1. 1- Amiri-Simkooei, A. (2007). Least-squares variance component estimation: theory and GPS applications", PhD thesis, Mathematical Geodesy and Positioning, Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands, 2007.
2. Mousavian, R., & Hossainali, M. M. (2012). Detection of main tidal frequencies using least squares harmonic estimation method. Journal of Geodetic Science, 2(3), 224-233. [
DOI:10.2478/v10156-011-0043-6]
3. Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM review, 10(4), 422-437. [
DOI:10.1137/1010093]
4. Kubik, K. (1970). The estimation of the weights of measured quantities within the method of least squares. Bulletin Géodésique (1946-1975), 95(1), 21-40. [
DOI:10.1007/BF02521994]
5. Koch, K. R. (1986). Maximum likelihood estimate of variance components. Bulletin Gæodésique, 60(4), 329-338. [
DOI:10.1007/BF02522340]
6. Rao, C. R. (1971). Estimation of variance and covariance components-MINQUE theory. Journal of multivariate analysis, 1(3), 257-275. [
DOI:10.1016/0047-259X(71)90001-7]
7. Rao, C. R., Rao, C. R., Statistiker, M., Rao, C. R., & Rao, C. R. (1973). Linear statistical inference and its applications (Vol. 2, pp. 263-270). New York: Wiley. [
DOI:10.1002/9780470316436]
8. Koch, K.R. (1978). Schätzung von varianzkomponenten. Allgemeine Vermessungs Nachrichten, 85, pp.264-269.
9. Koch, K. R. (1999). Parameter estimation and hypothesis testing in linear models. Springer Science & Business Media. [
DOI:10.1007/978-3-662-03976-2]
10. Helmert, F. R. (1872). Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate: mit Anwendungen auf die Geodäsie, die Physik und die Theorie der Messinstrumente (Vol. 1). Teubner.
11. Helmert FR, Die ausgleichungsrechnung nach der methode der kleinsten quadrate. 3. AUFL., Leipzig/Berlin,1924.
12. Koch, K. R. (1987). Bayesian inference for variance components. Manuscripta geodaetica, 12(4), 309-313.
13. Teunissen, P. (2004). Towards a least-squares framework for adjusting and testing of both functional and stochastic models. Technical report, Delft University of Technology. A reprint of original 1988 report is also available in 2004, No. 26, http://www.lr.tudelft.nl/mgp. Internal research memo, Geodetic Computing Centre.
14. Amiri-Simkooei, A. R., & Tiberius, C. C. J. M. (2007). Assessing receiver noise using GPS short baseline time series. GPS solutions, 11(1), 21-35. [
DOI:10.1007/s10291-006-0026-8]
15. Barnes, J. B. (2000). Real time kinematic GPS and multipath: characterisation and improved least squares modelling (Doctoral dissertation, University of Newcastle upon Tyne).
16. Bischoff, W., Heck, B., Howind, J., & Teusch, A. (2005). A procedure for testing the assumption of homoscedasticity in least squares residuals: a case study of GPS carrier-phase observations. Journal of Geodesy, 78(7-8), 397-404. [
DOI:10.1007/s00190-004-0390-5]
17. Bischoff, W., Heck, B., Howind, J., & Teusch, A. (2006). A procedure for estimating the variance function of linear models and for checking the appropriateness of estimated variances: a case study of GPS carrier-phase observations. Journal of Geodesy, 79(12), 694-704. [
DOI:10.1007/s00190-006-0024-1]
18. Bona, P. (2000). Precision, cross correlation, and time correlation of GPS phase and code observations. GPS solutions, 4(2), 3-13. [
DOI:10.1007/PL00012839]
19. Chen, Y. Q. (1990). Assessments of observations using minimum norm quadratic unbiased estimation (MINQUE). CISM J. ACSGC, 44, 36-49. [
DOI:10.1139/geomat-1990-0004]
20. Fotopoulos, G. (2005). Calibration of geoid error models via a combined adjustment of ellipsoidal, orthometric and gravimetric geoid height data. Journal of Geodesy, 79(1-3), 111-123. [
DOI:10.1007/s00190-005-0449-y]
21. Kusche, J. (2003). A Monte-Carlo technique for weight estimation in satellite geodesy. Journal of Geodesy, 76(11-12), 641-652. [
DOI:10.1007/s00190-002-0302-5]
22. Kusche, J. (2003). Noise variance estimation and optimal weight determination for GOCE gravity recovery. Advances in Geosciences, 1, 81-85. [
