Enter your email address

Submit

Enter your email address

Submit

Write your message

BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Behshad A, Shekari M R. A boundary element study for evaluation of the effects of the rigid baffles on liquid sloshing in rigid containers. ijmt. 2018; 10 :45-54

URL: http://ijmt.ir/article-1-630-en.html

URL: http://ijmt.ir/article-1-630-en.html

2- Department of Civil Engineering, Estahban Higher Education Center, Estahban

In this paper, the sloshing response of liquid in a two dimensional rigid rectangular tank with rigid baffles is investigated using boundary element technique. A baffle is a supplementary structural element which supplies a kind of passive control on the effects of ground shaking. The complicated liquid domain is divided into two simple sub-domains so that the liquid velocity potential in each liquid sub-domain is specified employing Green’s theorem, and the walls and free surface boundary conditions are applied. The liquid region is modeled by internal quadrilateral boundary elements, which reduce the three-dimensional fluid problem into a two-dimensional-surface one. The validity of the present algorithm is assessed through the comparison with the accessible results for the rectangular tank without baffle and then developed to the solution of tanks with rigid baffles. Several parametric studies are performed to show the liquid sloshing effects in terms of the slosh frequencies and free surface displacement by consideration of the effects of baffle parameters such as position and dimension. From these analyses, it may be concluded that in the special case of long-period ground earthquake, the baffle device amplifies the dynamic responses of liquid tank which may be interpreted by the fact that the predominant period of the ground shaking is set at the fundamental natural sloshing periods.

Type of Study: Research Paper |
Subject:
Offshore Structure

Received: 2017/10/5 | Accepted: 2018/09/24

Received: 2017/10/5 | Accepted: 2018/09/24

1. Ibrahim, R.A.; (2005), Liquid Sloshing Dynamics: Theory and Applications; Cambridge University Press, New York. [DOI:10.1017/CBO9780511536656]

2. Evans D.V., McIver P. (1987), Resonant frequencies in a container with a vertical baffle, Journal of Fluid Mechanics, 175: p. 295–307. [DOI:10.1017/S0022112087000399]

3. Watson E.B.B., Evans D.V., (1991), Resonant frequencies of a fluid in containers with internal bodies, Journal of Engineering Mathematics, 25: p. 115–135. [DOI:10.1007/BF00042849]

4. Choun, Y.-S., Yun, C.-B., (1996), Sloshing characteristics in rectangular tanks with a submerged block, Computers & Structures, 61(3): p. 401–413. [DOI:10.1016/0045-7949(96)00084-3]

5. Choun, Y.-S., Yun, C.-B., (1999), Sloshing analysis of rectangular tanks with a submerged structure using small-amplitude wave theory. Earthquake Engineering & Structural Dynamics, 28(7): p.763–783.
https://doi.org/10.1002/(SICI)1096-9845(199907)28:7<763::AID-EQE841>3.0.CO;2-W [DOI:10.1002/(SICI)1096-9845(199907)28:73.0.CO;2-W]

6. Warnitchai, P., Pinkaew T., (1998), Modelling of liquid sloshing in rectangular tanks with flow-damping devices. Engineering Structures, 20: p. 593–600. [DOI:10.1016/S0141-0296(97)00068-0]

7. Isaacson, M., Premasiri S., (2001), Hydrodynamic damping due to baffles in a rectangular tank. Canadian Journal of Civil Engineering, 28: p. 608–616. [DOI:10.1139/l01-022]

8. Biswal, K.C., Bhattacharyya, S.K., Sinha, P.K., (2003), Free vibration analysis of liquid filled tank with baffles. Journal of Sound and Vibration, 259 (1): p.177–192. [DOI:10.1006/jsvi.2002.5087]

9. Biswal, K.C., Bhattacharyya, S.K., Sinha, P.K., (2004), Dynamic response analysis of a liquid filled cylindrical tank with annular baffle. Journal of Sound and Vibration, 274 (1–2), p. 13–37. [DOI:10.1016/S0022-460X(03)00568-6]

10. Frandsen, J. B., (2004), Sloshing motions in excited tank, Journal of Computational Physics, 196(1), p. 53–87. [DOI:10.1016/j.jcp.2003.10.031]

11. Bermudez, A., Rodriguez, R., Santamarina, D., (2003), Finite element computation of sloshing modes in containers with elastic baffles plates. International Journal for Numerical Methods in Engineering, 56(3): p. 447–467. [DOI:10.1002/nme.578]

12. Lee, S.Y., Cho, J.R., (2003), Dynamic analysis of baffled fuel storage tanks using the ALE finite element method. Int. J. Numer. Methods Fluids, 41: p. 185–208. [DOI:10.1002/fld.434]

