1. Brunet, S., de la Llera, J.C., Jacobsen, A., Miranda, E. and Meza, C., (2012), Performance of port facilities in Southern Chile during the 27 February 2010 Maule earthquake. Earthquake Spectra, 28(S1), pp. S553-S579. [
DOI:10.1193/1.4000022]
2. SEAOC Vision 2000 Committee, (1995), Performance-Based Seismic Engineering, Report prepared by Structural Engineers Association of California, Sacramento, California.
3. Dong, Y. and Frangopol, D.M., (2016), Performance‐based seismic assessment of conventional and base‐isolated steel buildings including environmental impact and resilience. Earthquake Engineering & Structural Dynamics, 45(5), pp.739-756. [
DOI:10.1002/eqe.2682]
4. Ferritto, J.M., (1997), Design Criteria for Earthquake Hazard Mitigation of Navy Piers and Wharves (No. NFESC-TR-2069-SHR). Naval Facilities Engineering Service Center Port Hueneme Ca. [
DOI:10.21236/ADA325316]
5. Lee, W.K., and Billington, S.L., (2009) simulation and performance-based earthquake engineering assessment of self-centering post-tensioned concrete bridge systems, Pacific Earthquake Engineering Research Center (PEER), College of Engineering, University of California, Berkeley. [
DOI:10.1002/eqe.1065]
6. Vamvatsikos, D. and Cornell, C., (2002), Incremental Dynamic Analysis, Earthquake Engineering and Structural Dynamics, 491-514. [
DOI:10.1002/eqe.141]
7. Dezvareh, R., (2019), Upgrading the Seismic Capacity of Pile-Supported Wharfs Using Semi-Active Liquid Column Gas Damper. Journal of Applied and Computational Mechanics.
8. Lee, T.H. and Mosalam, K.M., (2006), Probabilistic seismic evaluation of reinforced concrete structural components and systems, Pacific Earthquake Engineering Research Center (PEER) report, College of Engineering, University of California, Berkeley.
9. Pacific Earthquake Engineering Research Center, (2002), Estimation of Uncertainty in Geotechnical Properties for Performance-Based Earthquake Engineering, University of Washington.
10. Na, U.J. and Shinozuka, M., (2009), Simulation-based Seismic Loss Estimation of Seaport Transportation System, Reliability Engineering & System Safety, Vol. 9, No.3, pp. 722-731. [
DOI:10.1016/j.ress.2008.07.005]
11. Na, U.J., S.R., Chaudhuri, and Shinozuka, M., (2009), performance evaluation of pile supported wharf under seismic loading, Proc., TCLEE, p.1032-1041. [
DOI:10.1061/41050(357)98]
12. Torkamani, H., Bargi, K., and Amirabadi, R., (2013), Fragility curves derivation for a pile-supported wharf, International Journal of Maritime Technology, 1:1-10.
13. Lagaros, Nikos D., (2010), Multicomponent incremental dynamic analysis considering variable incident angle, Structure and Infrastructure Engineering, 77-94. [
DOI:10.1080/15732470802663805]
14. Rupali, J. and Jaiswal, J., (2017), Study of Effect of Seismic Excitation Angle for the Analysis of Regular and Irregular RC Frame, Mechanical and Civil Engineering, 80-83. [
DOI:10.9790/1684-1402078083]
15. Shafieezadeh, A., (2011), seismic vulnerability assessment of wharf structure, in Civil and Environmental Engineering, Georgia Institute of Technology.
16. Chiou, J.S., Chiang, C.H., Yang, H.H, and Hsu, S.Y., (2011), Developing fragility curves for a pile-supported wharf, Soil Dynamics and Earthquake Engineering, Journal homepage: www.elsevier.com/locate/soildyn. [
DOI:10.1016/j.soildyn.2011.01.011]
17. Thomopoulos, C., and Lai, C., (2012), Preliminary definition of fragility curves for pile supported wharves, Journal of Earthquake Engineering. 16(sup1): p.83-106. [
DOI:10.1080/13632469.2012.675839]
18. Yang, C.-S.W., Desroches, R., and Rix, G.J., (2012), Numerical fragility analysis of vertical pile-supported wharves in the western United States, Journal of Earthquake Engineering. 16(4): p.579-594 [
DOI:10.1080/13632469.2011.641063]
19. Heidary-Torkamani, H., Bargi, K., Amirabadi, R., and McCllough, N.J., (2014), Fragility estimation and sensitivity analysis of an idealized pile supported wharf with batter piles, Soil Dynamics and Earthquake Engineering. 61-62(0): p. 92-106. [
DOI:10.1016/j.soildyn.2014.01.024]
20. Banayan-Kermani, A., Bargi. Kh., and Heidary-Torkamani. H., (2016), Seismic performance assessment of pile-supported wharves retrofitted by carbon fiber-reinforced polymer composite considering aging effect, Advances in Structural Engineering. DOI: 10.1177/1369433216630187. [
DOI:10.1177/1369433216630187]
21. Kermani. A, and Bargi. K., (2016), Fragility curves: a powerful tool for seismic vulnerability assessment of pile-supported wharves, International Journal of Science and Engineering. ISSN:2454.
22. SAP2000 V19.0, (2017), CSI Analysis Reference Manual for SAP 2000, Computers and Structures, Inc., Berkley, California.
23. American Petroleum Institute (API), (2000) Recommended practice for planning, designing, and constructing offshore platforms: API recommended practice 2A (RP 2A), 17th ed. Washington, DC: American Petroleum Institute.
24. PIANC., (2001), Seismic Design Guidelines for Port Structures, Permanent International Navigation Association, A.A. Balkema Publishers, Rotterdam, The Netherlands.
25. Amirabadi, R., Bargi, K., Dolatshahi Piroz, M., Heydari Torkamani, H., Mccllough, N., (2012), Probabilistic seismic demand model of PEER-PBEE framework for pile and deck structure, International Journal of Civil and Structural Engineering. [
DOI:10.6088/ijcser.00202030007]
26. Pacific Earthquake Engineering Research Center (PEER), (2107) Data from: PEER Ground Motion Database. Retrieved from http://ngawest2.berkeley.edu/users/sign_in.