Write your message


Volume 20 -                   ijmt 2024, 20 - : 1-12 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nikkhah M. Monitoring of the anchorage system of the harbour structure of Shahid Rajaei port third phase development project using fiber optic sensor. ijmt 2024; 20 :1-12
URL: http://ijmt.ir/article-1-830-en.html
Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Tecnology
Abstract:   (1262 Views)
The design and construction of the harbour structure takes a lot of time and cost to be put into operation, and its regular safety, surveillance and evaluation is no less important than the design and construction stages. The importance of this matter is revealed from the fact that in case of any defects and problems, it will lead to damage to this structure or in a critical condition, it will cause failure and the impossibility usage it. In addition to the loss of huge capital, it may also cause irreparable injuries. In this paper, while introducing the instrumentation of the structural health monitoring system, the investigation and monitoring of the strand anchorage system of the Shahid Rajaei port harbour (phase 3), which is the first project of the harbour structural health monitoring project in Iran, has been discussed. Among the various control instrumentation used in the structural health monitoring system of the mentioned project, strain gauges with Fiber Bragg grating (FBG) mechanism have been introduced and the obtained results have been analyzed. According to the evaluation on the measurement data and the graphs of control parameters, it can be concluded that the anchorage system of the harbour structure is in a desired condition.
 
Full-Text [PDF 1356 kb]   (420 Downloads)    
Type of Study: Research Paper | Subject: Other
Received: 2023/12/16 | Accepted: 2024/05/12

