1. Wang, Q.X., Y. K, (1996), Strong Interaction Between a Buoyancy Bubble and a Free Surface, Theoret Comput Fluid Dynamics, p.73-88.
2. Fabian, D., (2018), Wall collision of deformable bubbles in the creeping flow regime, European Journal of Mechanics / B Fluids, doi:10.1016/j.euromechflu.2018.02.002.
3. Chahine, (2009), Numerical Simulation of Bubble Flow Interactions, Dynaflow inc., 10621-J Iron Bridge Road, Jessup, Maryland 20794, USA, p.316-332. doi:10.1016/S1001-6058(08)60152-3.
4. Raoufi, A., Shams, M. and Ebrahimi, R., (2008), A Novel CFD Scheme for Collision of Micro-bubbles in Turbulent Flow, Engineering Letters, 16:3, EL_16_3_02.
5. Li, F., Cai, J., Huai, X. and Liu, B.,(2013), Interaction mechanism of double bubbles in hydrodynamic cavitation, J.Therm. Sci. 22, p.242-249, doi:10.1007/s11630-013-0619-9.
6. Liang, J., Han, G., Fengbin, L. and Darong, C., (2016), Investigations on Dynamics of Interacting Cavitation Bubbles in Strong Acoustic Fields, Ultrason-Sonochemistry. doi:10.1016/j.ultsonch.2016.05.017.
7. Mettin, R., Akhatov, I., Parlitz, U., Oh, C.l. and Lauterborn, W., (1997), Bjerknes forces between small cavitation bubbles in a strong acoustic field, Phys. Rev. E. 56-2924-2931, doi:10.1103/PhysRevE.56.2924.
8. Ida, M., (2009), Bubble-bubble interaction: A potential source of cavitation noise, Phys. Rev. E. 79, doi:10.1103/PhysRevE.79.016307.
9. Sadighi-Bonabi, R., Rezaee, N., Ebrahimi H. and Mirheydari, M., (2010), Interaction of two oscillating sonoluminescence bubbles in sulfuric acid, Phys. Rev. E - Stat Nonlinear, Soft Matter Phys. 82, doi:10.1103/PhysRevE.82.016316.
10. Heitkam, Sommer, A.E. and Drenckhan, W., (2017), A simple collision model for small bubbles, Journal of Physics: Condensed Matter, doi:10.1088/1361-648X/aa56fc.
11. Ochiai, N., (2009), Numerical Prediction of Cavitation Erosion in Cavitating Flow, Proceedings of the 7th International Symposium on Cavitation CAV2009, Paper No. 67.
12. Plesset, M.S. and Prosperetti, A., (1977), Bubble Dynamics and Cavitation, Annu. Rev. Fluid Mech.9(1), p.145-185, DOI: 10.1146/annurev.fl.09.010177.001045.
13. Prosperetti, A., and Lezzi, A., (1986), Bubble Dynamics in a Compressible Liquid, J. Fluid Mech.168, p.457-478 DOI: 10.1017/S0022112086000460.
14. Maxey, M. R., (1983), Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow, Phys.Fluids.26(4), p.883 DOI: 10.1063/1.864230.
15. Haberman, W. L. and Morton, R. K., (1953), An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids, Navy Dep. David Taylor Model Basin Washington.DC, p.1-55, DOI: 10.5962/bhl.title.47521
16. Goldman, A. J. and C, R.,(1967), The Slow viscous motion of a sphere parallels to a plane wall 1 motion through a quiescent fluid, Chem. Eng. Sci. 22 637-51.
17. Hendrix, M.H.W. and M, R.D., (2012), Spatiotemporal evolution of thin liquid films during impact of water bubbles on glass on a micrometer to nanometer scale, Phys. Rev. Lett. 108 247803.
18. Hoomans, B.P.B., Kuipers, t. J. A. M., Briels ,W. J. and Van Swaaij, W.P.M., (1996), Discrete Particle Simulation of Bubble and Slug Formation in a Two-Dimensional Gas-Fluidised Bed: A Hard-Sphere Approach, Department of Chemical Engineering, Twente University of Technology, P.O. Box 217,7500AE Enschede -99-118.
19. Hosseininejad, S.S.A., (2016), CFD Modeling of Cavitation for Fine Particle Flotation, A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering, pp. 83-85.
20. Soyama, H., Kumano, H. and Saka, M., ( 2001), A New Parameter to Predict Cavitation Erosion, http//resolver. Caltech. edu/cav2001 Sess. 002, p.1-8.
21. Keller, J.B. & Kolodner, I.I., (1956), Damping of underwater explosion bubble oscillations, J. Appl.Phys.271152-1161, doi:10.1063/1.1722221
22. Van Rijsbergen, M. and Boorsma, A., (2011), High-speed video observations and acoustic impact measurements on a NACA0015 foil, CRS EROSION II Working Group, proprietary.
23. Flannigan, D.J., Hopkins, S.D., Camara, C.G., Putterman, S.J. and Suslick, K.S., (2006), Measurement of pressure and density inside a single sonoluminescing bubble, Phys. Rev. Lett. 96, doi:10.1103/PhysRevLett.96.204301.
24. Cogné, C., Labouret, S., Peczalski, R., Louisnard, O., Baillon, F. and Espitalier, F., (2016), Theoretical model of ice nucleation induced by acoustic cavitation ,Ultrason. Sonochem.29, doi:10.1016/j.ultsonch.2015.05.038.