Write your message


Volume 14 - Summer and Fall 2020                   ijmt 2020, 14 - Summer and Fall 2020: 1-12 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alizadeh Kharkeshi B, Shafaghat R, Alamian R, Aghajani Afghan A H. Experimental & Analytical Hydrodynamic Behavior Investigation of an Onshore OWC-WEC Imposed to Caspian Sea Wave Conditions. ijmt 2020; 14 :1-12
URL: http://ijmt.ir/article-1-712-en.html
1- Sea-Based Energy Research Group, Babol Noshirvani University of Technology
Abstract:   (3931 Views)
In this paper, the effect of the draft depth (as a dimensionless number) and characteristics of the incident wave on free surface oscillation, velocity, and the output power of an OWC has been analytically and experimentally investigated. Therefore, the governing equations of hydrodynamic performance inside the oscillating water column chamber were first presented by assuming a mathematical model based on the potential flow theory. Then, a 1:10 single chamber OWC has been experimentally investigated in a wave tank, by considering the Caspian Sea wave characteristics. Comparing the obtained results showed that there is a good agreement between the theoretical solution and experimental test data. According to the results, increasing the frequency of the incident wave increases the free surface oscillation outside the chamber, while the results inside the OWC are different. In other words, under these conditions, free-surface oscillations inside the OWC and subsequently, the velocity and flow rate of the orifice decrease. So, the power generated will decrease too. Also, the effects of draft depth have been theoretically and experimentally analyzed for three depths and turned out that increasing the depth of drafts from 5 to 25 cm and frequency from 32 to 42 rpm causes a decrease in power generation.
Full-Text [PDF 1305 kb]   (1306 Downloads)    
Type of Study: Research Paper | Subject: Offshore Hydrodynamic
Received: 2020/06/28 | Accepted: 2020/09/12

References
1. LÓPEZ, I., ANDREU, J., CEBALLOS, S., DE ALEGRÍA, I. M. and KORTABARRIA, I.,(2013), Review of wave energy technologies and the necessary power-equipment, Renewable and sustainable energy reviews, 27, p. 413-434. [DOI:10.1016/j.rser.2013.07.009]
2. AMIRI, H. A., SHAFAGHAT, R., ALAMIAN, R., TAHERI, S. M. and SHADLOO, M. S.,(2019), Study of horizontal axis tidal turbine performance and investigation on the optimum fixed pitch angle using CFD, International Journal of Numerical Methods for Heat & Fluid Flow. [DOI:10.1108/HFF-05-2019-0447]
3. FALCÃO, A. F., HENRIQUES, J. C., GATO, L. M. and GOMES, R. P.,(2014), Air turbine choice and optimization for floating oscillating-water-column wave energy converter, Ocean Engineering, 75, p. 148-156. [DOI:10.1016/j.oceaneng.2013.10.019]
4. ANTONIO, F. D. O.,(2010), Wave energy utilization: A review of the technologies, Renewable and sustainable energy reviews, 14(3), p. 899-918. [DOI:10.1016/j.rser.2009.11.003]
5. HEATH, T.,(2012), A review of oscillating water columns, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1959), p. 235-245. [DOI:10.1098/rsta.2011.0164]
6. GROVE-PALMER, C.,(1982), in Proceedings of the 2nd International Symposium on Wave Energy Utilization. p. 22-24.
7. FALCÃO, A. F. and HENRIQUES, J. C.,(2016), Oscillating-water-column wave energy converters and air turbines: A review, Renewable Energy, 85, p. 1391-1424. [DOI:10.1016/j.renene.2015.07.086]
8. WHITTAKER, T., MCILWAINE, S. and RAGHUNATHAN, S.,(1993), in Proceedings of First European Wave Energy Symposium. National Engineering Laboratory East Kilbride, p. 283-286.
9. SUZUKI, M., ARAKAWA, C. and TAKAHASHI, S.,(2004), in The Fourteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
10. SHENG, W., ALCORN, R. and LEWIS, A.,(2013), On thermodynamics in the primary power conversion of oscillating water column wave energy converters, Journal of Renewable and Sustainable Energy, 5(2), p. 023105. [DOI:10.1063/1.4794750]
11. EVANS, D.,(1982), Wave-power absorption by systems of oscillating surface pressure distributions, Journal of Fluid Mechanics, 114, p. 481-499. [DOI:10.1017/S0022112082000263]
12. WEHAUSEN, J. V. and LAITONE, E. V.,(1960), Encyclopedia of Physics, Vol. IX, Fluid Dynamics III, Springer-Verlag, Berlin.