References
1. Scuro, C., Lamonaca, F., Porzio, S., Milani, G., & Olivito, R.S., (2021), Internet of Things (IoT) for masonry structural health monitoring (SHM): Overview and examples of innovative systems, Construction and Building Materials, 290, 123092, doi: 10.1016/j.conbuildmat.2021.123092 [DOI:10.1016/j.conbuildmat.2021.123092]
2. Boller, C. Chang, F., & Fujino, Y., (2009), Encyclopedia of Structural Health Monitoring, John Wiley & Sons, Hoboken [DOI:10.1002/9780470061626]
3. Comisu, C., Taranu, N., Boaca, G., & Scutaru, M., (2017), Structural health monitoring system of bridges, Procedia Engineering, 199, 2054-2059, doi: 10.1016/j.proeng.2017.09.472 [DOI:10.1016/j.proeng.2017.09.472]
4. Sugano, T., Nozu, A., Kohama, E., Shimosako, K., & Kikuchi, Y., (2014), Damage to coastal structures, Soils and Foundations, 54, 4, 883-901, doi: 10.1016/j.sandf.2014.06.018 [DOI:10.1016/j.sandf.2014.06.018]
5. Doebling, S., Farrar, C., & Prime, M., (1998), A Review of Damage Identification Methods that Examine Changes in Dynamic Properties, The Shock and Vibration Digest. 30, 91-105, doi: 10.1177/058310249803000201 [DOI:10.1177/058310249803000201]
6. Khak Energy pars co. (1401, solar calendar) Strucural health monitoring report for Shahid Rajaei port harbour (phase 3), (In Persian)
7. Modares, M., Waksmanski, N., (2013). Overview of structural health monitoring for steel bridges. Pract Period Struct Des Constr . 18 (3), 187-191. doi:10.1061/(ASCE)SC1943-55760000154 [DOI:10.1061/(ASCE)SC.1943-5576.0000154]
8. Lopez-Higuera, J M., (2002). Introduction to optical fiber sensor technology. in Handbook of Optical Fibre Sensing Technology, New York: Wiley
9. Lopez-Higuera, J M., Cobo, L. R., Incera, A. Q., and Cobo, A., (2011). Fiber Optic Sensors in Structural Health Monitoring, JOURNAL OF LIGHTWAVE TECHNOLOGY, 29, 4. [DOI:10.1109/JLT.2011.2106479]
10. Cavallo, A., May, C., Minardo, A., Natale, C., Pagliarulo, P., & Pirozzi, S., (2009), Active vibration control by a smart auxiliary mass damper equipped with a fiber Bragg grating sensor, Sensors and Actuators A: Physical, 153, 180-186. [DOI:10.1016/j.sna.2009.05.016]
11. Behrmann, G., Hidler, J., & Mirotznik, M., (2012), Fiber optic micro sensor for the measurement of tendon forces, BioMedical Engineering OnLine. 11(1):77, doi: 10.1186/1475-925X-11-77 [DOI:10.1186/1475-925X-11-77] [PMID] []
12. Pei, H.F., Li, C., Zhu, H.H., & Wang, Y.J., (2013). Slope stability analysis based on measured strains along soil nails using FBG sensing technology, Mathematical Problems in Engineering. Article ID 561360, doi:10.1155/2013/561360 [DOI:10.1155/2013/561360]
13. Li, H., Ren, L., Li, D., & Yi, T., (2013). Design and Applications of Fiber Bragg Grating Sensors for Structural Health Monitoring, Proceedings of the 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea.
14. Zhang, Y., Bai, X., Yan, N., Sang, S., Jing, D., Chen, X., & Zhang, M., (2022). Load Transfer Law of Anti-Floating Anchor With GFRP Bars Based on Fiber Bragg Grating Sensing Technology, Frontiers in Materials, 9, 849114. [DOI:10.3389/fmats.2022.849114]
15. Huang, C., & Wei, Z., (2009). "Research on structural health monitoring of seaport wharf" Computational structural engineering confeence. Springer. 1291-1299 [DOI:10.1007/978-90-481-2822-8_146]
16. Habel, W. R., & Krebber, K., (2011). Fiber-optic sensor applications in civil and geotechnical engineering, Photonic sensors, 1(3), 268-280, doi: 10.1007/s13320-011-0011-x [DOI:10.1007/s13320-011-0011-x]
17. Liu, P., (2014), "The fiber optic sensor-based online monitoring technology for oil well down-hole casting strain and pressure". Biotechnology an Indian Journal, 10(15), 8379-8384
18. Ye, X., Su, Y., & Han, J., (2014). Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review, The Scientific World Journal. [DOI:10.1155/2014/652329] [PMID] []
19. Barbosa, C,. et al., (2008). Weldable fibre Bragg grating sensors for steel bridge monitoring, Meas. Sci. Technol, 19, 12 [DOI:10.1088/0957-0233/19/12/125305]
20. Vohra, S., Johnson, G., Todd, M., Danver, B., and Althouse, B., (2000). "Distributed strain monitoring with arrays of fiber Bragg grating sensors on an in-construction steel box-girder bridge," IEICE Trans. Electron.,vol. E83C, 3, pp. 454-461
21. Li, H., Ou, JP., & Zhou, Z., (2009). Applications of optical fibre Bragg gratings sensing technology-based smart stay cables. Opt Lasers Eng 47:1077-1084 [DOI:10.1016/j.optlaseng.2009.04.016]
22. Huynh, T., Nguyen, T., Kim, T., & Kim, J., (2015). FBG-based Tendon Force Monitoring and Temperature Effect Estimation in Prestressed Concrete Girder, 6th International Conference on Advances in Experimental Structural Engineering, Urbana-Champaign, USA
23. Dewra, S., & Grover, A., (2015). Fabrication and applications of fiber Bragg grating-a review, Advanced Engineering Technology and Application, 4(3), 7-17
24. Chen, Q., Zhang, X., Chen, Y., & Zhang, X., (2015). A method of strain measurement based on fiber Bragg grating sensors, Vibroengineering Procedia, 5, 140-144.
25. Harmanci, Y. E., Spiridonakos, M. D., Chatzi, E. N., & Kübler, W., (2016). An autonomous strain-based structural monitoring framework for life-cycle analysis of a novel structure, Frontiers in Built Environment, 2(13):1-14 ,doi: 10.3389/fbuil.2016.00013 [DOI:10.3389/fbuil.2016.00013]
26. Kim, J.M., Kim, C.M., Choi, S.Y., & Lee, B.Y., (2017). "Enhanced strain measurement range of an FBG sensor embedded in seven-wire steel strands". Sensors, 17(7), 1654, doi:10.3390/s17071654 [DOI:10.3390/s17071654] [PMID] []
27. Zhang, M.Y., Kuang, Z., Bai, X.Y., & Chen, X.Y., (2018). Pullout behavior of GFRP anti-floating anchor based on the FBG sensor technology, Mathematical Problems in Engineering. Article ID 6424791, doi: 10.1155/2018/6424791 [DOI:10.1155/2018/6424791]
28. Fu, J., Guo, Y., & Li, P., (2020). A fiber Bragg grating anchor rod force sensor for accurate anchoring force measuring, IEEE Access, 8, 12796-12801, doi: 10.1109/ACCESS.2020.2966235 [DOI:10.1109/ACCESS.2020.2966235]
29. Lecieux, Y., Rozière, E., Gaillard, V., Lupi, C., Leduc, D., Priou, J. Guyard, R., Chevreuil, M., & Schoefs, F., (2019). Monitoring of a reinforced concrete wharf using structural health monitoring system and material testing, Journal of Marine Science and Engineering, 7(4), 84, doi: 10.3390/jmse7040084 [DOI:10.3390/jmse7040084]
30. Kwon, I.B., Kwon, Y.S., Seo, D.C., Yoon, D.J., & Kim, E., (2020). A Technic for Ground Anchor Force Determination from Distributied Strain Using Fiber Optic OFDR Sensor with the Rejection of a Temperature Effect, Applied Sciences, 10(23), 8437, doi: 10.3390/app10238437 [DOI:10.3390/app10238437]
31. Braunfelds, J., Senkans, U., Skels, P., Janeliukstis, R., Salgals, T., Redka, D., Lyashuk, I., Porins, J., Spolitis, S., Haritonovs, V., & Haritonovs, V., (2021). FBG-based sensing for structural health monitoring of road infrastructure, Journal of Sensors. Article ID 8850368, doi:10.1155/2021/8850368 [DOI:10.1155/2021/8850368]
32. Yang, J., Hou, P., Yang, C., & Yang, N., (2021). Study of a Long-Gauge FBG Strain Sensor with Enhanced Sensitivity and Its Application in Structural Monitoring, Sensors, 21(10), 3492, doi: 10.3390/s21103492 [DOI:10.3390/s21103492] [PMID] []
33. Guo, G., Zhang, D., Duan, Y., Zhang, G., & Chai, J., (2022). Strain-Sensing Mechanism and Axial Stress Response Characterization of Bolt Based on Fiber Bragg Grating Sensing, Energies, 15(17), 6384, doi: 10.3390/en15176384 [DOI:10.3390/en15176384]
34. Jeon, S.J., Park, S.Y., & Kim, S.T., (2022). Temperature Compensation of Fiber Bragg Grating Sensors in Smart Strand, Sensors, 22(9), 3282, doi: 10.3390/s22093282 [DOI:10.3390/s22093282] [PMID] []
35. Silva-Campillo, A., Pérez-Arribas, F., & Suárez-Bermej, J., (2023). Health-Monitoring Systems for Marine Structures: A Review, Sensors, 23, 2099, doi: 10.3390/s23042099 [DOI:10.3390/s23042099] [PMID] []

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.