1. Ab. Ghani, A., Azamathulla, H.M., 2014. Development of GEP-based functional relationship for sediment transport in tropical rivers. Neural Comput. Appl. [
DOI:10.1007/s00521-012-1222-9]
2. Abualigah, L., & Diabat, A. (2021). Advances in Sine Cosine Algorithm: A comprehensive survey. Artificial Intelligence Review. [
DOI:10.1007/s10462-020-09909-3]
3. Achite, M., Banadkooki, F. B., Ehteram, M., Bouharira, A., Ahmed, A. N., & Elshafie, A. (2022). Exploring Bayesian model averaging with multiple ANNs for meteorological drought forecasts. Stochastic Environmental Research and Risk Assessment, 1-26. [
DOI:10.1007/s00477-021-02150-6]
4. Adnan, R. M., Liang, Z., Parmar, K. S., Soni, K., & Kisi, O. (2021). Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data. Neural Computing and Applications. [
DOI:10.1007/s00521-020-05164-3]
5. Aghelpour, P., & Varshavian, V. (2020). Evaluation of stochastic and artificial intelligence models in modeling and predicting of river daily flow time series. Stochastic Environmental Research and Risk Assessment. [
DOI:10.1007/s00477-019-01761-4]
6. Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079. [
DOI:10.1016/j.eswa.2021.115079]
7. Baniya, M.B., Asaeda, T., Shivaram, K.C., Jayashanka, S.M.D.H., 2019. Hydraulic parameters for sediment transport and prediction of suspended sediment for Kali Gandaki River basin, Himalaya, Nepal. Water (Switzerland). [
DOI:10.3390/w11061229]
8. Bazrafshan, O., Ehteram, M., Latif, S. D., Huang, Y. F., Teo, F. Y., Ahmed, A. N., & El-Shafie, A. (2022). Predicting crop yields using a new robust Bayesian averaging model based on multiple hybrid ANFIS and MLP models. Ain Shams Engineering Journal, 13(5), 101724. [
DOI:10.1016/j.asej.2022.101724]
9. Chen, Y., Li, Y., Thompson, C., Wang, X., Cai, T., & Chang, Y. (2018). Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary. Geomorphology. [
DOI:10.1016/j.geomorph.2018.06.018]
10. Cui, H., Zhou, J., Li, Z., & Gu, C. (2021). Soil and Sediment Pollution, Processes and Remediation. Frontiers in Environmental Science, 651. [
DOI:10.3389/fenvs.2021.822355]
11. da Silva, Y.J.A.B., Cantalice, J.R.B., Singh, V.P., Cruz, C.M.C.A., Silva Souza, W.L. da, 2016. Sediment transport under the presence and absence of emergent vegetation in a natural alluvial channel from Brazil. Int. J. Sediment Res. [
DOI:10.1016/j.ijsrc.2016.01.001]
12. Dodangeh, E., Panahi, M., Rezaie, F., Lee, S., Tien Bui, D., Lee, C. W., & Pradhan, B. (2020). Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. Journal of Hydrology. [
DOI:10.1016/j.jhydrol.2020.125423]
13. Ebtehaj, I., Bonakdari, H., 2016a. A comparative study of extreme learning machines and support vector machines in prediction of sediment transport in open channels. Int. J. Eng. Trans. B Appl. [
DOI:10.5829/idosi.ije.2016.29.11b.03]
14. Ebtehaj, I., Bonakdari, H., 2016b. Bed load sediment transport estimation in a clean pipe using multilayer perceptron with different training algorithms. KSCE J. Civ. Eng. [
DOI:10.1007/s12205-015-0630-7]
15. Ehteram, M., Ahmed, A. N., Kumar, P., Sherif, M., & El-Shafie, A. (2021). Predicting freshwater production and energy consumption in a seawater greenhouse based on ensemble frameworks using optimized multi-layer perceptron. Energy Reports, 7, 6308-6326. [
DOI:10.1016/j.egyr.2021.09.079]
16. Fathi-Moghadam, M., Davoudi, L. and Motamedi-Nezhad, A., 2018. Modeling of solitary breaking wave force absorption by coastal trees. Ocean Engineering, 169, 87-98. [
DOI:10.1016/j.oceaneng.2018.09.021]
17. Igarashi, Y., & Tanaka, N. (2018). Effectiveness of a compound defense system of sea embankment and coastal forest against a tsunami. Ocean Engineering, 151, 246-256. [
DOI:10.1016/j.oceaneng.2018.01.036]
18. Jalil Masir, H., Fattahi, R., Ghanbari Adivi, E., & Asadi Aghbolaghi, M. (2021b). Experimental investigation on impact of the coastal Forest on reducing sediment transport rate at littoral Zone. Irrigation and Water Engineering, 11(4), 38-52.