13. SARMENTO, A. J. and FALCÃO, A. D. O.,(1985), Wave generation by an oscillating surface-pressure and its application in wave-energy extraction, Journal of Fluid Mechanics, 150, p. 467-485. [DOI:10.1017/S0022112085000234]
14. JEFFERYS, R. and WHITTAKER, T., (1986), in Hydrodynamics of Ocean Wave-Energy Utilization, Ed^Eds, Springer, p. 281-291. [DOI:10.1007/978-3-642-82666-5_24]
15. WEBER, J. and THOMAS, G.,(2001), in The Eleventh International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
16. WANG, D., KATORY, M. and LI, Y.,(2002), Analytical and experimental investigation on the hydrodynamic performance of onshore wave-power devices, Ocean Engineering, 29(8), p. 871-885. [DOI:10.1016/S0029-8018(01)00058-0]
17. HONG, D., HONG, S. and HONG, S.,(2004), Numerical study on the reverse drift force of floating BBDB wave energy absorbers, Ocean Engineering, 31(10), p. 1257-1294. [DOI:10.1016/j.oceaneng.2003.12.007]
18. SUROSO, A.,(2005), Hydraulic model test of wave energy conversion, Jurnal Mekanikal, (19), p. 84-94.
19. NAGATA, S., et al.,(2011), in Proceedings of the 9th European Wave and Tidal Energy Conference. p. 5-9.
20. ŞENTÜRK, U. and ÖZDAMAR, A.,(2012), Wave energy extraction by an oscillating water column with a gap on the fully submerged front wall, Applied Ocean Research, 37, p. 174-182. [DOI:10.1016/j.apor.2012.05.004]
21. MALARA, G. and ARENA, F.,(2013), Analytical modelling of an U-Oscillating Water Column and performance in random waves, Renewable Energy, 60, p. 116-126. [DOI:10.1016/j.renene.2013.04.016]
22. CASHMAN, D. P., O'SULLIVAN, D. L., EGAN, M. G. and HAYES, J. G.,(2009), in Proceedings of 8th European Wave and Tidal Energy Conference. p. 924-933.
23. KAMATH, A., BIHS, H. and ARNTSEN, Ø. A.,(2015), Numerical modeling of power take-off damping in an oscillating water column device, International Journal of Marine Energy, 10, p. 1-16. [DOI:10.1016/j.ijome.2015.01.001]
24. NING, D.-Z., WANG, R.-Q., ZOU, Q.-P. and TENG, B.,(2016), An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter, Applied energy, 168, p. 636-648. [DOI:10.1016/j.apenergy.2016.01.107]
25. CHANG, C.-Y., CHOU, F. N.-F., CHEN, Y.-Y., HSIEH, Y.-C. and CHANG, C.-T.,(2016), Analytical and experimental investigation of hydrodynamic performance and chamber optimization of oscillating water column system, Energy, 113, p. 597-614. [DOI:10.1016/j.energy.2016.06.117]
26. ÇELIK, A. and ALTUNKAYNAK, A.,(2018), Experimental and analytical investigation on chamber water surface fluctuations and motion behaviours of water column type wave energy converter, Ocean Engineering, 150, p. 209-220. [DOI:10.1016/j.oceaneng.2017.12.065]
27. ALAMIAN, R., SHAFAGHAT, R., HOSSEINI, S. S. and ZAINALI, A.,(2017), Wave energy potential along the southern coast of the Caspian Sea, International Journal of Marine Energy, 19, p. 221-234. [DOI:10.1016/j.ijome.2017.08.002]
28. ALAMIAN, R., SHAFAGHAT, R. and SAFAEI, M. R.,(2019), Multi-objective optimization of a pitch point absorber wave energy converter, Water, 11(5), p. 969. [DOI:10.3390/w11050969]
29. ALAMIAN, R., SHAFAGHAT, R., MIRI, S. J., YAZDANSHENAS, N. and SHAKERI, M.,(2014), Evaluation of technologies for harvesting wave energy in Caspian Sea, Renewable and sustainable energy reviews, 32, p. 468-476. [DOI:10.1016/j.rser.2014.01.036]
30. DEAN, R. G. and DALRYMPLE, R. A.,(1991), Water wave mechanics for engineers and scientists, World Scientific Publishing Company, vol. 2. [DOI:10.1142/1232]
31. SHALBY, M., WALKER, P. and DORRELL, D. G.,(2016), in 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, p. 183-188.
32. SHALBY, M., WALKER, P. and DORRELL, D. G.,(2017), Modelling of the multi-chamber oscillating water column in regular waves at model scale, Energy Procedia, 136, p. 316-322. [DOI:10.1016/j.egypro.2017.10.261]
33. EBRAHIMPOUR, M., SHAFAGHAT, R., ALAMIAN, R. and SAFDARI SHADLOO, M.,(2019), Numerical investigation of the savonius vertical axis wind turbine and evaluation of the effect of the overlap parameter in both horizontal and vertical directions on its performance, Symmetry, 11(6), p. 821. [DOI:10.3390/sym11060821]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.