extensively employed ML
models such as Linear Regression (LR), Stochastic
Gradient Descent (SGD), K-nearest Neighbors (KNN),
Decision Tree Regression (DTR), and Neural Network
(NN) have been utilized. 80% of input data has been
used for training the models. Also, 20% of the data will
be reserved for the test dataset, while the remaining
80% will be allocated for training the ML model. The
test dataset plays a vital role in assessing the model's
performance. The input features have been transformed
to have a mean value of 0 and a standard deviation of
1. This method is a typical preprocessing procedure to
enhance the data compatibility with ML algorithms,
particularly those that are influenced by the feature
scales, like SVM and Kk-nearest neighbors.
Standardization has been done to avoid biases related
to parameter values that can occur when features are on
different scales.

5.1. Linear Regression (LR)

Linear regression is a fundamental ML algorithm, that
establishes a linear model that establishes a connection
between a dependent variable (the target) and several
independent variables (predictors) by fitting a linear
equation [52]. The model seeks to minimize the
discrepancy between its predictions and the actual
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values in a training dataset, utilizing the least squares
method. Once trained, the model can provide forecasts
for new data. It is a widely applied and easily
interpretable approach for comprehending and
forecasting relationships between variables in
situations where those relationships are linear, although
it may not excel when dealing with non-linear
associations. Evaluation metrics like Mean Squared
Error and R-squared are used to gauge its effectiveness.
This relationship is represented by a linear equation,
typically in the form Eq.(4):

Yy =PBo+ P1x1 + Poxz + o+ +Ppxy + £

Where: y is the dependent variable. x4, x5, ..., x,, are
the independent variables. S, is the intercept. S,
B2, ..., Pn are the coefficients for each independent
variable, representing their respective slopes and ¢ is
the error term.

5.2. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) regression is a
widely employed optimization algorithm within the
realm of machine learning and statistical modelling.
.This model is well-suited for addressing large-scale

optimization challenges associated with substantial
training sets, SGD is well known for its simplicity and
prevalence in stochastic optimization methods [53].
The algorithm iteratively refines an objective function
with precision, rendering it a potent tool for minimizing
objective functions across various applications [54].
Moreover, SGD exhibits an implicit regularization
mechanism, ensuring that solutions derived through its
application generalize effectively, regardless of the
number of parameters involved [55].

5.3. K-Nearest Neighbors (KNN)

K-nearest neighbor (KNN) regression represents a
supervised learning algorithm designed for regression
tasks. This straightforward method determines the
output of a new instance by considering the average or
weighted average of its k-nearest neighbors within the
feature space. The KNN algorithm is recognized for its
simplicity and performance that rivals more intricate
regression techniques[56]. Notably, KNN regression
can be extended to support interval regression. In this
approach, a novel method leveraging tolerance
intervals determines the hyper-parameter K for each
instance, balancing precision and uncertainty arising
from limited sample size [57]. Additionally, KNN
regression finds application in multidimensional query
processing, exemplified by the k-nearest neighbor
(KNN) query, which identifies the k-nearest points
using distance metrics from a given location [58]. In a
simple case with one feature, the predicted value for a
test data point would be the average of the target values
of its 'k’ nearest neighbors [59] (Eg. (5)).

(4)
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Where y is the predicted target value for the test data
point. k is the number of nearest neighbors. And y; is
the target value of the i-th nearest neighbor.

5.4. Decision Tree Regression (DTR)

Decision tree regression stands out as a versatile tool
employed for regression tasks, where the primary
objective is to predict a continuous value. This
algorithm, though simple, proves effective and
applicable to both classification and regression
problems [60]. Its operational principle involves
recursively partitioning data into subsets based on input
feature values and subsequently fitting a simple model
within each subset. The outcome is a tree-like model
where the leaves signify predictions. Decision tree
regression finds extensive application across various
domains, encompassing sales prediction, stock price
forecasting, and retail promotion planning [61].
decision tree regression models exhibit versatility in
handling both numerical and categorical data,
showcasing robustness to outliers owing to their non-
parametric nature [62]. Notably, the resultant model is
interpretable, offering insights into the significance of
different features in the prediction process.

