Write your message


XML Print


1- University of Qom
2- University of qom
Abstract:   (220 Views)
Numerical modeling is the most common approach for predicting harbor channel siltation. It requires a comprehensive calibration process because there are several calibration parameters. The most crucial criterion for model calibration is suspended sediment concentration (SSC). The agreement between the measured and simulated SSC time series is usually verified based on generic statistical parameters such as RMSE and R2. This method does not address the important phenomena related to channel siltation; for instance, the siltation rate during neap and spring tidal cycles cannot be distinguished in such manner. A process-based calibration procedure has been proposed in this paper which considers some criteria facilitating the calibration processes. Based on analyzing the measured turbidity and current speed data, some criteria were established which convey underlying phenomena affecting sediment transport. They are: (1) the difference between maximum SSC (or turbidity) at neap and spring and (2) at ebb and flood tide, (3) the minimum turbidity at slack water during spring tide, and (4) the current speed-SSC (or turbidity) regression curve. The proposed procedure has been used to calibrate channel siltation in a real case study: Shahid Rajaee port access channel located in the Khoran strait, Iran. As the underlying phenomena affecting sediment transport was considered, the number of simulation runs for calibration processes were considerably decreased.
Full-Text [PDF 1907 kb]   (43 Downloads)    
Type of Study: Research Paper | Subject: Numerical Investigation
Received: 2023/08/17 | Accepted: 2024/02/28

References
1. L. C. van Rijn, B. Grasmeijer and L. Perk, "Effect of Channel Deepening on Tidal Flow and Sediment Transport; Part I: Sandy Channels," Ocean Dynamics, vol. 68, pp. 1457-1479, 2018. doi: 10.1007/s10236-018-1204-2 [DOI:10.1007/s10236-018-1204-2]
2. L. C. van Rijn and B. Grasmeijer, "Effect of Channel Deepening on Tidal Flow and Sediment Transport; Part II: Muddy Channels," Ocean Dynamics, vol. 68, pp. 1481-1501, 2018. doi: 10.1007/s10236-018-1205-1 [DOI:10.1007/s10236-018-1205-1]
3. L. C. van Rijn, "Harbour Siltation and Control Measures," https://www.leovanrijn-sediment.com/papers/Harboursiltation2012.pdf, (2012, accessed 15 February 2021).
4. DHI, "MIKE 21 & MIKE 3 FLOW MODEL FM Mud Transport Module: Scientific Documentation," DHI, 2012.
5. Delft Hydraulics, "Delft3D-FLOW: Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments, User Manual," Deltares, Delft, Netherlands, 2014.
6. C. Chen, R. C. Beardsley, G. Cowles, J. Qi, Z. Lai, G. Gao, D. Stuebe, Q. Xu, P. Xue, J. Ge, S. Hu, R. Ji, R. Tian, H. Huang, L. Wu, H. Lin, Y. Sun and L. Zhao, "An Unstructured Grid, Finite-Volume Community Ocean Model FVCOM," Marine Ecosystem Dynamic Modeling Laboratory, 2013.
