1. Hofman, Milan & Kozarski, V. (2000). Shallow water resistance charts for preliminary vessel design. International Shipbuilding Progress. 47. 61-76.
2. Liu, Jialun & Hekkenberg, Robert & Rotteveel, Erik & Hopman, Hans. (2015). Literature review on evaluation and prediction methods of inland vessel manoeuvrability. Ocean Engineering. 106. 458-471. 10.1016/j.oceaneng.2015.07.021. [
DOI:10.1016/j.oceaneng.2015.07.021]
3. Jachowski, J. Assessment of ship squat in shallow water using CFD. Arch. Civ. Mech. Eng. 2008, 8, 27-36. [
DOI:10.1016/S1644-9665(12)60264-7]
4. Hooft, J.P. The Influence of Nautical Requirements on the Dimensions and Layout of Entrance Channels and Harbours; Proc. International Course Modern Dredging: The Hague, The Netherlands, 1977.
5. Pacuraru, F.; Domnisoru, L. Numerical investigation of shallow water effect on a barge ship resistance. IOP Conf. Series Mater. Sci. Eng. 2017, 227, 012088. [
DOI:10.1088/1757-899X/227/1/012088]
6. Ji, S.; Ouahsine, A.; Smaoui, H.; Sergent, P. 3D Numerical Modeling of Sediment Resuspension Induced by the Compounding Effects of Ship-Generated Waves and the Ship Propeller. J. Eng. Mech. 2014, 140, 04014034. [
DOI:10.1061/(ASCE)EM.1943-7889.0000739]
7. Linde, F.; Ouahsine, A.; Huybrechts, N.; Sergent, P. Three-Dimensional Numerical Simulation of Ship Resistance in Restricted Waterways: Effect of Ship Sinkage and Channel Restriction. J. Waterw. Port. Coastal. Ocean. Eng. 2017, 143, 06016003. [
DOI:10.1061/(ASCE)WW.1943-5460.0000353]
8. Du, P.; Ouahsine, A.; Sergent, P.; Hu, H. Resistance and wave characterizations of inland vessels in the fully-confined waterway. Ocean. Eng. 2020, 210, 107580. [
DOI:10.1016/j.oceaneng.2020.107580]
9. Liu, Y.; Zou, Z.; Zou, L.; Fan, S. CFD-based numerical simulation of pure sway tests in shallow water towing tank. Ocean. Eng. 2019, 189, 106311. [
DOI:10.1016/j.oceaneng.2019.106311]
10. Xu, H.; Hinostroza, M.; Wang, Z.; Soares, C.G. Experimental investigation of shallow water effect on vessel steering model using system identification method. Ocean. Eng. 2020, 199, 106940. [
DOI:10.1016/j.oceaneng.2020.106940]
11. Tang, X.; Tong, S.; Huang, G.; Xu, G. Numerical investigation of the maneuverability of ships advancing in the non-uniform flow and shallow water areas. Ocean. Eng. 2020, 195, 106679. [
DOI:10.1016/j.oceaneng.2019.106679]
12. Tezdogan, T., Incecik, A., Turan, O., 2016. A numerical investigation of the squat and resistance of ships advancing through a canal using CFD. J. Mar. Sci. Technol. 21, 86-101. [
DOI:10.1007/s00773-015-0334-1]
13. Yao, J.-X., Zou, Z.-J., 2010. Calculation of ship squat in restricted waterways by using a 3D panel method. J. Hydrodynam. B 22, 489-494. [
DOI:10.1016/S1001-6058(09)60241-9]
14. Schlichting, O. Schiffwiderstand auf beschränkter wassertiefe: Widerstand von seeschiffen auf flachem wasser. Jahrbuch der Schiffbautechnischen Gesellschaft; Springer: Hanburg, Germany, 1934; Volume 35, p. 127.