5.5. Neural Network (NN)

Neural network regression emerges as a potent tool for
modeling and forecasting continuous values.
Successfully implemented in diverse applications [63].
What sets neural networks apart is their capacity to
capture intricate relationships within data, rendering
them well-suited for nonlinear regression tasks [64].
Additionally, they demonstrate superior prediction
accuracy compared to traditional regression models
[65].

The architecture of a neural network is composed of
elementary processing units called neurons, which
perform mathematical functions [66]. Neurons are
structured into different layers, which generally include
an input layer, multiple hidden layers, and an output
layer. [67]. The input layer accepts the initial data,
which is then handled by the hidden layers before
reaching the output layer that delivers the final output.
The weights of the connections between neurons are
adjusted during training, allowing the network to refine
its learning based on the data. As the number of hidden
layers and nodes in a neural network grows, both its
complexity and processing time increase markedly.
[68]. Also, Tirumala & Narayanan [69] found that
when hidden layers have the same number of nodes,
performance is better than when hidden layers have
different numbers [69]. In the present study the input
layer consists of pipeline and defects characteristics
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and outer layer is the MVMS value analyzed by FEM.
For instance, a schematic of an NN model including 2
hidden layers has been depicted in Figure 7.

Figure 7. NN model schematic

6. Model Performance Assessment Methods

Various metrics are typically employed to assess the
effectiveness of regression models, offering insights
into their accuracy, precision, and ability to generalize.
Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Coefficient of Determination R-squared
(R2) are extensively employed metrics for gauging
model performance [70]. MAE represents the average
magnitude of errors between predicted and observed
values, calculated as the absolute mean of the error (Eq.

(6)) [71].

MAE = —Z 1P = Pl ©)

Conversely, RMSE guantifies the square root of the
average squared differences between predicted and
observed values, assigning more significance to larger
errors (Eq. (7)) [72].

N
1 ~
RMSE = NZ(Pﬂ—Pﬁ)Z (7
i=1
Moreover, R2 or the coefficient of determination

indicates the proportion of predictable variance in the
dependent variable from the independent variable(s)

(Eq. 8) [73].

B2 1 Zlivzl(lifi - Iifi)z ®)
A L1 (Pri — Pr)?

where Pf; and Py; are the predicted and actual failure

pressures, respectively, and Py; is the average value of

the actual failure pressures and N is the number of
variables.

7. Results and discussion

7.1 LHS-FEM Dataset

As mentioned before the taking advantages of
ABAQUS software a FEM model were developed to
analyze the MVMS value in 121 IP levels (from 1 MPa
to 20 MPa in increments of 1 MPa and from 20.1 MPa
to 30 MPa in increments of 0.1 MPa) and 11 spacing
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levels (ranging from 0 to 2.0/Dt in increments of
0.2+/Dt) for each of 200 random variables. A sample of
ABAQUS results has been illustrated in Figure 8
illustrating MVMS contours. The results show the
highest MVMS values has been occurred in the defect
and defects spacing area.

Figure 8. Example of ABAQUS FEM analysis results

Having these Valuable data, a data set matrix has been
generated containing 10 input variables including
Outer Radius (OR), Thickness (t), defect depth (d),
defect length (1), Engineering Ultimate Strength (EUS),
Engineering Yield Strength (EYS), Young Module (E),
longitudinal Spacing (S;), and Internal Pressure (IP)
and Maximum Von Mises Stress (MVMS) as output
data which leads to 11 columns and 266,200 rows.