7. P. Tassi, T. Benson, D. Matthieu, J. Fontaine, N. Huybrechts, K. Rebekka, S. Pavan, C.-T. Pham, F. Taccone and W. Régis, "GAIA - a unified framework for sediment transport and bed evolution in rivers, coastal seas and transitional waters in the TELEMAC-MASCARET modelling system," Journal of Environmental Modelling & Software, vol. 159, 2022. doi.org/10.1016/j.envsoft.2022.105544 [DOI:10.2139/ssrn.4170064]
8. J. A. Roelvink and A. Reniers, A Guide to Modeling Coastal Morphology, World Scientific, Advances in Coastal and Ocean Engineering, 2011. doi: 10.1142/7712 [DOI:10.1142/7712]
9. S. A. Rahman and D. Chakrabarty, "Sediment Transport Modelling in an Alluvial River with Artificial Neural Network," Journal of Hydrology, vol. 588, 2020. doi: 10.1016/j.jhydrol.2020.125056 [DOI:10.1016/j.jhydrol.2020.125056]
10. A. Yadav and P. Satyannarayana, "Multi-objective Genetic Algorithm Optimization of Artificial Neural Network for Estimating Suspended Sediment Yield in Mahanadi River Basin, India," International Journal of River Basin Management, vol. 18, no. 2, pp. 207-215, 2020. doi: 10.1080/15715124.2019.1705317 [DOI:10.1080/15715124.2019.1705317]
11. H. A. Arı Güner, I. Yüksel and E. Özkan Çevik, "Longshore Sediment Transport-Field Data and Estimations using Neural Networks, Numerical Model, and Empirical Models," Journal of Coastal Research, vol. 29, no. 2, pp. 311-324, 2013. [DOI:10.2112/JCOASTRES-D-11-00074.1]
12. B. van Maanen, G. Coco, K. Bryan and B. Ruessink, "The Use of Artificial Neural Networks to Analyze and Predict Alongshore Sediment Transport," Nonlinear Processes in Geophysics, vol. 17, no. 5, pp. 395-404, 2010. doi: 10.5194/npg-17-395-2010 [DOI:10.5194/npg-17-395-2010]
13. M. A. A. Almubaidin, S. Dashti Latif, K. Balan, A. N. Ahmed and A. El-Shafie, "Enhancing sediment transport predictions through machine learning-based multi-scenario regression models," Results in Engineering, vol. 20, 2023. doi.org/10.1016/j.rineng.2023.101585 [DOI:10.1016/j.rineng.2023.101585]
14. M. S. Hanoon, A. A. Abdullatif B, A. N. Ahmed, A. Razzaq, A. H. Birima and A. El-Shafie, "A comparison of various machine learning approaches performance for prediction suspended sediment load of river systems: a case study in Malaysia," Journal of Earth Science Information, vol. 15, pp. 91-104, 2022. doi.org/10.1007/s12145-021-00689-0 [DOI:10.1007/s12145-021-00689-0]
15. H. Darabi, S. Mohamadi, Z. Karimidastenaei, O. Kisi, M. Ehteram, A. EL-Shafie and A. Torabi Haghighi , "Prediction of daily suspended sediment load (SSL) using new optimization algorithms and soft computing models," Journal of Soft Computing: Methodologies and Application, vol. 25, pp. 7609-7626, 2021. doi.org/10.1007/s00500-021-05721-5 [DOI:10.1007/s00500-021-05721-5]
16. S. O. Sulaiman, M. F. Allawi, K. N. Sayl, M. Sherif and A. El-Shafie, "Suspended sediment load prediction modelling based on artificial intelligence methods: The tropical region as a case study," Journal of Heliyon, vol. 9, no. 8, 2023. doi.org/10.1016/j.heliyon.2023.e18506 [DOI:10.1016/j.heliyon.2023.e18506] [PMID] []
17. F. Barzegari Banadkooki, M. Ehteram, A. N. Ahmed, F. Y. Teo, M. Ebrahimi, C. M. Fai, Y. F. Huang and A. El-Shafie, "Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm," Journal of Environmental Science and Pollution Research, vol. 27, p. 38094-38116, 2020. doi.org/10.1007/s11356-020-09876-w [DOI:10.1007/s11356-020-09876-w] [PMID]
