1. A comparison of pump jets and propellers for non-nuclear submarine propulsion Aidan Morrison January 2018
2. Renilson MR (2018) Submarine hydrodynamics, 2nd edn. Springer, Cham. [
DOI:10.1007/978-3-319-79057-2]
3. A.Dean, D.Voss, Design and Analysis of Experiments, Springer Verlag: New York,1999. [
DOI:10.1007/b97673]
4. Insttrumentation Measurement And Analysis, 4Th Edn, by B.C. Nakra And K.K. Chaudhry.2016
5. H.W.Coleman, W.G.Steele, Experimentation and Uncertainty Analysis for Engineers", John Wiley and Sons, Inc., New York.1999
6. Analysis of heat transfer and fuel regression rate of solid fuel in hybrid thrusters [M.Sc.Thesis], Researcher Mohammad Hossein Qaedsharaf, Islamic Azad University, Science & Research Branch, 2011
7. Motallebi-Nejad, M., Bakhtiari, M., Ghassemi, H. et al. Numerical analysis of ducted propeller and pumpjet propulsion system using periodic computational domain. J Mar Sci Technol 22, 559-573 (2017). [
DOI:10.1007/s00773-017-0438-x]
8. Ghaedsharf, Mohammad Hossein, Ehsan, Mahdavi, Hadi and Mehrabi Gohari. (2019). Comparison of performance and sensitivity of effective parameters in two propellants hydrogen peroxide and nitrous oxide using uncertainty analysis. Mechanical Engineering, University of Tabriz, 50(3), 233-237. doi: https://10.22034/jmeut.2020.9802
9. Wang, C., Weng, K., Guo, C. et al. Analysis of influence of duct geometrical parameters on pump jet propulsor hydrodynamic performance. J Mar Sci Technol 25, 640-657 (2020). [
DOI:10.1007/s00773-019-00662-z]
10. Huang, Q., Li, H., Pan, G., & Dong, X. (2021). Effects of duct parameter on pump-jet propulsor unsteady hydrodynamic performance. Ocean Engineering, 221, 108509. [
DOI:10.1016/j.oceaneng.2020.108509]
11. Chen, X., Cheng, L., Wang, C., & Luo, C. (2021). Influence of inlet duct length on the hydraulic performance of the waterjet propulsion device. Shock and Vibration, 2021(1), 6676601. [
DOI:10.1155/2021/6676601]
12. Zhou, Y., Pavesi, G., Yuan, J., & Fu, Y. (2022). A Review on Hydrodynamic Performance and Design of Pump-Jet: Advances, Challenges and Prospects. Journal of Marine Science and Engineering, 10(10), 1514 [
DOI:10.3390/jmse10101514]
13. Zhou, Y., Pavesi, G., Yuan, J., Fu, Y., & Gao, Q. (2023). Effects of duct profile parameters on flow characteristics of pump-jet: A numerical analysis on accelerating and decelerating ducts distinguished by cambers and angles of attack. Ocean Engineering, 281, 114733. [
DOI:10.1016/j.oceaneng.2023.114733]
14. Ji, X. Q., Zhang, X. S., Yang, C. J., & Dong, X. Q. (2024). Experimental and numerical investigation of the impacts of rotor tip-rake on excitation forces of pump-jet propulsors. Journal of Hydrodynamics, 1-16. [
DOI:10.1007/s42241-024-0011-0]
15. Zou, D., Xue, L., Lin, Q., Xu, J., Dong, X., Ta, N., & Rao, Z. (2024). Influence of propulsion shafting longitudinal vibration on the excitation force and vortex dynamics characteristics of pump-jet propulsor. Ocean Engineering, 295, 116962. [
DOI:10.1016/j.oceaneng.2024.116962]
16. Weng, K., Sun, C., Han, K., Wang, C., Sun, S., Li, P., & Hu, J. (2024). Experimental/numerical investigation on the hydrodynamic and noise characteristics of pump-jet propulsion. Ocean Engineering, 307, 117995. [
DOI:10.1016/j.oceaneng.2024.117995]
17. Zhou, Y., Pavesi, G., Yuan, J., Fu, Y., & Gao, Q. (2024). Effects of duct profile parameters on flow characteristics of pump-jet: A numerical analysis on accelerating and decelerating ducts distinguished by cambers and angles of attack. Ocean Engineering, 281, 114733. [
DOI:10.1016/j.oceaneng.2023.114733]
18. Qaedsharaf, M. H., Yari, E., & Manshadi, M. D. (2025). Cavitation on the pump jet pre swirl type due to changes in the stator chord length. Physics of Fluids, 37(3). [
DOI:10.1063/5.0248017]
19. Carlton, J. S., Marine propellers and propulsion, third ed., Amsterdam, Netherland, Elsevier (2012) [
DOI:10.1016/B978-0-08-097123-0.00010-1]
20. Bertram, V., Practical ship hydrodynamics Oxford, U.K, Butterworth Heinemann (2012)