Write your message


XML Print


1- Assistant professor, Department of Civil Engineering, SR.C., Islamic Azad University, Tehran, Iran; samaei@srbiau.ac.ir
2- Assistant professor, Department of Civil Engineering, SR.C., Islamic Azad University, Tehran, Iran; m.asadian@srbiau.ac.ir
Abstract:   (32 Views)
This study investigates the hydrodynamic performance of modular, chain-type floating docks designed for high-speed boat deployment within the operational zone of Shahid Bahonar Port. Given the limitations of fixed dock infrastructure—particularly in regions with soft seabeds and tidal variations—floating docks offer a flexible, cost-effective alternative. A modular pontoon system was designed using CATIA and analyzed in ANSYS AQWA under various wave conditions (0°, 45°, 90°, 135°, and 180°). Comparative simulations between single-body and multi-body configurations revealed that multi-hull docks significantly reduce vertical displacement and better distribute wave-induced forces, especially at connection points. Time-domain analyses further confirmed that joint stiffness and orientation strongly influence structural response. Elastic mooring systems enhanced the dock’s adaptability to dynamic sea conditions while minimizing environmental impact. These findings support the development of resilient floating marine structures tailored to the hydrodynamic conditions of semi-enclosed ports like Shahid Bahonar, with implications for both defense and commercial applications in high-salinity environments.
Full-Text [PDF 1729 kb]   (9 Downloads)    

Highlights

· Comprehensive hydrodynamic analysis of modular, chain-type floating docks optimized for high-speed vessel operations in semi-enclosed basins.
· Multi-body simulations in ANSYS AQWA under varying wave angles reveal optimal design configurations with improved stability.
· Multi-body systems significantly reduce vertical displacement, enhancing load distribution and structural performance.
· Elastic mooring systems improve adaptability, minimize environmental impact, and ensure robust stabilization.
· Findings provide sustainable solutions for defense and commercial ports, contributing to resilient and cost-effective coastal infrastructure.
 
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2025/05/31 | Accepted: 2025/09/3