18. B. Lin and M. Montazeri Namin, "Modelling Suspended Sediment Transport using an Integrated Numerical and ANNs Model," Journal of Hydraulic Research, vol. 43, no. 3, pp. 302-310, 2005. doi: 10.1080/00221680509500124 [DOI:10.1080/00221680509500124]
19. K. Kaveh, M. D. Bui and P. Rutschmann, "Integration of Artificial Neural Networks into TELEMAC-MASCARET System, New Concepts for Hydromorphodynamic Modeling," Advances in Engineering Software, vol. 132, pp. 18-28, 2019. doi: 10.1016/j.advengsoft.2019.03.011 [DOI:10.1016/j.advengsoft.2019.03.011]
20. S. Bakshi and K. K. Bhar, "Simulation of Tidal Morpho-dynamics in the Hooghly Estuary using CMS Flow and Artificial Neural Network Models," in Procedia Computer Science, 2020. doi: 10.1016/j.procs.2020.03.255 [DOI:10.1016/j.procs.2020.03.255]
21. U. Lumborg and A. Windelin, "Hydrography and Cohesive Sediment Modelling: Application to the Rømø Dyb Tidal Area," Journal of Marine Systems, vol. 38, no. 3-4, pp. 287-303, 2003. doi: 10.1016/S0924-7963(02)00247-6 [DOI:10.1016/S0924-7963(02)00247-6]
22. U. Lumborg and M. Pejrup, "Modelling of Cohesive Sediment Transport in a Tidal Lagoon-an Annual Budget," Marine Geology, vol. 218, no. 1-4, pp. 1-16, 2005. doi: 10.1016/j.margeo.2005.03.015 [DOI:10.1016/j.margeo.2005.03.015]
23. J. F. Lopes, J. M. Dias and I. Dekeyser, "Numerical Modelling of Cohesive Sediments Transport in the Ria de Aveiro Lagoon, Portugal," Journal of Hydrology, vol. 319, no. 1-4, pp. 176-198, 2006. doi: 10.1016/j.jhydrol.2005.07.019 [DOI:10.1016/j.jhydrol.2005.07.019]
24. N. Margvelashvili, F. Saint-Cast and S. Condie, "Numerical Modelling of the Suspended Sediment Transport in Torres Strait," Continental Shelf Research, vol. 28, no. 16, pp. 2241-2256, 2008. doi: 10.1016/j.csr.2008.03.037 [DOI:10.1016/j.csr.2008.03.037]
25. N. K. Ganju and D. H. Schoellhamer, "Calibration of an Estuarine Sediment Transport Model to Sediment Fluxes as an Intermediate Step for Simulation of Geomorphic Evolution," Continental Shelf Research, vol. 29, no. 1, pp. 148-158, 2009. doi: 10.1016/j.csr.2007.09.005 [DOI:10.1016/j.csr.2007.09.005]
26. M. Xie, W. Zhang and W. Guo, "A Validation Concept for Cohesive Sediment Transport Model and Application on Lianyungang Harbor, China," Coastal Engineering, vol. 57, no. 6, pp. 585-596, 2010. doi: 10.1016/j.coastaleng.2010.01.003 [DOI:10.1016/j.coastaleng.2010.01.003]
27. L. H. Erikson, S. A. Wright, E. Elias , D. M. Hanes, D. H. Schoellhamer and J. Largier, "The Use of Modeling and Suspended Sediment Concentration Measurements for Quantifying Net Suspended Sediment Transport through a Large Tidally Dominated Inlet," Marine Geology, vol. 345, pp. 96-112, 2013. doi: 10.1016/j.margeo.2013.06.001 [DOI:10.1016/j.margeo.2013.06.001]
28. L. X. Tu, V. Q. Thanh, J. Reyns, S. P. Van, D. T. Anh, T. D. Dang and J. A. Roelvink, "Sediment Transport and Morphodynamical Modeling on the Estuaries and Coastal Zone of the Vietnamese Mekong Delta," Continental Shelf Research, vol. 186, pp. 64-76, 2019. doi: 10.1016/j.csr.2019.07.015 [DOI:10.1016/j.csr.2019.07.015]
