Write your message


Volume 13 - Winter and Spring 2020                   ijmt 2020, 13 - Winter and Spring 2020: 31-39 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bakhtiar M, Rezaee Mazyak A, Khosravi M. Ocean Circulation to Blame for Red Tide Outbreak in the Persian Gulf and the Sea of Oman. ijmt 2020; 13 :31-39
URL: http://ijmt.ir/article-1-664-en.html
1- Iran University of Science & Technology
2- Tarbiat Modares University
3- Pars Geometry Consultants
Abstract:   (3432 Views)
Red tide is a phenomenon that occurs by rapid growth or proliferation of toxic algae. The growth and spread of this phenomenon can threaten marine ecosystems, human health, aquaculture, water desalination plans, tourism and fisheries industries. Ocean currents are one of the affecting factors of the distribution of this phenomenon. In this study, the role of ocean current in chlorophyll-a distribution is investigated on the north coast of the Arabian Sea, the Sea of Oman and the Persian Gulf. The monthly MODIS satellite chlorophyll-a concentration data is used to study the red tide and the HYCOM model analysis result to study the current ocean pattern from 2002 to 2018 and in 2016 as an example. The currents in this area cause chlorophyll-a spreading and transfer of nutrients necessary for chlorophyll-a proliferation and red tides events. There are four main sources of chlorophyll expansion and proliferation in the region: the eastern shores of the Arabian Sea, the northern shores of the Arabian Sea and the Sea of Oman, the Strait of Hormuz, and the northwestern shores of the Persian Gulf. The northeastern currents in East Oman transport chlorophyll to the north of the Arabian Sea and the northwestern currents in the west of the Arabian Sea move chlorophyll from the coasts of India and Pakistan to the west and dispersed it to the west in the northern shores of the sea of Oman.
Full-Text [PDF 1325 kb]   (1326 Downloads)    
Type of Study: Research Paper | Subject: Environmental Study
Received: 2019/05/4 | Accepted: 2020/06/6

References
1. ANDERSON, D. M. and GARRISON, D. J.,(1997), The ecology and oceanography of harmful algal blooms, American Society of Limnology and Oceanography.
2. WALSH, J. J. and STEIDINGER, K. A.,(2001), Saharan dust and Florida red tides: the cyanophyte connection, Journal of Geophysical Research: Oceans, 106(C6), p. 11597-11612. [DOI:10.1029/1999JC000123]
3. MORADI, M. and KABIRI, K.,(2012), Red tide detection in the Strait of Hormuz (east of the Persian Gulf) using MODIS fluorescence data, International Journal of Remote Sensing, 33(4), p. 1015-1028. [DOI:10.1080/01431161.2010.545449]
4. DU YOO, Y., et al.,(2013), Red tides in Masan Bay, Korea in 2004-2005: II. Daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms, Harmful Algae, 30, p. S89-S101. [DOI:10.1016/j.hal.2013.10.009]
5. WINARSO, G. and ISHIZAKA, J.,(2017), VALIDATION OF COCHLODINIUM POLYKRIKOIDES RED TIDE DETECTION USING SEAWIFS-DERIVED CHLOROPHYLL-A DATA WITH NFRDI RED TIDE MAP IN SOUTH EAST KOREAN WATERS, International Journal of Remote Sensing and Earth Sciences (IJReSES), 14(1), p. 19-26. [DOI:10.30536/j.ijreses.2017.v14.a2627]
6. YUNUS, A. P., DOU, J. and SRAVANTHI, N.,(2015), Remote sensing of chlorophyll-a as a measure of red tide in Tokyo Bay using hotspot analysis, Remote Sensing Applications: Society and Environment, 2, p. 11-25. [DOI:10.1016/j.rsase.2015.09.002]
7. PAERL, H. W., HALL, N. S. and CALANDRINO, E. S.,(2011), Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change, Science of the Total Environment, 409(10), p. 1739-1745. [DOI:10.1016/j.scitotenv.2011.02.001]
8. CASTELAO, R. M., MAVOR, T. P., BARTH, J. A. and BREAKER, L. C.,(2006), Sea surface temperature fronts in the California Current System from geostationary satellite observations, Journal of Geophysical Research: Oceans, 111(C9). [DOI:10.1029/2006JC003541]
9. FUENTES‐YACO, C., KOELLER, P., SATHYENDRANATH, S. and PLATT, T.,(2007), Shrimp (Pandalus borealis) growth and timing of the spring phytoplankton bloom on the Newfoundland-Labrador Shelf, Fisheries oceanography, 16(2), p. 116-129. [DOI:10.1111/j.1365-2419.2006.00402.x]
10. MARITORENA, S., D'ANDON, O. H. F., MANGIN, A. and SIEGEL, D. A.,(2010), Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues, Remote Sensing of Environment, 114(8), p. 1791-1804. [DOI:10.1016/j.rse.2010.04.002]
11. CHASSOT, E., et al.,(2011), Satellite remote sensing for an ecosystem approach to fisheries management, ICES Journal of Marine Science, 68(4), p. 651-666. [DOI:10.1093/icesjms/fsq195]
12. BREWIN, R. J., et al.,(2014), On the temporal consistency of chlorophyll products derived from three ocean-colour sensors, ISPRS Journal of Photogrammetry and Remote Sensing, 97, p. 171-184. [DOI:10.1016/j.isprsjprs.2014.08.013]
13. OHGAKI, S.-I., et al.,(2019), Effects of temperature and red tides on sea urchin abundance and species richness over 45 years in southern Japan, Ecological indicators, 96, p. 684-693. [DOI:10.1016/j.ecolind.2018.03.040]
14. KIM, C. S., LEE, S. G., LEE, C. K., KIM, H. G. and JUNG, J.,(1999), Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides, Journal of Plankton Research, 21(11), p. 2105-2115. [DOI:10.1093/plankt/21.11.2105]
15. HEIL, C. A., et al.,(2001), First record of a fish-killing Gymnodinium sp. bloom in Kuwait Bay, Arabian Sea: chronology and potential causes, Marine Ecology Progress Series, 214, p. 15-23. [DOI:10.3354/meps214015]
16. GEIDER, R., MACINTYRE, H. and KANA, T.,(1997), Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature, Marine Ecology Progress Series, 148, p. 187-200. [DOI:10.3354/meps148187]
17. HATANO, M. and IMAI, I.,(2010), Selenium requirements for growth of the red tide dinoflagellates Heterocapsa circularisquama, H. triquetra and Karenia mikimoto, 北海道大学水産科学研究彙報, 60(2/3), p. 51-56.
