Write your message


XML Print


1- Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Iran
Abstract:   (35 Views)
Traditional Lenjes operating in coastal regions face significant navigational risks due to dense maritime traffic, complex geography, and mixed traditional-modern navigation practices. While Failure Mode and Effects Analysis (FMEA) is widely used for risk assessment, its reliance on the Risk Priority Number (RPN) suffers from limitations, especially when multiple failure modes share identical RPNs. This study proposes an integrated methodology combining FMEA with the CRiteria Importance Through Intercriteria Correlation (CRITIC) and COmbinative Distance-based ASsessment (CODAS). CRITIC objectively weights criteria (Severity, Occurrence, Detection) using variability and inter-correlations, minimizing subjectivity. CODAS then prioritizes failure modes using Euclidean and Manhattan distances from a negative ideal solution. Sensitivity analysis confirms the framework’s robustness. Results demonstrate that the FMEA-CRITIC-CODAS approach effectively enhances risk assessment for Lenjes, providing actionable insights for navigational safety. The framework is adaptable to other complex systems requiring accurate risk prioritization.

 
Full-Text [PDF 826 kb]   (6 Downloads)    

Highlights
1. Objective Weighting via CRITIC: The integration of the CRITIC method allows for the objective determination of weights for FMEA risk factors (severity, occurrence, detection) based on the contrast intensity and conflict between criteria derived from actual assessment data, reducing subjectivity in the evaluation process.
2. Enhanced Ranking with CODAS: The CODAS method, which uses both Euclidean and Manhattan distances from the negative-ideal solution, provides a more robust and discriminating ranking of failure modes, especially in complex decision environments with conflicting criteria.
3. Application in a Novel Context: The methodology is applied to assess navigational risks in traditional Lenj vessels operating in coastal regions—a context that has not been widely addressed in the literature. This demonstrates the adaptability of the integrated approach to traditional maritime operations where modern and indigenous navigation practices coexist.
4. Improved Risk Discrimination and Stability: The proposed model effectively resolves the issue of tied or near-identical RPN values among different failure modes, offering clearer prioritization. The study also includes a comparative and sensitivity analysis, confirming the stability and reliability of the results.

By integrating MCDM techniques like CRITIC and CODAS into FMEA, this article advances the state-of-the-art in risk assessment methodologies, offering a more systematic, data-driven, and effective approach for identifying and prioritizing critical failure modes in safety-sensitive domains. This represents a significant improvement over previous fuzzy, linguistic, or hybrid models by enhancing objectivity, computational efficiency, and practical applicability.
Type of Study: Research Paper | Subject: Ship Structure
Received: 2025/04/29 | Accepted: 2025/08/1

References
1. "Traditional skills of building and sailing Iranian Lenj boats in the Persian Gulf - intangible heritage - Culture Sector - UNESCO." Accessed: Oct. 29, 2024. [Online]. Available: https://ich.unesco.org/en/USL/traditional-skills-of-building-and-sailing-iranian-lenj-boats-in-the-persian-gulf-00534
2. L. Srivastava, L. Krishnanand, S. Behera, and N. Kishore Nath, "Failure mode effect analysis for a better functional composite rocket motor casing," Mater. Today Proc., vol. 62, pp. 4445-4454, 2022, doi: https://doi.org/10.1016/j.matpr.2022.04.933 [DOI:10.1016/j.matpr.2022.04.933.]