29. J. Chang, G.-h. Lee , C. K. Harris, Y. Song, S. M. Figueroa, N. W. Schieder and K. D. Lagamayo, "Sediment Transport Mechanisms in Altered Depositional Environments of the Anthropocene Nakdong Estuary: A Numerical Modeling Study," Marine Geology, vol. 430, 2020. doi: 10.1016/j.margeo.2020.106364 [DOI:10.1016/j.margeo.2020.106364]
30. Z. Y. Xiao, X. H. Wang, D. Song, I. Jalon-Rojas and D. Harrison, "Numerical Modelling of Suspended Sediment Transport in a Geographically Complex Microtidal Estuary: Sydney Harbour Estuary, NSW," Estuarine, Coastal and Shelf Science, vol. 236, 2020. doi: 10.1016/j.ecss.2020.106605 [DOI:10.1016/j.ecss.2020.106605]
31. L. Zhua, W. Gonga, H. Zhang, W. Huang and R. Zhang, "Numerical Study of Sediment Transport Time Scales in an Ebb-dominated Waterway," Journal of Hydrology, vol. 591, 2020. doi: 10.1016/j.jhydrol.2020.125299 [DOI:10.1016/j.jhydrol.2020.125299]
32. J. Allen, P. Somerfield and F. Gilbert, "Quantifying Uncertainty in High-resolution Coupled Hydrodynamic-ecosystem Models," Journal of Marine Systems, vol. 64, no. 1-4, pp. 3-14, 2006. doi: 10.1016/j.jmarsys.2006.02.010 [DOI:10.1016/j.jmarsys.2006.02.010]
33. S. Orseau, N. Huybrechts, P. Tassi, D. P. Van Bang and F. Klein, "Two-dimensional modeling of fine sediment transport with mixed sediment and consolidation: Application to the Gironde Estuary, France," International Journal of Sediment Research, vol. 36, no. 6, pp. 736-746, 2021. doi.org/10.1016/j.ijsrc.2019.12.005 [DOI:10.1016/j.ijsrc.2019.12.005]
34. L. P. Bitencourt, E. H. Fernan, P. D. da Silva and O. Moller Jr, "Spatio-temporal variability of suspended sediment concentrations in a shallow and turbid lagoon," Journal of Marine Systems, vol. 212, 2020. doi.org/10.1016/j.jmarsys.2020.103454 [DOI:10.1016/j.jmarsys.2020.103454]
35. H. d. O. Fagundes, F. M. Fan and R. C. D. de Paiva, "Automatic Calibration of a Large-scale Sediment Model using Suspended Sediment Concentration, Water Quality, and Remote Sensing Data," Journal of Revista Brasileira de Recursos Hidricos (RBHR), vol. 24, no. 10, 2019. [DOI:10.1590/2318-0331.241920180127]
36. A. Shanehsazzadeh and H. Ardalan, "Regional-Scale Study on Sediment Processes of Khuran Strait at Persian Gulf with Implications for Engineering Design," China Ocean Engineering, vol. 33, no. 3, pp. 356-364, 2019. DOI: 10.1007/s13344-019-0034-4 [DOI:10.1007/s13344-019-0034-4]
37. E. Jafarzadeh Dehkordi and C. Ershadi, "Numerical Modeling of Current Pattern and Sediment Transport in Access Channel of Shahid Rajaei Port," Journa of Maritime Transport Industry, vol. 5, no. 4, pp. 34-40, 2020. doi: 10.30474/jmti.2020.104359
38. P. V. Lisboa, E. H. Fernandes, A. Sottolichio, N. Huybrecht, A. R. Rodrigues Bendô and J. Costi, "Bottom Evolution Patterns driven by hydrodynamic forcing in the Southwest Atlantic Inner Continental Shelf, off Río de la Plata and Patos Lagoon," Jornal of Continental Shelf Research, vol. 225, 2023. doi.org/10.1016/j.csr.2023.104934 [DOI:10.1016/j.csr.2023.104934]
39. UK Hydrographic Office, "Admiralty Tide Tables Vol3," UK Hydrographic Office, 2016.
40. Fara Darya Arsheh Consultants and Sogreah Consultants, "Monitoring and Modelling Study of Iranian Coasts Project; Phase 4; Hormozgan; Yearly Report of Field Measurement," Port & Maritime Organization, 2012.