Figure 9 illustrates the count histograms corresponding
to each input data. The initial eight data, comprising
OR,t,d,EP,l,EUS,EYS,and E, are generated through
LHS, adhering to a defined distribution. The histogram
for IP similar to S; demonstrates a uniform distribution
when 1P<20. However, beyond IP>20, the counts
increase as the IP interval decreases from 1 to 0.1, but
a declining trend emerges subsequently due to

observed fallures
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Figure 9. Input data histogram
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7.2 Al Model Development

The machine learning dataset contains 266,200
samples, with each sample containing 10 input and one
output variable. Out of these, 212,960 samples are used
for training the prediction models, and 53,240 samples
are used for evaluating the models' performance,
maintaining an 8:2 ratio. This division supports
detailed analysis of how the input variables relate to the
output, leading to the creation of reliable ML models
for accurate predictions.

Considering the significance of hyperparameters in
attaining high-performing models, in this paper, k-fold
cross-validation techniques were applied to evaluate
the performance of the proposed model, ensuring its
resilience and dependability across numerous train-test
divisions. K-fold cross-validation stands as a widely
embraced approach for assessing the predictive
efficacy of regression models [74]. This method entails
segmenting the dataset into k subsets, utilizing k-1
subsets for training, and reserving one subset for
validation, iterating this process k times to ensure
robustness and guard against overfitting [75]. The
resulting k-fold cross-validation error estimation serves
as a crucial metric for evaluating the model's
generalization capabilities [76], proving especially
beneficial in data-scarce scenarios by leveraging all
available data for training and validation purposes [77].
Moreover, it serves as a tool for selecting optimal
hyperparameters, such as A in regularization techniques
[78].

Also, a grid search was utilized to methodically
investigate hyperparameter combinations aimed at
optimizing model performance. Grid search is a well-
known hyperparameter optimization technique within
regression models. Grid search methodology follows
an exhaustive exploration of a predetermined subset of
hyperparameter values to pinpoint the combination that
elicits the finest model performance [79]. Grid search
is esteemed for its simplicity and broad applicability in
parameter optimization [80], proving particularly
advantageous in fine-tuning hyperparameters across a
spectrum of ML models.

In the LR model, grid search explores different settings
of the ‘fit_intercept’ hyperparameter.  The
"fit_intercept" parameter in linear regression denotes
the constant factor within the regression formula. It
permits the regression line to intersect the y-axis at a
designated position rather than originating from the
origin. This parameter is crucial for capturing the
baseline value of the dependent variable when all
independent variables are set to zero. It constitutes a
fundamental aspect of the linear regression model,
enhancing its capability to capture the relationship
between independent and dependent variables with
greater flexibility [81] When "fit_intercept” is set to
True, the linear regression model will estimate an
intercept, or bias term, along with the coefficients for
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the input features. This intercept represents the value of
the dependent variable (target) when all input features
are zero.

The SGD model has been optimized assessing the loss
function, maximum iteration (max_iter), alpha and
epsilon parameters. The loss function represents the
function to be minimized during the training of the
SGD model [82]. On the other hand, alpha parameter
controls the regularization strength in the SGD model.
It is the coefficient that multiplies the regularization
term [55]. Furthermore, the epsilon parameter is related
to the margin of tolerance for the model and it controls
the width of the epsilon-insensitive tube [83]. Finally,
the last analyzed hyperparameter (max_iter) sets the
maximum number of iterations for the solver to
converge. It specifies the maximum number of
iterations taken for the solver to converge or reach a
stopping criterion [84].

