Write your message


XML Print


Assistant Professor, Electrical and Computer Engineering Department, University of Gonabad, Gonabad, Iran;
Abstract:   (64 Views)
The reliable control of marine vessels remains a critical challenge due to the nonlinear dynamics and strong environmental disturbances inherent in ocean operations. This paper proposes an optimal heading control strategy for a linearized model of a high-speed container ship based on a Proportional–Integral–Derivative (PID) controller whose parameters are tuned using the Adaptive Particle Swarm Optimization (APSO) algorithm. While classical PID controllers are widely adopted for their structural simplicity and robustness, they often require labor-intensive parameter tuning and exhibit performance degradation under time-varying sea states. To overcome these limitations, the proposed APSO framework adaptively balances global exploration and local exploitation to identify optimal PID gains. The optimization objective function integrates both trajectory-tracking accuracy and control effort, thereby ensuring a trade-off between precision and efficiency. The linear dynamic model of the container ship is formulated and implemented in MATLAB/Simulink, serving as the test platform. Simulation results reveal that the APSO-tuned PID controller achieves substantial improvements in transient and steady-state responses, including overshoot suppression, reduced settling time, and acceptable gain margin, compared with conventional PID tuning. These findings highlight the potential of APSO-based PID design as a robust and interpretable control solution for advanced marine navigation and dynamic positioning applications.
Full-Text [PDF 534 kb]   (20 Downloads)    

Highlights
  • An APSO-tuned PID controller is developed for optimal heading control of a linearized high-speed container ship model.
  • Adaptive PSO improves the tuning precision by balancing global exploration and local exploitation.
  • The APSO-PID reduces overshoot from 35.1% to 17.6% and shortens settling time while maintaining a 31.9 dB gain margin.
  • Control effort is minimized through optimization, enhancing efficiency and actuator longevity.
  • APSO-PID clearly outperforms classical PID and standard PSO in robustness, tracking accuracy, and convergence speed.

 
Type of Study: Research Paper | Subject: Main Engine & Electrical Equipments
Received: 2025/06/4 | Accepted: 2026/01/4