DOI:10.5194/adgeo-1-81-2003]
23. Satirapod, C., Wang, J., & Rizos, C. (2002). A simplified MINQUE procedure for the estimation of variance-covariance components of GPS observables. Survey Review, 36(286), 582-590. [
DOI:10.1179/sre.2002.36.286.582]
24. Schön, S., & Brunner, F. K. (2008). Atmospheric turbulence theory applied to GPS carrier-phase data. Journal of Geodesy, 82(1), 47-57. [
DOI:10.1007/s00190-007-0156-y]
25. Schön, S., & Brunner, F. K. (2008). A proposal for modelling physical correlations of GPS phase observations. Journal of Geodesy, 82(10), 601-612. [
DOI:10.1007/s00190-008-0211-3]
26. Teunissen, P. J., Jonkman, N. F., & Tiberius, C. C. J. M. (1998). Weighting GPS dual frequency observations: bearing the cross of cross-correlation. GPS Solutions, 2(2), 28-37. [
DOI:10.1007/PL00000033]
27. Tiberius, C. C. J. M., & Kenselaar, F. (2000). Estimation of the stochastic model for GPS code and phase observables. Survey Review, 35(277), 441-454. [
DOI:10.1179/sre.2000.35.277.441]
28. Wang, J., Stewart, M. P., & Tsakiri, M. (1998). Stochastic modeling for static GPS baseline data processing. Journal of Surveying Engineering, 124(4), 171-181. [
DOI:10.1061/(ASCE)0733-9453(1998)124:4(171)]
29. Xu, P., Shen, Y., Fukuda, Y., & Liu, Y. (2006). Variance component estimation in linear inverse ill-posed models. Journal of Geodesy, 80(2), 69-81. [
DOI:10.1007/s00190-006-0032-1]
30. Xu, P., Liu, Y., Shen, Y. and Fukuda, Y.(2007). Estimability analysis of variance and covariance components. Journal of Geodesy, 81(9), pp.593-602. [
DOI:10.1007/s00190-006-0122-0]
31. Williams, S.D., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R.M., Prawirodirdjo, L., Miller, M. and Johnson, D.J.(2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research: Solid Earth, 109(B3). [
DOI:10.1029/2003JB002741]
32. Amiri-Simkooei, A. R. (2009). Noise in multivariate GPS position time-series. Journal of Geodesy, 83(2), 175-187. [
DOI:10.1007/s00190-008-0251-8]
33. Amiri‐Simkooei, A. R., Tiberius, C. C. J. M., & Teunissen, S. P. (2007). Assessment of noise in GPS coordinate time series: methodology and results. Journal of Geophysical Research: Solid Earth, 112(B7). [
DOI:10.1029/2006JB004913]
34. Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997). Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocitties. Journal of Geophysical Research, 102: 18035-18055. [
DOI:10.1029/97JB01380]
35. Johnson HO, Wyatt FK (1994). Geodetic network design for fault-mechanics studies. Manuscripta Geodaetica, 19: 309-323.
36. Mao A, Harrison CGA, Dixon TH (1999). Noise in GPS coordinate time series. Journal of Geophysical Research, 104(B2): 2797-2816. [
DOI:10.1029/1998JB900033]
37. Boashash, B. and Putland, G., 2003, Polynomial Wigner-Ville Distributions and Design of High-Resolution Quadratic TFDs with Separable Kernals. In TIme-Frequency Signal Analysis and Processing: A Comprehensive Reference (pp. 3-27), Elsevier Ltd.
38. Wu, Z., Huang, N.E. and Chen, X., 2009, The multi-dimensional ensemble empirical mode decomposition method. Advances in Adaptive Data Analysis, 1(03), 339-372. [
DOI:10.1142/S1793536909000187]
39. Rubin, D. B., 2002, Statistical Analysis with Missing Data. ISBN: 978-0-471-18386-0.
40. Papa, F., Legrésy, B. and Rémy, F., 2003, Use of the Topex-Poseidon dualfrequencyradar altimeter over land surfaces. Remote sensing of Environment, 87(2-3), 136-147. [
DOI:10.1016/S0034-4257(03)00136-6]
41. [41] Tomczak, M. (2000). Lecture Notes in Oceanography. Flinders University, Adelaide, Australia School of Chemistry, Physics & Earth Sciences.
42. [42] Fitzpatrick, R. (2010). Newtonian dynamics. Austin, Tex: The University of Texas, 2011 [2012-5-14]: 201-217. http://farside. ph. utexas, edu/teaching/336k/Newton.
43. [43] Pirooznia, M., Raoofian Naeeni, M. and Amerian, Y., 2019. A Comparative Study Between Least Square and Total Least Square Methods for Time-Series Analysis and Quality Control of Sea Level Observations. Marine Geodesy, 42(2), pp.104-129. [
DOI:10.1080/01490419.2018.1553806]