1. Gonca, G. and Y. Palaci, (2019), Performance investigation of a Diesel engine under effective efficiency-power-power density conditions. Scientia Iranica, 26(2): p. 843-855.
2. Chamehsara, S., S.M. Mirsalim, and M. Tajdari, (2014), Effects of fuel injection discharge curve and injection pressure on upgrading power and combustion parameters in heavy-duty (HD) diesel engine with computational fluid dynamics (CFD) simulation. Journal of Mechanical Engineering Research, 6(2): p. 9-21. [
DOI:10.5897/JMER2014.0333]
3. Shafaghat, R., S. Talesh Amiri, and O. Jahanian, (2020), Numerical Study of the Effect of Adding Water with Different Temperatures to Low-Reactivity Fuel in a Reactivity Controlled Compression Ignition (RCCI) Engine. Fuel and Combustion, 13(4): p. 43-62.
4. Aghav, Y., Kumar, M. N., Latey, A. A., Gandhi, N., & Gokhale, N. (2012). Development of two stage turbo-charging for medium duty diesel engine of power generation application (No. 2012-28-0007). SAE Technical Paper. [
DOI:10.4271/2012-28-0007]
5. Payri, F., J. Desantes, and J. Pastor, (1996), LDV measurements of the flow inside the combustion chamber of a 4-valve DI diesel engine with axisymmetric piston-bowls. Experiments in fluids, 22(2): p. 118-128. [
DOI:10.1007/s003480050029]
6. Justham, T., Jarvis, S., Clarke, A., Garner, C. P., Hargrave, G. K., & Halliwell, N. A. (2006, July). Simultaneous study of intake and in-cylinder IC engine flow fields to provide an insight into intake induced cyclic variations. In Journal of Physics: Conference Series (Vol. 45, No. 1, p. 019). IOP Publishing. [
DOI:10.1088/1742-6596/45/1/019]
7. Chen, Z., et al., Effect of equivalence ratio on diesel direct injection spark ignition combustion. Journal of Central South University, 2020. 27(8): p. 2338-2352. [
DOI:10.1007/s11771-020-4453-4]
8. Amano, T., S. Morimoto, and Y. Kawabata, Modeling of the effect of air/fuel ratio and temperature distribution on HCCI engines. 2001, SAE Technical Paper. [
DOI:10.4271/2001-01-1024]
9. Chen, Z., Qin, T., He, T. P., & Zhu, L. J. (2020). Effect of equivalence ratio on diesel direct injection spark ignition combustion. Journal of Central South University, 27(8), 2338-2352. [
DOI:10.1007/s11771-020-4453-4]
10. Zaccardi, J. M., Pagot, A., Vangraefschepe, F., Dognin, C., & Mokhtari, S. (2009). Optimal design for a highly downsized gasoline engine (No. 2009-01-1794). SAE Technical Paper. [
DOI:10.4271/2009-01-1794]
11. Parlak, A., Islamoglu, Y., Yasar, H., & Egrisogut, A. (2006). Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine. Applied Thermal Engineering, 26(8-9), 824-828. [
DOI:10.1016/j.applthermaleng.2005.10.006]
12. Jiang, J., & Li, D. (2016). Theoretical analysis and experimental confirmation of exhaust temperature control for diesel vehicle NOx emissions reduction. Applied energy, 174, 232-244. [
DOI:10.1016/j.apenergy.2016.04.096]
13. Bai, S., Chen, G., Sun, Q., Wang, G., & Li, G. X. (2017). Influence of active control strategies on exhaust thermal management for diesel particular filter active regeneration. Applied Thermal Engineering, 119, 297-303. [
DOI:10.1016/j.applthermaleng.2017.03.012]
14. Guan, W., Pedrozo, V., Zhao, H., Ban, Z., & Lin, T. (2017). Investigation of EGR and miller cycle for NOx emissions and exhaust temperature control of a heavy-duty diesel engine (No. 2017-01-2227). SAE Technical Paper. [
DOI:10.4271/2017-01-2227]
15. Huang, T., Hu, G., Meng, Z., & Zeng, D. (2021). Exhaust temperature control for safe and efficient thermal regeneration of diesel particulate filter. Applied Thermal Engineering, 189, 116747. [
DOI:10.1016/j.applthermaleng.2021.116747]
16. Mallamo, F., Badami, M., & Millo, F. (2005). Effect of compression ratio and injection pressure on emissions and fuel consumption of a small displacement common rail diesel engine (No. 2005-01-0379). SAE Technical Paper. [
DOI:10.4271/2005-01-0379]