To enhance KNN model performance, the grid search
explores optimal values for Number of neighbors to
consider (n_neighbors), The weight function used in
prediction (weight), and the power parameter (p) for
the Minkowski distance metric. The weight function
used in prediction can be 'uniform' (all neighbors have
equal weight) or 'distance’ (weight points by the inverse
of their distance) (Altay, Ulas, and Alyamag 2020). For
(p = 1), the distance measured is the Manhattan
distance; for (p = 2), it is the Euclidean distance [85].
Exploring optimal values for DTR model
hyperparameters, different configurations for the
maximum depth of the tree (max_depth), the least
number of samples needed to divide an internal node
(min_samples_split), and the smallest number of
samples required at a leaf node (min_samples_leaf)
were analyzed. Increasing max_depth allows the tree to
delve deeper, capturing more intricate relationships
within the training data. However, this also heightens
the risk of overfitting, particularly if the tree becomes
excessively deep and captures noise in the data [86].
On the other hand, higher values for min_samples_split
yield a tree with fewer splits, preventing the model
from becoming overly tailored to the training data,
thereby aiding in overfitting control. However, setting
this parameter too high may lead to underfitting, as the
tree may fail to capture essential patterns in the data
[87]. min_samples_leaf, similar to min_samples_split,
regulates the minimum number of samples at the
terminal  (leaf) nodes. Larger values for
min_samples_leaf result in more conservative models,
impeding the creation of small leaf nodes. While this
helps mitigate overfitting, excessively high values may
contribute to underfitting [88].

The grid search for the NN model probes the best
values for 3 hyperparameters. First, the optimum
number of neurons in each hidden layer of the neural
network is assessed, second the activation function
used in each neuron is specified and third the alpha
parameter is evaluated which is the regularization
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strength, controlling the penalty on the complexity of
the neural network [89].
The Grid search configurations and results have been
summarized in Table 3.

Table 4. Grid search configurations and results

Model  Hyperparameters Range Final Value

LR Fit Intercept [True, False] True
[squared_loss, huber,
epsilon_insensitive]

loss epsilon_insensitive

SGD alpha [0.0001, 0.001, 0.01] 0.0001
epsilon [0.1, 0.01, 0.001] 0.1
max_iter [1000, 2000, 3000] 1000
n_neighbors [3,5,7] 3

KNN weights ['uniform’, 'distance’] distance
p [1,2] 2
max_depth [None, 5, 10, 15] None

DTR min_samples_split [2, 5, 10] 5
min_samples_leaf [1,2,4] 1
hidden_layer_sizes [(100,), (50, 50), (25, (50, 50)

NN 25, 25)]
activation ['relu’, 'tanh'] tanh
alpha [0.0001, 0.001, 0.01] 0.01

To ensure the robustness and reproducibility of the
machine learning models developed in this study, key
specifications  were  rigorously  implemented
throughout the modeling process. The models were
trained using an 80/20 train/test split, with a fixed
random seed (random_state=42) applied to all
stochastic processes to guarantee consistent results.
Hyperparameter tuning was performed using 5-fold
cross-validation on the training set only. The neural
network model utilized the Adam solver for
optimization. Crucially, feature scaling was fitted
exclusively on the training data to prevent any data
leakage, and the same scaling parameters were then
applied to the test set. These measures ensured that the
reported performance metrics provide an unbiased
estimate of the models' generalization capability.

7.3 Models Evaluation

The validity of the ML models has been evaluated by
comparing the model results vs the MVMS values
calculated by FEM, the results are derived from an
analysis of the test dataset, constituting 20% of the total
data. The comparison among model actual and
predicted MVMS value (MPa) are illustrated in the
Figure 10 to Figure 14. As can be seen in Figure 10 and
Figure 11 ,The LR and SGD models demonstrates 100s
fit in the lower MVMS values. Notably, the KNN
algorithm outperforms these methods and has a better
performance in MVVMS values greater than 50 MPa.
DTR and NN (Figure 13 and Figure 14) models exhibit
good performance and almost mirror FEM values while
the NN model produces even less noise data in
comparison with the DTR model.
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Predicted Values

Predicted Values

Predicted Values

Predicted Values

Predicted Values

Actual Values vs LR Model| Predicted Values (Test Set)

Figure 10. LR Model Prediction Accuracy

Actual Values vs SGD Model Predicted Values (Test Set))

Actual values

Figure 11. SGD Model Prediction Accuracy

Actual Values vs KNN Model Predicted Values (Test Set))

Figure 12. KNN Model Prediction Accuracy

Actual Values vs Decision Tree Model Predicted Values (Test Set)