References
1. WANG, C., GAO, X. and WANG, L.,(2025), BESO-PPF: A PPF-optimized ship heading controller based on backstepping control and the ESO, Ocean Engineering, 316, p. 119925. [DOI:10.1016/j.oceaneng.2024.119925]
2. YE, Y., WANG, Y., WANG, L. and WANG, X.,(2023), A modified predictive PID controller for dynamic positioning of vessels with autoregressive model, Ocean Engineering, 284, p. 115176. [DOI:10.1016/j.oceaneng.2023.115176]
3. WANG, Y., et al.,(2024), An adaptive PID controller for path following of autonomous underwater vehicle based on Soft Actor-Critic, Ocean Engineering, 307, p. 118171. [DOI:10.1016/j.oceaneng.2024.118171]
4. ZHAO, S., MU, J., LIU, H., SUN, Y. and CAJO, R.,(2025), Heading control of USV based on fractional-order model predictive control, Ocean Engineering, 322, p. 120476. [DOI:10.1016/j.oceaneng.2025.120476]
5. WANG, R., LI, X., AHMED, Q., LIU, Y. and MA, X.,(2018), in 2018 Annual American Control Conference (ACC). p. 3908-3914. [DOI:10.23919/ACC.2018.8431287] [PMID] []
6. EBRAHIMI, M., ALAVIYAN SHAHRI, E. S. and ALFI, A.,(2024), A graphical method-based Kharitonov theorem for robust stability analysis of incommensurate fractional-order uncertain systems, Computational and Applied Mathematics, 43(2), p. 101. [DOI:10.1007/s40314-024-02610-z]
7. EBRAHIMI, M. and ASGARI, M.,(2021), Robust fractional-order fixed-structure controller design for uncertain non-commensurate fractional plants using fractional Kharitonov theorem, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 235(8), p. 1375-1387. [DOI:10.1177/0959651821991359]
8. ALAVIYAN SHAHRI, E. S. and BALOCHIAN, S.,(2015), A Stability Analysis on Fractional Order Linear System with Nonlinear Saturated Disturbance, National Academy Science Letters, 38(5), p. 409-413. [DOI:10.1007/s40009-015-0377-1]
9. ALAVIYAN SHAHRI, E. S. and BALOCHIAN, S.,(2016), An analysis and design method for fractional-order linear systems subject to actuator saturation and disturbance, Optimal Control Applications and Methods, 37(2), p. 305-322. [DOI:10.1002/oca.2169]
10. BORASE, R. P., MAGHADE, D. K., SONDKAR, S. Y. and PAWAR, S. N.,(2021), A review of PID control, tuning methods and applications, International Journal of Dynamics and Control, 9(2), p. 818-827. [DOI:10.1007/s40435-020-00665-4]
11. LEE, D., LEE, S. J. and YIM, S. C.,(2020), Reinforcement learning-based adaptive PID controller for DPS, Ocean Engineering, 216, p. 108053. [DOI:10.1016/j.oceaneng.2020.108053]
12. GHAMARI, S. M., KHAVARI, F. and MOLLAEE, H.,(2023), Lyapunov-based adaptive PID controller design for buck converter, Soft Computing, 27(9), p. 5741-5750. [DOI:10.1007/s00500-022-07797-z]
13. ZHAN, S., LIU, Q., ZHAO, Z., ZHANG, S. A. and XU, Y.,(2025), Advanced Robust Heading Control for Unmanned Surface Vessels Using Hybrid Metaheuristic-Optimized Variable Universe Fuzzy PID with Enhanced Smith Predictor, Biomimetics, 10(9), p. 611. [DOI:10.3390/biomimetics10090611] [PMID] []
14. ZHAO, Y.,(2010), in 2010 International Conference on Machine Vision and Human-machine Interface. p. 679-682. [DOI:10.1109/MVHI.2010.96] []
15. ZHANG, H., ZHAO, Z., WEI, Y., LIU, Y. and WU, W.,(2025), A Self-Tuning Variable Universe Fuzzy PID Control Framework with Hybrid BAS-PSO-SA Optimization for Unmanned Surface Vehicles, Journal of Marine Science and Engineering, 13(3), p. 558. [DOI:10.3390/jmse13030558]
16. ALAVIYAN SHAHRI, E. S., ALFI, A. and TENREIRO MACHADO, J. A.,(2019), Fractional fixed-structure H∞ controller design using Augmented Lagrangian Particle Swarm Optimization with Fractional Order Velocity, Applied Soft Computing, 77, p. 688-695. [DOI:10.1016/j.asoc.2019.01.037]
17. S. S, V. C. and H. S, A.,(2022), Nature inspired meta heuristic algorithms for optimization problems, Computing, 104(2), p. 251-269. [DOI:10.1007/s00607-021-00955-5]
18. SHAMI, T. M., et al.,(2022), Particle Swarm Optimization: A Comprehensive Survey, IEEE Access, 10, p. 10031-10061. [DOI:10.1109/ACCESS.2022.3142859]
19. GEN, M. and LIN, L., (2023), in Springer Handbook of Engineering Statistics, H. Pham Ed^Eds, Springer London, London, p. 635-674. [DOI:10.1007/978-1-4471-7503-2_33]
20. FIDANOVA, S., (2021), in Ant Colony Optimization and Applications, Ed^Eds, Springer International Publishing, Cham, p. 3-8. [DOI:10.1007/978-3-030-67380-2_2]
21. HU, Z., et al.,(2024), Optimization of PID control parameters for marine dual-fuel engine using improved particle swarm algorithm, Scientific Reports, 14(1), p. 12681. [DOI:10.1038/s41598-024-63253-y] [PMID] []
22. MOHD TUMARI, M. Z., AHMAD, M. A., SUID, M. H. and HAO, M. R.,(2023), An Improved Marine Predators Algorithm-Tuned Fractional-Order PID Controller for Automatic Voltage Regulator System, Fractal and Fractional, 7(7), p. 561. [DOI:10.3390/fractalfract7070561]
23. FOSSEN, T. I.,(2021), Handbook of Marine Craft Hydrodynamics and Motion Control, Wiley. [DOI:10.1002/9781119575016]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.