41. Tehran Berkeley Group of Companies, "Shahid Rajaee Port Complex Development Plan Project; Phase 3; Sedimentation Inside the Access Channel Final Report," Port & Maritime Organization, 2018.
42. M. E. W. E. Consultants, "Investigation of Sedimentation in the Harbour Basins and Access Channels- Shahid Rajaee Port," Port & Maritime Organization, 2012.
43. Water Research Institute, "Bandar Abbas Gas Refinery Project; Cooling Water Intake Studies; Field Measurement Final Report," Persian Gulf Star Oil Company, 2007.
44. Y. Wang, Y. Peng, Z. Du, H. Lin and Q. Yu, "Calibrations of Suspended Sediment Concentrations in High-Turbidity Waters Using Different In Situ Optical Instruments," Jornal of Water, vol. 12, no. 11, 2020. doi:10.3390/w12113296 [DOI:10.3390/w12113296]
45. U.S. Geological Survey, "Relations Between Continuous Real-Time Turbidity Data and Discrete Suspended Sediment Concentration Samples in the Neosho and Cottonwood Rivers,East-Central Kansas, 2009-2012," USGS Science for a changing world, 2014.
46. H. Marttila and B. Kløve, "Use of Turbidity Measurements to Estimate Suspended Solids and Nutrient Loads from Peatland Forestry Drainage," Journal of Irrigation and Drainage Engineering, vol. 138, no. 12, pp. 1088-1096, 2012. [DOI:10.1061/(ASCE)IR.1943-4774.0000509]
47. C. A. Ellison, R. L. Kiesling and J. D. Fallon, "Correlating Streamflow, Turbidity, and Suspended-Sediment Concentration in Minnesota's Wild Rice River," in 2nd Joint Federal Interagency Conference, Las Vegas, 2010.
48. E. Patault, C. Alary, C. Franke, A. Gauthier and N. Abriak, "Assessing Temporal Variability and Controlling Factors of the Sediment Budget of a Small Agricultural Catchment in Northern France (the Pommeroye)," Journal of Heliyon, vol. 5, no. 3, 2019. [DOI:10.1016/j.heliyon.2019.e01407] [PMID] []
49. J. Downing, "Twenty-five Years with OBS Sensors: The Good, The Bad, and The Ugly," Journal of Continental Shelf Research, vol. 26, no. 17-18, pp. 2299-2318, 2006. [DOI:10.1016/j.csr.2006.07.018]
50. E. Skarbøvik, S. Gyritia, M. vant Veen, E. E. Lannergård, H. Wenng, M. Stutter, M. Bieroza, K. Atcheson, P. Jordan, J. Fölster, P.-E. Mellander, B. Kronvang, H. Marttila, Ø. Kaste, A. Lepistö and M. Kämäri, "Comparing in situ Turbidity Sensor Measurements as a Proxy for Suspended Sediments in North-Western European Streams," Journal of CATENA, vol. 225, 2023. [DOI:10.1016/j.catena.2023.107006]
51. L. F. Murillo-Bermúdez, A. L. S. Salustiano-Martim, C. Poleto and J. G. Dalfré Filho , "Correlation of Turbidity and Suspended Sediment Concentration in Natural Water Flow using Alternative Data of Water Treatment Plant, Case of Study in the Upper Jundiaí River, Brazil," International Journal of River Basin Management, vol. 21, no. 2, pp. 233-241, 2023. [DOI:10.1080/15715124.2021.1961794]
52. L. Dalbianco, R. Ramon, C. A. P. de Barros, J. P. G. Minella, G. H. Merten and E. J. Didoné, "Sampling Strategies to Estimate Suspended Sediment Concentration for Turbidimeter Calibration," Jornal of Revista Brasileira de Recursos Hidricos (RBHR), vol. 21, no. 12, pp. 884-889, 2017. [DOI:10.1590/1807-1929/agriambi.v21n12p884-889]
53. DHI, "Auto Calibration Tool: User Guide," DHI, 2012.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.