Actual Values

Figure 13. DTR Model Prediction Accuracy

Actual Values vs Neural Network Model Predicted Values (Test Set)
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Figure 14. NN Model Prediction Accuracy
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In order to have a better insight into model
performances, Evaluation metrics such as RMSE,
MAE, and R? are explored and compared in Figure 15,
offering a comprehensive insight into the model's
accuracy and predictive capabilities. The results show
that KNN, DTR, and NN models present metrics lower
than 10 for a data range of 0 to 600 which demonstrates
a satisfying fit. The DTR and NN have presented the
best performances according to metrics and NN has an
RMSE of 15% lower than DTR. Also, according to
Figure 14, the dispersion of data from the X = Y line is
a lower than DTR predictions shown in Figure 13.
Therefore, the NN model has been selected to predict
the MVMS data.

Performance Metrics for ML Models

45.728 47.018
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Figure 15. Model’s performance metrics

7.4. Parameters Importance Order Assessment
Assessing random parameters' importance order is a
way to assess the significance of uncertainties of each
variable in evaluating the reliability. Various methods
have been presented for evaluating predictor variable
significance, such as recursive feature elimination [90],
permutation importance (PI) ranking across diverse
ML models [91], and utilizing ML approaches for
feature selection and evaluation [92]. PI is a widely
adopted technique for evaluating the relative
significance of parameter features within ML models.
Pl provides a pragmatic and effective means to
delineate the hierarchy of feature importance [93]. This
method gauges the influence of each parameter feature
on model performance by quantifying the rise in
prediction error when the variable's values undergo
random permutation while maintaining other variables
constant [94].

Consequently, the Random Variables parameter
importance has been calculated using permutation for
the NN and DTR models to specify the role of each
feature in finding the MV MS values. The PI value of
each feature in the NN and DTR model has been
illustrated in Figure 16 and Figure 17 respectively. As
the results demonstrate the t value can influence the
MV MS value more than other random features. In The
second stage both models take a material parameter in
their importance order nevertheless, NN model
consider and DTR consider EYS and EUS respectively
as their more effective parameter. Defect depth in both

models stand in third place of importance order. A
significant different in the models is about defects
length which is the 4th effective parameter in NN
model while it has the least effect on the DTR results.

Feature Importance Order (Neural Network)
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Figure 16. Features’ importance order for NN model
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Figure 17. Features’ importance order for DTR model
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7.5. Model Results

To assess the performance of ML models in predicting
the MVMS based on pipeline and defect
characteristics, the predicted MVMS values by NN and
DTR models were compared. In Figure 18, the MVMS
was predicted at different longitudinal spacing and
internal pressure levels using both models. The results
are presented in a 3D scatter plot, where the X and Y
axes represent longitudinal spacing and internal
pressure, respectively, and the Z axis shows the
predicted MVVMS for specified internal pressure and
spacing levels when other variables are at their mean
values (as listed in Table 1).
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Figure 18. Predicted MVMS by NN (A) and DTR (B) models
in different longitudinal spacings and internal pressures

As observed, the DTR model, due to its classification-
based approach, produces jagged results and shows a
decrease in precision at certain points despite its
general accuracy. In contrast, the NN model provides a
smoother surface with better accuracy. As expected, in

both models, MVMS decreases with higher
longitudinal spacing, reflecting reduced defect
interaction, and increases with greater internal
pressure.

Furthermore, the effect of pipeline thickness and
corrosion rate on the MVMS at two longitudinal
spacing levels (S; = 0 and S; = 250 mm) with other
input parameters at their mean values is illustrated in
Figure 19. As seen, the DTR results are rough due to
the inherent behavior of DTR models. Both models
show a reduction in MVMS values as the corrosion rate
decreases and indicate that MVMS is inversely
proportional to pipeline thickness. The results also
reveal that the DTR model predictions are more
conservative; for instance, when t = 18 mm, the DTR
model predicts pipeline failure at a 40% corrosion rate,
whereas the NN model predicts failure at corrosion
rates above 50%. Therefore, it can be concluded that
the NN model performs better in predicting MVMS in
corroded pipelines.
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Figure 19. Pipeline thickness and corrosion rate effect on
Predicted MVMS using NN (A) and DT (B) models

The ML model can also be beneficial in assessing
interaction rules. As previously mentioned, various
interaction rules provided in the literature can
determine the maximum space between defects where
the interaction affects pipeline performance. The NN
model was employed to evaluate the maximum defect
spacing level where interaction impacts the MVMS in
different defect geometries.

