1. 1- Young, Y.L., (2007), Time-dependent Hydro-elastic Analysis of Cavitating Propulsors, Journal of Fluids and Structures, 23:269-295. [
DOI:10.1016/j.jfluidstructs.2006.09.003]
2. Mulcahy, N. L., Prusty, B. G. Gardiner, C. P., (2011) Flexible composite hydrofoils and propeller blades. Transactions of the Royal Institution of Naval Architects Part B: International Journal of Small Craft Technology, 153:39-46.
3. Mulcahy, N. L., Prusty, B. G. & Gardiner, C. (2010) Hydroelastic tailoring of flexible composite propellers. International Journal of Ship and Offshore Structures, 5:359-370. [
DOI:10.1080/17445302.2010.481139]
4. Han, S., Lee, H., Song, M.C., Chang, B. J. Investigation of hydro-elastic performance of marine propellers using fluid-structure interaction analysis, ASME Int. Mech. Eng. Congr. Expo. Proc. 7A-2015. [
DOI:10.1115/IMECE2015-51089]
5. Lee, H., Song, M.C., Han, S., Chang, B.-J., Suh, J.-C., (2017), Hydro-elastic aspects of a composite marine propeller in accordance with ply lamination methods, J. Mar. Sci. Technol. 22:479-493. [
DOI:10.1007/s00773-016-0428-4]
6. Lin, H.J., Lin, J.J. (1996), Nonlinear hydroelastic behavior of propellers using a finite-element method and lifting surface theory, J. Mar. Sci. Technol. 1:114-124. [
DOI:10.1007/BF02391167]
7. Rao, Y.S., Rao, K.M., Reddy, B.S. (2012), Stress Analysis of Composite Propeller By Using Finite Element Analysis, Int. J. Eng. Sci. Technol. 4:3866-3875.
8. Lin, H.J., Lin, J.J., Chuang, T.J. (2005), Strength evaluation of a composite marine propeller blade, J. Reinf. Plast. Compos. 24:1791-1807. [
DOI:10.1177/0731684405052199]
9. Pavan Kishore, M.L., Behera, R.K., Bezawada, S., (2013), Structural Analysis of NAB Propeller Replaced With Composite Material, Int. J. Mod. Eng. Res. 3: 401-405.
10. Ghassemi, H., Fadavie, M., Nematy, D., (2015), Hydro-Structure Analysis of Composite Marine Propeller under Pressure Hydrodynamic Loading, Am. J. Mech. Eng. 3:41-46.
11. Paik, Bu-Geun & Kim, Gun-Do & Kim, Kyung-Youl & Seol, Han-Shin & Hyun, Beom-Soo & Lee, Sang-Gab & Jung, Young-Rae., (2013), Investigation on the performance characteristics of the flexible propellers. Ocean Engineering. 73:139-148. 10.1016/j.oceaneng.2013.09.005. [
DOI:10.1016/j.oceaneng.2013.09.005]
12. Lee, H., Song, M., Suh, J., Chang, B., (2014). Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm. International Journal of Naval Architecture and Ocean Engineering. 6. 10.2478/ijnaoe-2013-0198. [
DOI:10.2478/IJNAOE-2013-0198]
13. Hong, Y. & Hao, L.F. & Wang, P.C. & Liu, W.B. & Zhang, H.M. & Wang, R.G. (2014). Structural Design and Multi-Objective Evaluation of Composite Bladed Propeller. Polymers and Polymer Composites. 22. 275-282. 10.1177. [
DOI:10.1177/096739111402200308]
14. Han, S. Lee, H. Song, M. Chang, B. (2015). Investigation of Hydro-Elastic Performance of Marine Propellers Using Fluid-Structure Interaction Analysis. V07AT09A038. 10.1115/IMECE2015-51089. [
DOI:10.1115/IMECE2015-51089]
15. Das, H. Nirjhar & Kapuria, Santosh. (2016). on the use of bend-twist coupling in full-scale composite marine propellers for improving hydrodynamic performance. Journal of Fluids and Structures. 61. 132-153. 10.1016/j.jfluidstructs.2015.11.008. [
DOI:10.1016/j.jfluidstructs.2015.11.008]
16. Hong, Y. & Wilson, Philip & He, X.D. & Wang, R.G. (2017). Numerical analysis and performance comparison of the same series of composite propellers. Ocean Engineering. 144. 211-223. 10.1016/j.oceaneng. 2017.08.036. [
DOI:10.1016/j.oceaneng.2017.08.036]
17. Kumar, A. Krishna, L. Subramanian, V. (2019). Design and Analysis of a Carbon Composite Propeller for Podded Propulsion. 10.1007/978-981-13-3119-0_13. [
DOI:10.1007/978-981-13-3119-0_13]
18. Zhang, F., & Ma, J. (2018). FSI Analysis the Dynamic Performance of Composite Propeller. V002T08A006. 10.1115/OMAE2018 77108. [
DOI:10.1115/OMAE2018-77108]
19. Raja, V. & Venkatesan, K. & Kumar. M., Senthil & Kumar G, R. & Jagadeeshwaran, P. & Kumar, R., (2020), Comparative fatigue life estimations of Marine Propeller by using FSI. Journal of Physics: Conference Series. 1473. 012018. [
DOI:10.1088/1742-6596/1473/1/012018]
20. Young YL. (2008), Fluid-structure interaction analysis of flexible composite marine propellers. J Fluids Struct 24:799-818. [
DOI:10.1016/j.jfluidstructs.2007.12.010]
21. Luhar, Mitul & Nepf, Heidi. (2011), Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnology and Oceanography. 56. 2003-2017. 10.4319/lo.2011.56.6.2003. [
DOI:10.4319/lo.2011.56.6.2003]
22. CD Adapco, (2017). STAR CCM+ User's Guide Version 12.04.010.
23. Sung, Y.J., Park, S-H., Ahn, K-S., Chung, S-H., Shin, S.S. and Jae-Hyoung, J. (2014), Evaluation on Deep Water Manoeuvring Performances of KVLCC2 Based on PMM Test and RANS Simulation, Hyundai Heavy Industries Co., Ltd and CD-Adapco Korea, Republic of Korea. Proceedings of SIMMAN.
24. ITTC-Recommended Procedures and Guidelines, (2008). Uncertainty Analysis in CFD Verification and Validation Methodology and Procedures. 7.5-03-01-01.
25. ITTC-Recommended Procedures and Guidelines, (2014). Practical Guidelines for Ship Self-Propulsion CFD. 7.5-03-03-01.