Write your message
Volume 13 - Winter & Spring 2020                   ijmt 2020, 13 - Winter & Spring 2020: 51-59 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shayanpoor A A, Hajivand A, Moore M. Hydroelastic Analysis of Composite Marine Propeller Basis Fluid-Structure Interaction (FSI). ijmt. 2020; 13 :51-59
URL: http://ijmt.ir/article-1-689-en.html
1- Khorramshahr University of Marine Science and Technology
Abstract:   (436 Views)
In recent decades, there has been a growing demand for composite materials with high strength to weight ratio and high stiffness to weight ratio for use in the marine industry to improve the hydrodynamic and structural performance of vessels and propulsion systems. Apart from the advantages of composite propellers over their metal counterparts, deformations of these propellers under loading can alter their hydrodynamic effects. This paper was a hydroelastic analysis of a composite marine propeller made of carbon fiber laminate. This analysis was performed by the use of CFD-FEM based on the two-way fluid-structure interaction (FSI) coupling on the 3D geometry of the KP458 propeller. The CFD results are compared with the experimental data reported by Hyundai Maritime Research Institute (HMRI), for advance ratios of 0.1-0.5, which shows a perfect agreement among them. An increase in the efficiency of the flexible propeller is observed in different advance ratios due to an increase in thrust (1-4%) and a decrease in torque (1-6%).
Full-Text [PDF 1420 kb]   (146 Downloads)    
Type of Study: Research Paper | Subject: Ship Hydrodynamic
Received: 2019/12/30 | Accepted: 2020/08/1

