Write your message
Summer and Fall 2021                   Back to the articles list | Back to browse issues page

XML Print


1- Faculty of civil engineering and architecture, Shahid Chamran University of Ahvaz
2- Department of Civil Engineering, University of Qom
Abstract:   (313 Views)
The jacket structure is the key facility for the exploitation of marine resources. Offshore oil platforms located in an earthquake zone need to be analyzed for the structural response. A real offshore structure is always intricate and has to be idealized to diverse degree to fit in to the framework of the mathematical model for dynamic analysis. This work addresses the need for such a facilitated structural computation model. The planned scheme is based on laboratory work for improving the facilitated model. This study describes the scheme in employing the MDC associated with the GA method to create and update the facilitated structural model for analyzing the responses of a jacket platform. The facilitated modelling is first calculated based on MDC method, and then the platform model is refined and improved based on recorded modal features. Considering the presented model, the expense of analysis of jacket offshore structures is considerably reduced without incurring any loss of precision. Therefore, improvement of such approaches would be acutely beneficial to spread out technologies that can be applied for jacket structures with saving of both time and cost.
Full-Text [PDF 1295 kb]   (52 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2021/08/18 | Accepted: 2022/02/16

References
1. Li, Z.X., Chan, T.H.T., Yu, Y., Sun, Z.H., (2009). Concurrent multi-scale modeling of civil infrastructures for analyses on structural deterioration - Part I: modeling methodology and strategy. Finite Elem. Anal. Des. 45, 782-794. [DOI:10.1016/j.finel.2009.06.013]
2. Wang, F.Y., Xu, Y.L., Qu, W.L., (2014), Mixed-dimensional finite element coupling for structural multi-scale simulation. Finite Elements in Analysis and Design, 92, 12-25. [DOI:10.1016/j.finel.2014.07.009]
3. Mccune, R.W., ARMSTRONG, C.G., ROBINSON, D.J., (2000), Mixed dimensional coupling in finite element models. Int. Journal for Numerical Methods in Engineering. 49, 725-750. https://doi.org/10.1002/1097-0207(20001030)49:6<725::AID-NME967>3.0.CO;2-W [DOI:10.1002/1097-0207(20001030)49:63.0.CO;2-W]
4. WENZEL, H., (2009), Health monitoring of bridges. Vienna: John Wiley & Sons, Ltd. [DOI:10.1002/9780470740170]
5. Mojtahedi, A., Hokmabady, H., yaghubzadeh, A., (2020), An improved model reduction-modal based method for model updating and health monitoring of an offshore jacket-type platform, Ocean Engineering. 209, 107495. [DOI:10.1016/j.oceaneng.2020.107495]
6. Hokmabady, H., Mojtahedi,A., Mohammadyzadeh, S., (2020), Uncertainty analysis of an offshore jacket-type platform using a developed numerical model updating technique, ocean engineering. 211, 107608. [DOI:10.1016/j.oceaneng.2020.107608]
7. Wang, S.H., Li, Y., Li, H., (2015), Structural model updating of an offshore platform using the cross model cross mode method: An experimental study, Ocean Engineering. 97, 57-64. [DOI:10.1016/j.oceaneng.2015.01.007]
8. Hosseinlou, F., Mojtahedi, A., Lotfollahi, M.A., (2017), Developing a SIM strategy for offshore jacket platforms based on the FE model updating and a novel simplified method, Ocean Engineering. 145, 158-176. [DOI:10.1016/j.oceaneng.2017.08.013]
9. Li, M., Hong, Z., (2011), New iterative method for model updating based on model reduction, Mechanical Systems and Signal processing. 25, 180-192. [DOI:10.1016/j.ymssp.2010.07.009]
10. Zhang, D.W., Li, S., (1995), Succession-level approximate reduction (SAR) technique for structural dynamic model. 13th International Modal Analysis Conference, Nashville, 435-441.
11. Lin, R.M., Ewins, D. J., (1994), Analytical model improvement using frequency response functions. Mechanical Systems and Signal Processing, 8(4), 437-458. [DOI:10.1006/mssp.1994.1032]