3. M. Kumru and P. Y. Kumru, "Fuzzy FMEA application to improve purchasing process in a public hospital," Appl. Soft Comput. J., vol. 13, no. 1, pp. 721-733, 2013, doi: 10.1016/j.asoc.2012.08.007. [DOI:10.1016/j.asoc.2012.08.007]
4. M. Şahin, "A comprehensive analysis of weighting and multicriteria methods in the context of sustainable energy," Int. J. Environ. Sci. Technol., vol. 18, no. 6, pp. 1591-1616, 2021, doi: 10.1007/s13762-020-02922-7. [DOI:10.1007/s13762-020-02922-7] [PMID] []
5. A. Ijadi Maghsoodi, H. Rasoulipanah, L. Martínez López, H. Liao, and E. K. Zavadskas, "Integrating interval-valued multi-granular 2-tuple linguistic BWM-CODAS approach with target-based attributes: Site selection for a construction project," Comput. Ind. Eng., vol. 139, p. 106147, 2020, doi: 10.1016/j.cie.2019.106147. [DOI:10.1016/j.cie.2019.106147]
6. J. A. Mehdi KESHAVARZ GHORABAEE, Edmundas Kazimieras ZAVADSKAS, Zenonas TURSKIS, "A_new_combinative_distance-based_assessm," Econ. Comput. Econ. Cybern. Stud. Res., vol. 50, no. 1, pp. 39-68, 2016.
7. R. Guidelines et al., "MSC-MEPC.2-Circ.12-Rev2," vol. 44, no. 0, 2018.
8. R. Fattahi and M. Khalilzadeh, "Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment," Saf. Sci., vol. 102, no. October 2017, pp. 290-300, 2018, doi: 10.1016/j.ssci.2017.10.018. [DOI:10.1016/j.ssci.2017.10.018]
9. A. J. Kolios, A. Umofia, and M. Shafiee, "Failure mode and effects analysis using a fuzzy-TOPSIS method: A case study of subsea control module," Int. J. Multicriteria Decis. Mak., vol. 7, no. 1, pp. 29-53, 2017, doi: 10.1504/IJMCDM.2017.085154. [DOI:10.1504/IJMCDM.2017.085154]
10. N. Chanamool and T. Naenna, "Fuzzy FMEA application to improve decision-making process in an emergency department," Appl. Soft Comput. J., vol. 43, pp. 441-453, 2016, doi: 10.1016/j.asoc.2016.01.007. [DOI:10.1016/j.asoc.2016.01.007]
11. X. Zhang, F. Jin, and P. Liu, "A grey relational projection method for multi-attribute decision making based on intuitionistic trapezoidal fuzzy number," Appl. Math. Model., vol. 37, no. 5, pp. 3467-3477, 2013, doi: 10.1016/j.apm.2012.08.012. [DOI:10.1016/j.apm.2012.08.012]
12. A. C. Kutlu and M. Ekmekçioǧlu, "Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP," Expert Syst. Appl., vol. 39, no. 1, pp. 61-67, 2012, doi: 10.1016/j.eswa.2011.06.044. [DOI:10.1016/j.eswa.2011.06.044]
13. H. Liu, X. Deng, and W. Jiang, "Risk evaluation in failure mode and effects analysis using fuzzy measure and fuzzy integral," Symmetry (Basel)., vol. 9, no. 8, 2017, doi: 10.3390/sym9080162. [DOI:10.3390/sym9080162]
14. S. Das, K. Dhalmahapatra, and J. Maiti, "Z-number integrated weighted VIKOR technique for hazard prioritization and its application in virtual prototype based EOT crane operations," Appl. Soft Comput. J., vol. 94, p. 106419, 2020, doi: 10.1016/j.asoc.2020.106419. [DOI:10.1016/j.asoc.2020.106419]