13. Iseki, T., Shinkai, A., Nakatake, K., (1989), Boundary element analysis of 3-dimensional sloshing problem by using cubic spline element. Naval Architect (Japan), 166: p. 355–362. [DOI:10.2534/jjasnaoe1968.1989.166_355]

14. Sen, D. A., (1995), cubic-spline boundary integral method for two-dimensional free-surface flow problems. International Journal for Numerical Methods in Engineering, 38(11): p. 1809–1830. [DOI:10.1002/nme.1620381103]

15. Dutta, S., Laha, M.K., (2000), Analysis of the small amplitude sloshing of a liquid in a rigid container of arbitrary shape using a low-order boundary element method. Int J Numer Meth Engng, 47: p. 1633–48.
https://doi.org/10.1002/(SICI)1097-0207(20000330)47:9<1633::AID-NME851>3.0.CO;2-1 [DOI:10.1002/(SICI)1097-0207(20000330)47:93.0.CO;2-1]

16. Gedikli, A., Erguven, M.E., (1999), Seismic analysis of a liquid storage tank with a baffle. Int J Sound Vib 1999, 223: p. 141–56. [DOI:10.1006/jsvi.1999.2091]

17. Gedikli, A., Erguven, M.E., (2003), Evaluation of sloshing problem by variational boundary element method, Engineering Analysis with Boundary Elements, 27(9): p. 935–943. [DOI:10.1016/S0955-7997(03)00046-8]

18. Kita, E., Katsuragawab, J., Kamiya, N., (2004), Application of Trefftz-type boundary element method to simulation of two-dimensional sloshing phenomenon, Engineering Analysis with Boundary Elements, 28(6): p. 677–683. [DOI:10.1016/j.enganabound.2003.07.003]

19. Jamali, M., (2006), BEM modeling of surface water wave motion with laminar boundary layers. Engineering Analysis with Boundary Elements, 30(1): p. 14–21. [DOI:10.1016/j.enganabound.2005.08.007]

20. Ning D.-Z., Teng B., Zhao H.-T., and Hao C.-I., (2010), A comparison of two methods for calculating solid angle coefficients in a BIEM numerical wave tank, Engineering Analysis with Boundary Elements, 34(1): p. 92–96. [DOI:10.1016/j.enganabound.2009.06.009]

21. Sygulski, R., (2011), Boundary element analysis of liquid sloshing in baffled tanks, Engineering Analysis with Boundary Elements, 35 (8): p. 978-983. [DOI:10.1016/j.enganabound.2011.03.001]

22. Ebrahimian, M., Noorian, M.A., Haddadpour, H., (2013), A successive boundary element model for investigation of sloshing frequencies in axisymmetric multi baffled containers, 37(2): p. 383–392.

23. De-Zhi, N., Wei-Hua, S., Yu-Long, L., Bin, Teng, (2012), Boundary Element Investigation of Liquid Sloshing in Coupled Horizontal and Vertical Excitation, Journal of Applied Mathematics, 20 pages.

24. Firouz-Abadi, R.D., Haddadpour, H., Noorian, M.A., Ghasemi, M., (2008), A 3D BEM model for liquid sloshing in baffled tanks, Int. J. Numer. Methods Eng., 76: p. 1419-1433. [DOI:10.1002/nme.2363]

25. Shekari, M.R., Khaji, N., Ahmadi, M.T., (2009), A coupled BE–FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid–structure interaction. Journal of Fluids and Structures, 25(3): p. 567–585. [DOI:10.1016/j.jfluidstructs.2008.07.005]

26. Shekari, M.R., (2014), Seismic response of liquid-filled tank with baffles, Journal of Marine Science and Application, Volume 13: p. 299–304. [DOI:10.1007/s11804-014-1260-z]

27. Brebbia, C.A., Dominguez, J., (1992), Boundary Elements, An Introductory Course. CMP & McGraw-Hill, New York.

28. Biswal, K.C., Bhattacharyya, S.K., Sinha, P.K. (2006), Non-linear sloshing in partially liquid filled containers with baffles. Int J Numer Methods Eng, 68: p. 317–337. [DOI:10.1002/nme.1709]

29. Goudarzi, M.A., Sabbagh-Yazdi, S.R., (2012), Investigation of nonlinear sloshing effects in seismically excited tanks. Soil Dynamics and Earthquake Engineering, 43, p. 355–365. [DOI:10.1016/j.soildyn.2012.08.001]

30. Degtyarev, K., Gnitko, V., Naumenko, V., Strelnikova, E. A., (2016), Reduced Boundary Element Method for Liquid Sloshing Analysis of Cylindrical and Conical Tanks with Baffles. International Journal of Electronic Engineering and Computer Science, 1: p. 14-27.

31. Akyildiz, H., Unal, E.N., (2005), Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing, Ocean Engineering, 32, p. 1503–1516. [DOI:10.1016/j.oceaneng.2004.11.006]

Send email to the article author