15. ITTC. Speed and Power Trials, Part 2, Analysis of Speed/Power Trial Data. In Proceedings of the 25th ITTC, Copenhagen, Denmark; 2014. Available online: https://ittc.info/media/4210/75-04-01-012.pdf
16. Lackenby, H. The Effect of Shallow Water on Ship Speed. Nav. Eng. J. 1964, 76, 21-26. [
DOI:10.1111/j.1559-3584.1964.tb04413.x]
17. Bechthold, J., Kastens, M., 2020. Robustness And Quality of Squat Predictions in Extreme Shallow Water Conditions Based On RANS-Calculations. Ocean Eng. 197, 106780 Https://Doi.Org/10.1016/J.Oceaneng.2019.106780. [
DOI:10.1016/j.oceaneng.2019.106780]
18. Song, Soonseok & Terziev, Momchil & Tezdogan, Tahsin & Demirel, Yigit & De Marco Muscat-Fenech, Claire & Incecik, Atilla. (2023). Investigating Roughness Effects on Ship Resistance in Shallow Waters. Ocean Engineering. 270. 113643. 10.1016/J.Oceaneng.2023.113643. [
DOI:10.1016/j.oceaneng.2023.113643]
19. Campbell, R., Terziev, M., Tezdogan, T., Incecik, A., 2022. Computational Fluid Dynamics Predictions of Draught and Trim Variations on Ship Resistance in Confined Waters. Appl. Ocean Res. 126, 103301 Https://Doi.Org/10.1016/J.Apor.2022.103301. [
DOI:10.1016/j.apor.2022.103301]
20. Zeng, Q., Hekkenberg, R., Thill, C., 2019a. On The Viscous Resistance of Ships Sailing in Shallow Water. Ocean Eng. 190, 106434 Https://Doi.Org/10.1016/J. Oceaneng.2019.106434. [
DOI:10.1016/j.oceaneng.2019.106434]
21. Du, P., Ouahsine, A., Sergent, P., Hu, H., 2020. Resistance And Wave Characterizations of Inland Vessels in The Fully-Confined Waterway. Ocean Eng. 210 Https://Doi.Org/ 10.1016/J.Oceaneng.2020.107580. [
DOI:10.1016/j.oceaneng.2020.107580]
22. Terziev, M., Tezdogan, T., Incecik, A., 2021b. A Numerical Assessment of The Scale Effects of a Ship Advancing Through Restricted Waters. Ocean Eng. 229, 108972 Https://Doi. Org/10.1016/J.Oceaneng.2021.108972. [
DOI:10.1016/j.oceaneng.2021.108972]
23. CD-adapco (2016). STAR-CCM+ 11.0 User Guide.
24. https://simman2014.dk/
25. Barrass, B. & Derrett, D.R.. (2006). Ship Stability for Masters and Mates. 10.1016/C2010-0-68323-4. [
DOI:10.1016/B978-075066784-5/50050-2]
26. Eryuzlu, N.E. and Hausser, R. (1978). Experimental investigation into some aspects of large vessel navigation in restricted waterways. Proceedings Symposium on Aspects of Navigability, Delft, Netherlands, vol. 2, pp. 1-15
27. ICORELS (International Commission for the Reception of Large Ships), Report of Working Group IV, PIANC Bulletin No. 35, Supplement, 1980.
28. Millward, A. (1996). A Review of the Prediction of Squat in Shallow Water. Journal of Navigation, 49(1), 77-88. doi:10.1017/S0373463300013126 [
DOI:10.1017/S0373463300013126]
29. Ferziger, Joel & Perić, Milovan & Street, Robert. (2020). Computational Methods for Fluid Dynamics. 10.1007/978-3-319-99693-6. [
DOI:10.1007/978-3-319-99693-6]
30. Menter, Florian & Kuntz, M. & Langtry, RB. (2003). Ten years of industrial experience with the SST turbulence model. Heat and Mass Transfer. 4.
31. ITTC Recommended Procedures and Guidelines, 2014. Practical guidelines for ship CFD applications. 7.5-03 -02-03.
32. ITTC Recommended Procedures and Guidelines, 2017. Uncertainty analysis in CFD verification and validation methodology and procedures. 7.5-03-01-01.
33. Hasanvand, Ali & Hajivand, Ahmad & ali, Nasim. (2019). Investigating the effect of rudder profile on 6DOF ship turning performance. Applied Ocean Research. 92. 101918. 10.1016/j.apor.2019.101918. [
DOI:10.1016/j.apor.2019.101918]
34. Yun, Kunhang & Park, Byoungjae & Yeo, Dong-Jin. (2014). Experimental Study of Ship Squat for KCS in Shallow Water. Journal of the Society of Naval Architects of Korea. 51. 10.3744/SNAK.2014.51.1.34.
https://doi.org/10.3744/SNAK.2014.51.1.34 [
DOI:10.3744/SNAK.2014.51.6.539]