12. Li, H., Ding, H., (2010), Reduction-based model updating of a scaled offshore platform structure. Journal of Engineering mechanics, 136 (2). [DOI:10.1061/(ASCE)0733-9399(2010)136:2(131)]
13. Hosseinlou, F., Mojtahedi, A., (2016), FEM Updating for offshore jacket structures using measured incomplete modal data. Journal of maritime Technolog, IJMT. 5, 1-11.
14. Jensen, H.A., Millas, E., Kusanovic, D., Papadimitriou,C,(2014),Model reduction techniques for Bayesian finite element model updating using dynamic response data. Comput. Methods Appl. Mech. Eng. 279, 301-324. [DOI:10.1016/j.cma.2014.06.032]
15. Arora, V., Singh, S.P., Kundra, T.K., (2009), Finite element model updating with damping identification. Journal of Sound and Vibration, 1111-1123. [DOI:10.1016/j.jsv.2009.02.048]
16. Fathi, A., Esfandiari, A., Fadavie, M., Mojtahedi, A., (2020), Damage detection in an offshore platform using incomplete noisy FRF data by a novel Bayesian model updating method. Ocean Engineering, 217, 108023. [DOI:10.1016/j.oceaneng.2020.108023]
17. Malekzehtab, H., Golafshani, A.A., (2013), Damage detection in an offshore jacket platform using genetic algorithm based finite element model updating with noisy modal data. Procedia Engineering, 54, 480-490. [DOI:10.1016/j.proeng.2013.03.044]
18. Esfandiari, A., Bakhtiarinejad, F., Rahai, A., Sanayei, M., (2009), Structural model updating using frequency response function and quasi-linear sensitivity equation. Journal of Sound and Vibration, 326, 557-573. [DOI:10.1016/j.jsv.2009.07.001]
19. Yuan, Y., Dai, H., (2009), The direct updating of damping and gyroscopic matrices. Journal of Computational and Applied Mathematics, 231, 255-261. [DOI:10.1016/j.cam.2009.02.007]
20. Ersdal, G., Oma, N., (2019), Investigation of updating methods for probability-informed inspection planning for offshore structures. Materials Science and Engineering, 700, 012034. [DOI:10.1088/1757-899X/700/1/012034]
21. Hyde, T.H., Fessler, H., (1996), Tubular Frames: Collapse prediction using models, Fatigue in Offshore Structures, Vol. 1, (Eds. W.D. Dover and A.G. Madhava Rao), Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi, 195-221.
22. Mata, P., Barbatt, A.H., Oller, S., (2008), Two-scale approach for the nonlinear dynamic analysis of RC structures with local non-prismatic parts. Eng. Struct. 30, 3667-3680. [DOI:10.1016/j.engstruct.2008.06.011]
23. Armstrong, C.G., Mccune, R.W., Robinson, D.J., (1998), multi-dimensional analysis modelling. Proc. 6th ACME Annual Conference on Computational Mechanics in UK, pp. 47-50, Exeter.
24. Monaghan, D.J., Lee, K.Y., Armstrong, C.G., Ou, H., (2000), Mixed Dimensional Finite Element Analysis of Frame Models. Proc. 10th ISOPE Conference, Seattle. 4, 263-269.
25. Monaghan, D.J., Doherty, I.W., Mccourt, D., Armstrong, C.G., (1998), Coupling 1D Beams to 3D Bodies", 7th International Meshing Roupndtable, Sandia National Laboratories. 285-293.
26. Timoshenko, S.P., Goodier, J.N., (1970), Theory of Elasticity", 3rd Edition, McGraw-Hill, New York. [DOI:10.1115/1.3408648]
27. Shim, K., Monaghan, D., Armstrong, C., (2002), Mixed dimensional coupling in finite element stress analysis. Eng Comput 18, 241-252. [DOI:10.1007/s003660200021]
28. Goldberg, D.E., Holland, J.H., (1988), Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99. [DOI:10.1023/A:1022602019183]
29. Holland, J.H., (1992), Genetic algorithms. Scientific American, 267(1), 66-73. [DOI:10.1038/scientificamerican0792-66]
30. Mirjalili, S., (2019), Evolutionary algorithms and neural networks: Theory and applications (Studies in Computational Intelligence Book 780) 1st ed., Kindle Edition. [DOI:10.1007/978-3-319-93025-1]
31. Ramezani, M., Bathaei, A., Zaheri, S.M., (2017). Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings. Smart Struct Syst, 20(1), 61-74.
32. Hosseinlou, F., (2021), Laboratory tests on a hybrid SDR approach for jacket platforms via improved dynamic-reduction system. Applied Ocean Research, 107; 102496. [DOI:10.1016/j.apor.2020.102496]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.