References
1. Zhang, J., Ong, M. C., & Wen, X. (2024). Dynamic and structural analyses of floating dock operations considering dock-vessel coupling loads. Ocean Engineering, 310(Part 1), Article 118622. [DOI:10.1016/j.oceaneng.2024.118622]
2. Liang, J. M., Liu, Y., Chen, Y. K., & Li, A. J. (2022). Experimental study on hydrodynamic characteristics of the box-type floating breakwater with different mooring configurations. Ocean Engineering, 254, Article 111296. [DOI:10.1016/j.oceaneng.2022.111296]
3. Gran, V. A., Jiang, Z., & Pan, Z. (2020). Hydrodynamic analysis of floating docks with alternative geometries for floating wind turbine installation. In Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering (Vol. 6A: Ocean Engineering, Article V06AT06A057). ASME. [DOI:10.1115/OMAE2020-18756]
4. Song, J., Imani, H., Yue, J., & Yang, S. (2023). Hydrodynamic characteristics of floating photovoltaic systems under ocean loads. Journal of Marine Science and Engineering, 11(9), Article 1813. [DOI:10.3390/jmse11091813]
5. Al-Sairafi, F. A., Zhang, J., Jiang, C., Almansour, A. I., & Saleh, B. (2024). Enhancing hydrodynamic performance of floating breakwaters using wing plates. Water, 16(13), Article 1779. [DOI:10.3390/w16131779]
6. Wan, C., Niu, Y., Yang, C., & Johanning, L. (2024). Hydrodynamic performance of a hybrid floating power dock combining multi-cantilever type buoys. Marine Energy Research, 1(1), Article 10005. [DOI:10.70322/mer.2024.10005]
7. Li, Y., Ren, N., Li, X., & Ou, J. (2022). Hydrodynamic analysis of a novel modular floating structure system integrated with floating artificial reefs and wave energy converters. Journal of Marine Science and Engineering, 10(8), Article 1091. [DOI:10.3390/jmse10081091]
8. Takeuchi, T., Utsunomiya, T., Gotoh, K., & Sato, I. (2019). Quantitative wear estimation for mooring chain of floating structures and its validation. In Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. ASME. [DOI:10.1115/OMAE2019-96750]
9. Li, Y. W., Ren, N. X., Cai, W. Y., et al. (2024). Experimental investigation of the hydrodynamic characteristics of a modular floating structure system integrated with WEC-type floating artificial reefs. China Ocean Engineering, 38, 1082-1090. [DOI:10.1007/s13344-024-0085-z]
10. Xu, D. L., Zhang, H. C., Xia, S. Y., et al. (2018). Nonlinear dynamic characteristics of a multi-module floating airport with rigid-flexible connections. Journal of Hydrodynamics, 30, 815-827. [DOI:10.1007/s42241-018-0089-3]
11. Xu, K., Larsen, K., Shao, Y., Zhang, M., Gao, Z., & Moan, T. (2021). Design and comparative analysis of alternative mooring systems for floating wind turbines in shallow water with emphasis on ultimate limit state design. Ocean Engineering, 219, Article 108377. [DOI:10.1016/j.oceaneng.2020.108377]
12. Nazligul, Y. E., & Yazir, D. (2023). Comparison of automated mooring systems against existing mooring systems by using the IF-TOPSIS method. Ocean Engineering, 285(Part 2), Article 115269. [DOI:10.1016/j.oceaneng.2023.115269]
13. Perkovič, M. (2024). Advances in navigability and mooring. Journal of Marine Science and Engineering, 12(9), Article 1601. [DOI:10.3390/jmse12091601]
14. Sirigu, S. A., Bonfanti, M., Begovic, E., Bertorello, C., Dafnakis, P., Giorgi, G., Bracco, G., & Mattiazzo, G. (2020). Experimental investigation of the mooring system of a wave energy converter in operating and extreme wave conditions. Journal of Marine Science and Engineering, 8(3), Article 180. [DOI:10.3390/jmse8030180]
15. Hennø, E., & Schøyen, H. (2024). A lean approach to comparing the mooring systems of Suezmax tankers. Journal of Marine Science and Technology, 29, 956-974. [DOI:10.1007/s00773-024-01030-2]
16. Ni, X. Y., Cheng, X. M., Wu, B., et al. (2021). Performance analysis of the mooring system of a two-module scientific research and demonstration platform. Journal of Hydrodynamics, 33, 901-914. [DOI:10.1007/s42241-021-0080-2]
17. Samaei, S. R., Hassanabad, M. G., Ghahfarrokhi, M. A., & Ketabdari, M. J. (2021). Numerical and experimental investigation of damage in environmentally-sensitive civil structures using modal strain energy (case study: LPG wharf). International Journal of Environmental Science and Technology, 18, 1939-1952. [DOI:10.1007/s13762-021-03321-2]
18. Samaei, S. R., Azarsina, F., & Ghahferokhi, M. A. (2016). Numerical simulation of floating pontoon breakwater with ANSYS AQWA software and validation of the results with laboratory data. Bulletin de la Société Royale des Sciences de Liège, 85, 1487-1499. [DOI:10.25518/0037-9565.6194]
19. Samaei, S. R., & Hassanabad, M. G. (2024). The crucial interplay of seas, marine industries, and artificial intelligence in sustainable development. Eighth International Conference on Technology Development in Oil, Gas, Refining and Petrochemicals.
20. Samaei, S. R., & Ghodsi Hassanabad, M. (2023). The transformative role of artificial intelligence in engineering sciences with an emphasis on civil engineering and marine industries. The Second International Conference on Creative Achievements of Architecture, Urban Planning, Civil Engineering and Environment in the Sustainable Development of the Middle East, Mashhad. Retrieved from https://civilica.com/doc/1893048
21. Samaei, S. R., & Ghodsi Hassanabad, M. (2022). Damage location and intensity detection in tripod jacket substructure of wind turbine using improved modal strain energy and genetic algorithm. Journal of Structural and Construction Engineering, 9(4), 182-202. [DOI:10.22065/jsce.2021.294103.2488]
22. Samaei, S. R., Ghodsi Hassanabad, M., Asadian Ghahfarrokhi, M., & Ketabdari, M. J. (2021). Numerical and experimental study to identify the location and severity of damage at the pier using the improved modal strain energy method-Case study: Pars Asaluyeh LPG export pier. Journal of Structural and Construction Engineering, 8(Special Issue 3), 162-179. [DOI:10.22065/jsce.2020.246425.2225]
23. Samaei, S. R., Ghodsi Hassanabad, M., Asadian Ghahfarrokhi, M., & Ketabdari, M. J. (2020). Structural health monitoring of offshore structures using a modified modal strain energy method (case study: four-leg jacket substructure of an offshore wind turbine). Journal of Marine Engineering, 16(32), 119-130. [DOI:10.29252/marineeng.16.32.119]
24. Samaei, S. R., Ghodsi Hassanabad, M., & Karimpor Zahraei, A. (2021). Identification of location and severity of damages in the offshore wind turbine tripod platform by improved modal strain energy method. Analysis of Structure and Earthquake, 18(3), 51-62.
25. Samaei, S. R., Ghodsi Hassanabad, M., Asadian Ghahfarrokhi, M., & Ketabdari, M. J. (2021). Investigation of location and severity of damage in four-legged offshore wind turbine stencil infrastructure by improved modal strain energy method. Analysis of Structure and Earthquake, 17(3), 79-90

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.