18. HU, J. and WANG, X. H.,(2016), Progress on upwelling studies in the China seas, Reviews of Geophysics, 54(3), p. 653-673. [DOI:10.1002/2015RG000505]
19. STUMPF, R., et al.,(2003), Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data, Harmful Algae, 2(2), p. 147-160. [DOI:10.1016/S1568-9883(02)00083-5]
20. BAIRD, M. E., et al.,(2016), Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data, Environmental modelling & software, 78, p. 79-96. [DOI:10.1016/j.envsoft.2015.11.025]
21. KIM, G., LEE, Y. W., JOUNG, D. J., KIM, K. R. and KIM, K.,(2006), Real‐time monitoring of nutrient concentrations and red‐tide outbreaks in the southern sea of Korea, Geophysical research letters, 33(13). [DOI:10.1029/2005GL025431]
22. AL-YAMANI, F. Y., BISHOP, J., RAMADHAN, E., AL-HUSAINI, M. and AL-GHADBAN, A.,(2004), Oceanographic atlas of Kuwait's waters.
23. JOHNS, W. E., JACOBS, G. A., KINDLE, J. C., MURRAY, S. P. and CARRON, M., (1999), Arabian marginal seas and gulfs, NAVAL RESEARCH LAB STENNIS SPACE CENTER MS OCEANOGRAPHY DIV.
24. REYNOLDS, R. M.,(1993), Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman-Results from the Mt Mitchell expedition, Marine Pollution Bulletin, 27, p. 35-59. [DOI:10.1016/0025-326X(93)90007-7]
25. JOHANNESSEN, O. M., et al.,(2000), Satellite earth observation in operational oceanography, Coastal Engineering, 41(1-3), p. 155-176. [DOI:10.1016/S0378-3839(00)00030-2]
26. YE, S., PONTIUS JR, R. G. and RAKSHIT, R.,(2018), A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches, ISPRS Journal of Photogrammetry and Remote Sensing, 141, p. 137-147. [DOI:10.1016/j.isprsjprs.2018.04.002]
27. PARKINSON, C. L.,(2003), Aqua: An Earth-observing satellite mission to examine water and other climate variables, IEEE Transactions on Geoscience and Remote Sensing, 41(2), p. 173-183. [DOI:10.1109/TGRS.2002.808319]
28. XIONG, X., et al.,(2009), NASA EOS Terra and Aqua MODIS on-orbit performance, Advances in Space Research, 43(3), p. 413-422. [DOI:10.1016/j.asr.2008.04.008]
29. O'REILLY, J. E., et al.,(2000), Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4, SeaWiFS postlaunch calibration and validation analyses, Part, 3, p. 9-23.
30. RICHLEN, M. L., MORTON, S. L., JAMALI, E. A., RAJAN, A. and ANDERSON, D. M.,(2010), The catastrophic 2008-2009 red tide in the Arabian Gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides, Harmful Algae, 9(2), p. 163-172. [DOI:10.1016/j.hal.2009.08.013]
31. BÖHM, E., MORRISON, J. M., MANGHNANI, V., KIM, H.-S. and FLAGG, C. N.,(1999), The Ras al Hadd Jet: remotely sensed and acoustic Doppler current profiler observations in 1994-1995, Deep Sea Research Part II: Topical Studies in Oceanography, 46(8-9), p. 1531-1549. [DOI:10.1016/S0967-0645(99)00034-X]
32. SARMA, Y., AL HASHMI, K. and SMITH, S. L.,(2013), Sea surface warming and its implications for harmful algal blooms off Oman, International Journal of Marine Science, 3(8). [DOI:10.5376/ijms.2013.03.0008]
33. MARRA, J. and BARBER, R. T.,(2005), Primary productivity in the Arabian Sea: A synthesis of JGOFS data, Progress in Oceanography, 65(2-4), p. 159-175. [DOI:10.1016/j.pocean.2005.03.004]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.