15. H. C. Liu, L. Liu, and N. Liu, "Risk evaluation approaches in failure mode and effects analysis: A literature review," Expert Syst. Appl., vol. 40, no. 2, pp. 828-838, 2013, doi: 10.1016/j.eswa.2012.08.010. [DOI:10.1016/j.eswa.2012.08.010]
16. B. O. Ceylan, D. A. Akyar, and M. S. Celik, "A novel FMEA approach for risk assessment of air pollution from ships," Mar. Policy, vol. 150, p. 105536, Apr. 2023, doi: 10.1016/J.MARPOL.2023.105536. [DOI:10.1016/j.marpol.2023.105536]
17. S. Fu, Y. Yu, J. Chen, B. Han, and Z. Wu, "Towards a probabilistic approach for risk analysis of nuclear-powered icebreakers using FMEA and FRAM," Ocean Eng., vol. 260, p. 112041, Sep. 2022, doi: 10.1016/J.OCEANENG.2022.112041. [DOI:10.1016/j.oceaneng.2022.112041]
18. N. Kotkunde, M. Chauhan, and K. Chetti, "Fmea Analysis on Offshore Wind Turbines Using Fuzzy Multimooramethod FMEA ANALYSIS ON OFFSHORE WIND TURBINES," in International Conference on Design, Automation, and Control (ICDAC 2020), 2021. doi: 10.1088/1757-899X/1123/1/012018. [DOI:10.1088/1757-899X/1123/1/012018]
19. D. Bhadra, N. R. Dhar, and M. Abdus Salam, "Sensitivity analysis of the integrated AHP-TOPSIS and CRITIC-TOPSIS method for selection of the natural fiber," Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.09.178. [DOI:10.1016/j.matpr.2021.09.178]
20. A. Brun and M. M. Savino, "Assessing risk through Composite FMEA with pairwise matrix and Markov chains," Int. J. Qual. Reliab. Manag., 2017, [Online]. Available: [DOI:10.1108/IJQRM-04-2017-0080]
21. H. W. Wu, J. Zhen, and J. Zhang, "Urban rail transit operation safety evaluation based on an improved CRITIC method and cloud model," J. Rail Transp. Plan. Manag., vol. 16, no. xxxx, p. 100206, 2020, doi: 10.1016/j.jrtpm.2020.100206. [DOI:10.1016/j.jrtpm.2020.100206]
22. H. Lai and H. Liao, "A multi-criteria decision making method based on DNMA and CRITIC with linguistic D numbers for blockchain platform evaluation," Eng. Appl. Artif. Intell., vol. 101, no. March, p. 104200, 2021, doi: 10.1016/j.engappai.2021.104200. [DOI:10.1016/j.engappai.2021.104200]
23. P. Rani, A. R. Mishra, R. Krishankumar, K. S. Ravichandran, and S. Kar, "Multi-criteria food waste treatment method selection using single-valued neutrosophic-CRITIC-MULTIMOORA framework," Appl. Soft Comput., vol. 111, p. 107657, 2021, doi: 10.1016/j.asoc.2021.107657. [DOI:10.1016/j.asoc.2021.107657]
24. Y. Wu, Z. Deng, Y. Tao, L. Wang, F. Liu, and J. Zhou, "Site selection decision framework for photovoltaic hydrogen production project using BWM-CRITIC-MABAC: A case study in Zhangjiakou," J. Clean. Prod., vol. 324, no. October, p. 129233, 2021, doi: 10.1016/j.jclepro.2021.129233. [DOI:10.1016/j.jclepro.2021.129233]
25. C. Planning, I. Zandi, P. Pahlavani, B. Bigdeli, G. Information, and G. Information, "The Optimal Ranking of Candidate Hospital Sites Using a Combination of Objective Weighting Method and Multi- Criteria Decision Making Based on Geographical," vol. 14, no. 1, 2022, doi: 10.22059/jtcp.2021.327203.670238.