For this analysis, all input data were set to their mean
values. Spacing and MVMS were assessed across
various defect depths and lengths under different
internal pressures (0:1:20 for I[P < 20 and 20.1:0.1:30
for IP > 20). The pressure at which the MVMS
exceeds the true ultimate strength value was defined as
the burst pressure (see Figure 20).
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Burst Pressure (MPa)
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Figure 20. Burst Pressure in different Spacing levels

The spacing level at which interaction does not
influence the results was defined as the maximum
interacting spacing level, as illustrated in Figure 21.
The results indicate an approximate increase in
effective spacing with an increase in defect depth,
consistent with interaction rules in the literature.
However, changes in defect length do not exhibit a
significant relationship with variations in the maximum

interacting spacing level.
100
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Figure 21. Maximum Spacing Between defects which the
interaction is effective on MVMS assessed by NN model

Maximum Intercting Spacing (mm)

12.0
115
11.0
105
9.5
9.0
8.5
8.0

defect depth (mm)
=
o
(=}
Magnitude of Maximum Intercting Spacing (mm)

190 195 200 205 210
defect length (mm)

8. Conclusions

In this paper, a study was conducted to generate an
LHS-FEM database aimed at training an ML model
capable of predicting MVMS in the outermost mesh
layer of a ligament within the defective area of the
pipeline thickness, considering the interaction of two
longitudinally aligned defects.

Using ABAQUS software and leveraging Abaqus
Python scripting an FEA dataset was generated. The
LHS method was used to generate 200 random
variables to study the MVVMS for each one at 121
internal pressure (IP) levels (ranging from 1 to 20 MPa
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and from 20.1 to 30 MPa) and 11 spacing levels

(ranging from 0 to 2v/Dt in steps of 0.2v/Dt).

Using the LHS-FEM generated big data, 5 well-known
and rigorous ML models including LR, SGD, KNN,
DTR, and NN were trained to predict MVMS value.
The database includes input data such as pipeline
geometry parameters like outer radius ( OR) and
pipeline thickness (t), pipeline material data including
engineering yield stress (EYS), engineering ultimate
strength (EUS), and Young's modulus (E), as well as
corrosion defect data encompassing defect depth (d),
defect length (1), and levels of longitudinal defect
spacing (S;). To achieve the best hyperparameters in
each model a gridsearch were executed. Also, the
performance of the models was evaluated using k-fold
cross-validation techniques, ensuring its resilience and
dependability across various train-test divisions. The
predictive models presented in this paper are validated
for use within the 95% confidence intervals of the input
parameters.

To evaluate the performance and accuracy of the
models, the first 20% of the dataset, reserved as test
data, was used for comparison with the actual FEM
results to define the best model with the most accurate
outcomes. In the subsequent step, the model's ability to
generalize its results was assessed using the learning
curve method.

The results indicated that the DTR and NN models
exhibited the best prediction accuracy among the
assessed models. The prediction performances of the
NN and DTR models were compared, revealing that the
NN model produced smoother and more accurate
results. The findings indicated that the MVMS
increases with a rise in spacing level when other
parameters remain constant. Additionally, the MVMS
decreases with a reduction in the corrosion rate and an
increase in pipeline thickness. The NN results were
also used to assess the maximum defect spacing level
where the interaction significantly affects MVMS. The
results demonstrated that the depth of the defect
impacts the defect interacting space.
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