17. Funayama, Y., Nakajima, H., & Shimokawa, K. (2016). A study on the effects of a higher compression ratio in the combustion chamber on diesel engine performance (No. 2016-01-0722). SAE Technical Paper. [
DOI:10.4271/2016-01-0722]
18. Awad, O. I., Mamat, R., Noor, M. M., Ibrahim, T. K., Yusri, I. M., & Yusop, A. F. (2018). The impacts of compression ratio on the performance and emissions of ice powered by oxygenated fuels: A review. Journal of the Energy Institute, 91(1), 19-32. [
DOI:10.1016/j.joei.2016.09.003]
19. Hirkude, J., & Padalkar, A. S. (2014). Experimental investigation of the effect of compression ratio on performance and emissions of CI engine operated with waste fried oil methyl ester blend. Fuel processing technology, 128, 367-375. [
DOI:10.1016/j.fuproc.2014.07.026]
20. Zhu, Y., Stobart, R., & Deng, J. (2010). Analysis of the impact on diesel engine fuel economy and emissions by variable compression ratio using GT-Power simulation (No. 2010-01-1113). SAE Technical Paper. [
DOI:10.4271/2010-01-1113]
21. Sayin, C., & Gumus, M. (2011). Impact of compression ratio and injection parameters on the performance and emissions of a DI diesel engine fueled with biodiesel-blended diesel fuel. Applied thermal engineering, 31(16), 3182-3188. [
DOI:10.1016/j.applthermaleng.2011.05.044]
22. Jindal, S., Nandwana, B. P., Rathore, N. S., & Vashistha, V. (2010). Experimental investigation of the effect of compression ratio and injection pressure in a direct injection diesel engine running on Jatropha methyl ester. Applied thermal engineering, 30(5), 442-448. [
DOI:10.1016/j.applthermaleng.2009.10.004]
23. Wang, S., Karthickeyan, V., Sivakumar, E., & Lakshmikandan, M. (2020). Experimental investigation on pumpkin seed oil methyl ester blend in diesel engine with various injection pressure, injection timing and compression ratio. Fuel, 264, 116868. [
DOI:10.1016/j.fuel.2019.116868]
24. Ghaedi, A., Shafaghat, R., Jahanian, O., & Hasankola, S. S. M. (2020). Comparing the performance of a CI engine after replacing the mechanical injector with a common rail solenoid injector. Journal of Thermal Analysis and Calorimetry, 139(4), 2475-2485. [
DOI:10.1007/s10973-019-08760-1]
25. Fakhari, A. H., Shafaghat, R., Jahanian, O., Ezoji, H., & Hasankola, S. S. M. (2020). Numerical simulation of natural gas/diesel dual-fuel engine for investigation of performance and emission. Journal of Thermal Analysis and Calorimetry, 139(4), 2455-2464. [
DOI:10.1007/s10973-019-08560-7]
26. Hasankola, S. S. M., Shafaghat, R., Jahanian, O., & Nikzadfar, K. (2020). An experimental investigation of the injection timing effect on the combustion phasing and emissions in reactivity-controlled compression ignition (RCCI) engine. Journal of Thermal Analysis and Calorimetry, 139(4), 2509-2516. [
DOI:10.1007/s10973-019-08761-0]
27. Jayashankara, B., & Ganesan, V. (2010). Effect of fuel injection timing and intake pressure on the performance of a DI diesel engine-A parametric study using CFD. Energy Conversion and Management, 51(10), 1835-1848. [
DOI:10.1016/j.enconman.2009.11.006]
28. Rosa, J. S., Martins, M. E. S., Telli, G. D., Altafini, C. R., Wander, P. R., & Rocha, L. A. O. (2020). Exploring the effects of diesel start of injection and water-in-ethanol concentration on a reactivity controlled compression ignition engine. Fuel, 281, 118751. [
DOI:10.1016/j.fuel.2020.118751]
29. Ahmed, S. A., Zhou, S., Zhu, Y., Feng, Y., Malik, A., & Ahmad, N. (2019). Influence of Injection Timing on Performance and Exhaust Emission of CI Engine Fuelled with Butanol-Diesel Using a 1D GT-Power Model. Processes, 7(5), 299. [
DOI:10.3390/pr7050299]
30. https://www.gtisoft.com/gt-suiteapplications/propulsion-systems/gt-power-engine-simulation-software/.
31. Prah, I., & Katrašnik, T. (2009). Application of optimization techniques to determine parameters of the vibe combustion model. Strojniški Vestn−J. Mech. Eng., 715-726.