26. F. B. Yeni and G. Özçelik, "Interval-Valued Atanassov Intuitionistic Fuzzy CODAS Method for Multi Criteria Group Decision Making Problems," Gr. Decis. Negot., 2018, doi: 10.1007/s10726-018-9603-9. [DOI:10.1007/s10726-018-9603-9]
27. K. Deveci, R. Cin, and A. Kağızman, "A modified interval valued intuitionistic fuzzy CODAS method and its application to multi-criteria selection among renewable energy alternatives in Turkey," Appl. Soft Comput. J., vol. 96, p. 106660, 2020, doi: 10.1016/j.asoc.2020.106660. [DOI:10.1016/j.asoc.2020.106660]
28. A. Ijadi Maghsoodi, A. Ijadi Maghsoodi, P. Poursoltan, J. Antucheviciene, and Z. Turskis, "Dam construction material selection by implementing the integrated SWARA-CODAS approach with target-based attributes," Arch. Civ. Mech. Eng., vol. 19, no. 4, pp. 1194-1210, 2019, doi: 10.1016/j.acme.2019.06.010. [DOI:10.1016/j.acme.2019.06.010]
29. I. Badi and M. Kridish, "Landfill site selection using a novel FUCOM-CODAS model: A case study in Libya," Sci. African, vol. 9, 2020, doi: 10.1016/j.sciaf.2020.e00537. [DOI:10.1016/j.sciaf.2020.e00537]
30. V. Simic, S. Karagoz, M. Deveci, and N. Aydin, "Picture fuzzy extension of the CODAS method for multi-criteria vehicle shredding facility location," Expert Syst. Appl., vol. 175, no. September 2020, p. 114644, 2021, doi: 10.1016/j.eswa.2021.114644. [DOI:10.1016/j.eswa.2021.114644]
31. J. F. W. Peeters, R. J. I. Basten, and T. Tinga, "Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner," Reliab. Eng. Syst. Saf., vol. 172, pp. 36-44, Apr. 2018, doi: 10.1016/J.RESS.2017.11.024. [DOI:10.1016/j.ress.2017.11.024]
32. N. Grabill, S. Wang, H. A. Olayinka, T. P. De Alwis, Y. F. Khalil, and J. Zou, "AI-augmented failure modes, effects, and criticality analysis (AI-FMECA) for industrial applications," Reliab. Eng. Syst. Saf., vol. 250, p. 110308, Oct. 2024, doi: 10.1016/J.RESS.2024.110308. [DOI:10.1016/j.ress.2024.110308]
33. Z. Zhang and X. Chu, "Risk prioritization in failure mode and effects analysis under uncertainty," Expert Syst. Appl., vol. 38, no. 1, pp. 206-214, 2011, doi: 10.1016/j.eswa.2010.06.046. [DOI:10.1016/j.eswa.2010.06.046]
34. T. W. Chang, H. W. Lo, K. Y. Chen, and J. J. H. Liou, "A Novel FMEA Model Based on Rough BWM and Rough TOPSIS-AL for Risk Assessment," Mathematics, vol. 7, no. 10, pp. 1-21, 2019, doi: 10.3390/math7100874. [DOI:10.3390/math7100874]
35. T. McAndrew, N. Wattanachit, G. C. Gibson, and N. G. Reich, "Aggregating predictions from experts: a review of statistical methods, experiments, and applications," Wiley Interdiscip. Rev. Comput. Stat., vol. 13, no. 2, p. e1514, Mar. 2020, doi: 10.1002/WICS.1514. [DOI:10.1002/wics.1514] [PMID] []
36. K. O. Kim and M. J. Zuo, "General model for the risk priority number in failure mode and effects analysis," Reliab. Eng. Syst. Saf., vol. 169, pp. 321-329, Jan. 2018, doi: 10.1016/J.RESS.2017.09.010. [DOI:10.1016/j.ress.2017.09.010]
37. Y. Sun, H. Li, L. Sun, and C. Guedes Soares, "Failure Analysis of Floating Offshore Wind Turbines with Correlated Failures," Reliab. Eng. Syst. Saf., vol. 238, p. 109485, Oct. 2023, doi: 10.1016/J.RESS.2023.109485. [DOI:10.1016/j.ress.2023.109485]
38. C. H. Chang, C. Kontovas, Q. Yu, and Z. Yang, "Risk assessment of the operations of maritime autonomous surface ships," Reliab. Eng. Syst. Saf., vol. 207, p. 107324, Mar. 2021, doi: 10.1016/J.RESS.2020.107324. [DOI:10.1016/j.ress.2020.107324]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.