19. Jalil-Masir, H., Fattahi, R., Ghanbari-Adivi, E., & Aghbolaghi, M. A. (2021a). Effects of different forest cover configurations on reducing the solitary wave-induced total sediment transport in coastal areas: An experimental study. Ocean Engineering, 235, 109350. [
DOI:10.1016/j.oceaneng.2021.109350]
20. Jalil-Masir, H., Fattahi, R., Ghanbari-Adivi, E., Asadi Aghbolaghi, M., Ehteram, M., Ahmed, A.N. and El-Shafie, A., 2022. An inclusive multiple model for predicting total sediment transport rate in the presence of coastal vegetation cover based on optimized kernel extreme learning models. Environmental Science and Pollution Research, pp.1-34. [
DOI:10.1007/s11356-022-20472-y] [
PMID]
21. Kargar, K., Safari, M.J.S., Mohammadi, M., Samadianfard, S., 2019. Sediment transport modeling in open channels using neuro-fuzzy and gene expression programming techniques. Water Sci. Technol. [
DOI:10.2166/wst.2019.229] [
PMID]
22. Kitsikoudis, V., Sidiropoulos, E., Hrissanthou, V., 2015. Assessment of sediment transport approaches for sand-bed rivers by means of machine learning. Hydrol. Sci. J. [
DOI:10.1080/02626667.2014.909599]
23. Kusumoto, S., Imai, K., Gusman, A. R., & Satake, K. (2020). Reduction effect of tsunami sediment transport by a coastal forest: Numerical simulation of the 2011 Tohoku tsunami on the Sendai Plain, Japan. Sedimentary Geology. [
DOI:10.1016/j.sedgeo.2020.105740]
24. Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300-323. [
DOI:10.1016/j.future.2020.03.055]
25. Liang, G., Panahi, F., Ahmed, A. N., Ehteram, M., Band, S. S., & Elshafie, A. (2021). Predicting municipal solid waste using a coupled artificial neural network with archimedes optimisation algorithm and socioeconomic components. Journal of Cleaner Production. [
DOI:10.1016/j.jclepro.2021.128039]
26. Mirjalili, S. (2016). SCA: A Sine Cosine Algorithm for solving optimization problems. Knowledge-Based Systems. [
DOI:10.1016/j.knosys.2015.12.022]
27. Moosavi, V., Mahjoobi, J., & Hayatzadeh, M. (2021). Combining Group Method of Data Handling with Signal Processing Approaches to Improve Accuracy of Groundwater Level Modeling. Natural Resources Research. [
DOI:10.1007/s11053-020-09799-w]
28. Mu, H., Yu, X., Fu, S., Yu, B., Liu, Y., & Zhang, G. (2019). Effect of stem basal cover on the sediment transport capacity of overland flows. Geoderma. [
DOI:10.1016/j.geoderma.2018.09.055]
29. Mulashani, A. K., Shen, C., Nkurlu, B. M., Mkono, C. N., & Kawamala, M. (2022). Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data. Energy, 239, 121915. [
DOI:10.1016/j.energy.2021.121915]
30. Panahi, F., Ehteram, M., Ahmed, A. N., Huang, Y. F., Mosavi, A., & El-Shafie, A. (2021). Streamflow prediction with large climate indices using several hybrid multilayer perceptrons and copula Bayesian model averaging. Ecological Indicators, 133, 108285. [
DOI:10.1016/j.ecolind.2021.108285]
31. Panahi, M., Rahmati, O., Rezaie, F., Lee, S., Mohammadi, F., & Conoscenti, C. (2022). Application of the group method of data handling (GMDH) approach for landslide susceptibility zonation using readily available spatial covariates. Catena, 208, 105779. [
DOI:10.1016/j.catena.2021.105779]
32. Parnak, F., Rahimpour, M., & Qaderi, K. (2018). Experimental investigation of the effect of rigid and flexible vegetation on sediment transport in open channels. Journal of Water and Soil, 32(2).
33. Permatasari, I., Dewiyanti, I., Purnawan, S., Yuni, S. M., Irham, M., & Setiawan, I. (2018). The correlation between mangrove density and suspended sediment transport in Lamreh Estuary, Mesjid Raya Subdistrict, Aceh Besar, Indonesia. IOP Conference Series: Earth and Environmental Science. [
DOI:10.1088/1755-1315/216/1/012004]
34. Radaideh, M. I., & Kozlowski, T. (2020). Analyzing nuclear reactor simulation data and uncertainty with the group method of data handling. Nuclear Engineering and Technology. [
DOI:10.1016/j.net.2019.07.023]
35. Riahi-Madvar, H., Seifi, A., 2018. Uncertainty analysis in bed load transport prediction of gravel bed rivers by ANN and ANFIS. Arab. J. Geosci. [
DOI:10.1007/s12517-018-3968-6]
36. Roushangar, K., Ghasempour, R., 2017. Prediction of non-cohesive sediment transport in circular channels in deposition and limit of deposition states using SVM. Water Sci. Technol. Water Supply. [
DOI:10.2166/ws.2016.153]
37. Sun, P., Wu, Y., Gao, J., Yao, Y., Zhao, F., Lei, X., & Qiu, L. (2020). Shifts of sediment transport regime caused by ecological restoration in the Middle Yellow River Basin. Science of the Total Environment. [
DOI:10.1016/j.scitotenv.2019.134261] [
PMID]
38. Wang, G. G. (2018). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10(2), 151-164. [
DOI:10.1007/s12293-016-0212-3]
39. Wang, G. G., Deb, S., & Cui, Z. (2019). Monarch butterfly optimization. Neural computing and applications, 31(7), 1995-2014. [
DOI:10.1007/s00521-015-1923-y]
40. Wang, H., Tang, H. W., Zhao, H. Q., Zhao, X. Y., & Lü, S. Q. (2015). Incipient motion of sediment in presence of submerged flexible vegetation. Water Science and Engineering. [
DOI:10.1016/j.wse.2015.01.002]
41. Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864. [
DOI:10.1016/j.eswa.2021.114864]
42. Zhang, Z., Chai, J., Li, Z., Chen, L., Yu, K., Yang, Z., ... & Zhao, Y. (2022). Effect of Check Dam on Sediment Load Under Vegetation Restoration in the Hekou-Longmen Region of the Yellow River. Frontiers in Environmental Science, 713. [
DOI:10.3389/fenvs.2021.823604]