References
1. 1- Young, Y.L., (2007), Time-dependent Hydro-elastic Analysis of Cavitating Propulsors, Journal of Fluids and Structures, 23:269-295. [DOI:10.1016/j.jfluidstructs.2006.09.003]
2. Mulcahy, N. L., Prusty, B. G. Gardiner, C. P., (2011) Flexible composite hydrofoils and propeller blades. Transactions of the Royal Institution of Naval Architects Part B: International Journal of Small Craft Technology, 153:39-46.
3. Mulcahy, N. L., Prusty, B. G. & Gardiner, C. (2010) Hydroelastic tailoring of flexible composite propellers. International Journal of Ship and Offshore Structures, 5:359-370. [DOI:10.1080/17445302.2010.481139]
4. Han, S., Lee, H., Song, M.C., Chang, B. J. Investigation of hydro-elastic performance of marine propellers using fluid-structure interaction analysis, ASME Int. Mech. Eng. Congr. Expo. Proc. 7A-2015. [DOI:10.1115/IMECE2015-51089]
5. Lee, H., Song, M.C., Han, S., Chang, B.-J., Suh, J.-C., (2017), Hydro-elastic aspects of a composite marine propeller in accordance with ply lamination methods, J. Mar. Sci. Technol. 22:479-493. [DOI:10.1007/s00773-016-0428-4]
6. Lin, H.J., Lin, J.J. (1996), Nonlinear hydroelastic behavior of propellers using a finite-element method and lifting surface theory, J. Mar. Sci. Technol. 1:114-124. [DOI:10.1007/BF02391167]
7. Rao, Y.S., Rao, K.M., Reddy, B.S. (2012), Stress Analysis of Composite Propeller By Using Finite Element Analysis, Int. J. Eng. Sci. Technol. 4:3866-3875.
8. Lin, H.J., Lin, J.J., Chuang, T.J. (2005), Strength evaluation of a composite marine propeller blade, J. Reinf. Plast. Compos. 24:1791-1807. [DOI:10.1177/0731684405052199]
9. Pavan Kishore, M.L., Behera, R.K., Bezawada, S., (2013), Structural Analysis of NAB Propeller Replaced With Composite Material, Int. J. Mod. Eng. Res. 3: 401-405.
10. Ghassemi, H., Fadavie, M., Nematy, D., (2015), Hydro-Structure Analysis of Composite Marine Propeller under Pressure Hydrodynamic Loading, Am. J. Mech. Eng. 3:41-46.
11. Paik, Bu-Geun & Kim, Gun-Do & Kim, Kyung-Youl & Seol, Han-Shin & Hyun, Beom-Soo & Lee, Sang-Gab & Jung, Young-Rae., (2013), Investigation on the performance characteristics of the flexible propellers. Ocean Engineering. 73:139-148. 10.1016/j.oceaneng.2013.09.005. [DOI:10.1016/j.oceaneng.2013.09.005]
12. Lee, H., Song, M., Suh, J., Chang, B., (2014). Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm. International Journal of Naval Architecture and Ocean Engineering. 6. 10.2478/ijnaoe-2013-0198. [DOI:10.2478/IJNAOE-2013-0198]
13. Hong, Y. & Hao, L.F. & Wang, P.C. & Liu, W.B. & Zhang, H.M. & Wang, R.G. (2014). Structural Design and Multi-Objective Evaluation of Composite Bladed Propeller. Polymers and Polymer Composites. 22. 275-282. 10.1177. [DOI:10.1177/096739111402200308]
14. Han, S. Lee, H. Song, M. Chang, B. (2015). Investigation of Hydro-Elastic Performance of Marine Propellers Using Fluid-Structure Interaction Analysis. V07AT09A038. 10.1115/IMECE2015-51089. [DOI:10.1115/IMECE2015-51089]
15. Das, H. Nirjhar & Kapuria, Santosh. (2016). on the use of bend-twist coupling in full-scale composite marine propellers for improving hydrodynamic performance. Journal of Fluids and Structures. 61. 132-153. 10.1016/j.jfluidstructs.2015.11.008. [DOI:10.1016/j.jfluidstructs.2015.11.008]
16. Hong, Y. & Wilson, Philip & He, X.D. & Wang, R.G. (2017). Numerical analysis and performance comparison of the same series of composite propellers. Ocean Engineering. 144. 211-223. 10.1016/j.oceaneng. 2017.08.036. [DOI:10.1016/j.oceaneng.2017.08.036]
17. Kumar, A. Krishna, L. Subramanian, V. (2019). Design and Analysis of a Carbon Composite Propeller for Podded Propulsion. 10.1007/978-981-13-3119-0_13. [DOI:10.1007/978-981-13-3119-0_13]
18. Zhang, F., & Ma, J. (2018). FSI Analysis the Dynamic Performance of Composite Propeller. V002T08A006. 10.1115/OMAE2018 77108. [DOI:10.1115/OMAE2018-77108]
19. Raja, V. & Venkatesan, K. & Kumar. M., Senthil & Kumar G, R. & Jagadeeshwaran, P. & Kumar, R., (2020), Comparative fatigue life estimations of Marine Propeller by using FSI. Journal of Physics: Conference Series. 1473. 012018. [DOI:10.1088/1742-6596/1473/1/012018]
20. Young YL. (2008), Fluid-structure interaction analysis of flexible composite marine propellers. J Fluids Struct 24:799-818. [DOI:10.1016/j.jfluidstructs.2007.12.010]
21. Luhar, Mitul & Nepf, Heidi. (2011), Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnology and Oceanography. 56. 2003-2017. 10.4319/lo.2011.56.6.2003. [DOI:10.4319/lo.2011.56.6.2003]
22. CD Adapco, (2017). STAR CCM+ User's Guide Version 12.04.010.
23. Sung, Y.J., Park, S-H., Ahn, K-S., Chung, S-H., Shin, S.S. and Jae-Hyoung, J. (2014), Evaluation on Deep Water Manoeuvring Performances of KVLCC2 Based on PMM Test and RANS Simulation, Hyundai Heavy Industries Co., Ltd and CD-Adapco Korea, Republic of Korea. Proceedings of SIMMAN.
24. ITTC-Recommended Procedures and Guidelines, (2008). Uncertainty Analysis in CFD Verification and Validation Methodology and Procedures. 7.5-03-01-01.
25. ITTC-Recommended Procedures and Guidelines, (2014). Practical Guidelines for Ship Self-Propulsion CFD. 7.5-03-03-01.

Send email to the article author


Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.